簡易檢索 / 詳目顯示

研究生: 曾子庭
Zih-Ting Zeng
論文名稱: 利用大氣常壓微電漿合成奈米銀金核殼結構之表面增強拉曼散射研究
Microplasma Synthesis of Ag@Au Core-Shell Nanoparticles for Surface-Enhanced Raman Scattering
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 劉沂欣
Yi-Hsin Liu
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 115
中文關鍵詞: 大氣常壓微電漿銀-金核殼奈米粒子表面增強拉曼散射三磷酸腺苷
外文關鍵詞: microplasma, Ag@Au core-shell nanoparticles (Ag@Au NPs), surface-enhanced Raman scattering (SERS), adenosine triphosphate (ATP)
相關次數: 點閱:313下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,非破壞性表面增強拉曼散射在諸多領域蓬勃發展。許多研究皆以金屬奈米粒子作為基材,因為其獨特的表面電漿共振效應,以及銀-金核殼奈米粒子可藉由調控核與殼的尺寸或形狀來改變表面電漿共振效應,並達到比銀奈米粒子更具有穩定性的表面增強拉曼強度。因此,近年來此技術受到很大的關注。而最常合成奈米粒子之製備方法為晶種合成法,然而,此法極為耗時,且製程較為繁複。
    因此,本研究利用大氣常壓微電漿合成銀-金核殼奈米粒子,與傳統晶種合成法相比,不僅製程較有效率,且能生成島狀的金殼沉積於銀核之表面。實驗合成之材料會由紫外-可見光光譜以及穿透式電子顯微鏡做檢測,並以微拉曼做應用之研究。
    本研究進一步將此材料進行表面增強拉曼散射之研究,發現相較於銀奈米粒子,銀-金核殼奈米粒子有較強以及較穩定的表面增強拉曼訊號。以羅丹明 6G 作為偵測分子,其偵測極限可低至 10-12莫耳濃度。本實驗亦深入探討銀-金核殼奈米粒子在兩步驟大氣常壓微電漿下的生成機制,以及使此材料擁有優秀表面增強 拉曼訊號的可能因素。另外,在檢測生物分子方面,本研究亦以銀-金核殼奈米粒子作為基材,針對三磷酸腺苷進行偵測,研究結果發現其偵測極限可低至 10-6莫耳濃度,顯示出此材料在生物分子感測的可應用性及發展性。


    Surface enhanced Raman scattering (SERS) is a non-destructive technology for various applications. Metal nanoparticles have been widely investigated in SERS applications due to their unique localized surface plasmonic resonance (LSPR). Ag-Au core-shell nanoparticles (Ag@Au NPs) allow tuning their LSPR by varying the size and shape of the core or thickness of the shell and even producing more stable SERS activity in comparison with monometallic Ag NPs. Therefore, they have attracted a lot of attention recently. To synthesise this attracted material, seed-mediated growth is the most widely used method. However, conventional synthesis methods are usually timeconsuming and laborious.
    Here, we report a facile method to synthesize Ag@Au NPs using an atmosphericpressure microplasma-assisted electrochemistry. In comparison to conventional seedmediated growth, microplasma-assisted method not only can fabricate Ag@Au NPs in a facile and effective process, but also generate nanoisland-like Au shell forming on the Ag core surface. As-produced samples were characterized by UV-vis, TEM, and microRaman carefully.
    We further studied the SERS properties of Ag@Au NPs and noticed exceptional enhancement of SERS activity as well as high stability, which showed superior enhancement of SERS than Ag NPs. The limit of detection of rhodamine 6G (R6G) molecules can achieved down to 1 pM. We further studied the possible mechanism of Ag@Au NPs formation in two-step microplasma process and the possible factors that the Ag@Au NPs can process exceptional SERS properties. In addition, for the purpose of bio-molecule sensing, we demonstrate the feasibility of using the Ag@Au NPs as the SERS substrate for detecting the adenosine triphosphate (ATP) molecules. The result shows that the limit of detection of ATP molecules can achieved down to 1μM detection.

    Abstract 摘要 Contents List of figures List of tables 1. Introduction 1.1 Introduction of seed-mediated growth 1.2 Introduction of microplasma-assisted method 1.3 The shape-controlled synthesis of Ag NPs 1.4 The size-controlled synthesis of Ag NPs 1.5 The formation mechanism of core-shell NPs 1.6 Introduction of applications of core-shell nanostructures 1.6.1 Core-shell NPs for catalytic applications 1.6.2 Core-shell NPs for SERS applications 1.6.3 Core-shell NPs for bio-molecular sensing applications 2. Experimental procedures 2.1 Chemicals 2.2 Synthesis of Ag and Au monometallic NPs 2.3 Synthesis of Ag@Au bimetallic NPs 2.3.1 Using microplasma for the synthesis of Ag@Au bimetallic NPs 2.3.2 Using wet chemical method for the synthesis of Ag@Au bimetallic NPs 2.4 SERS measurement 2.5 Biomolecular application for ATP detection 2.6 Instrumentation 2.6.1 Microplasma 2.6.2 Ultraviolet-visible spectroscopy (UV-Vis) 2.6.3 Transmission electron microscopy (TEM) 2.6.4 Raman spectroscopy 2.6.5 Centrifuge 2.6.6 X-ray absorption and X-ray diffraction (XAS and XRD) 2.6.7 Ultraviolet photoelectron spectroscopy (UPS) 3. Results and discussion 3.1 Microplasma-assisted synthesis of Ag and Au NPs 3.2 Synthesis and characterization of Ag@Au core-shell NPs by two-step microplasma liquid system 3.3 Synthesis and characterization of Ag@Au core-shell NPs by seed-mediated growth system 3.4 The formation mechanism of Ag@Au core-shell NPs synthesized by two-step microplasma liquid system 3.4.1 The role of sodium citrate 3.4.2 Lattice spacing analysis by HRTEM 3.4.3 The interaction between Ag and Au atoms 3.4.4 The formation mechanism of Ag@Au core-shell NPs by microplasma system 4. Surface enhanced Raman Scattering (SERS) 4.1 The SERS performance of different SERS substrate 4.2 Time stability of R6G and CV 4.3 Limit of detection of R6G and CV 4.4 Time stability of ATP 4.5 Limit of detection of ATP 5. Conclusion 6. Reference

    1. Barnes, W.L., A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics. Nature, 2003. 424(6950): p. 824-830.
    2. Kneipp, K., H. Kneipp, and J. Kneipp, Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Accounts of Chemical Research, 2006. 39(7): p. 443-450.
    3. Haynes, C.L., A.D. McFarland, and R.P. Van Duyne, Surface-enhanced Raman spectroscopy. 2005.
    4. Maye, M.M., et al., Probing pH-tuned morphological changes in core− shell nanoparticle assembly using atomic force microscopy. Nano Letters, 2001. 1(10): p. 575-579.
    5. Michaels, A.M., M. Nirmal, and L. Brus, Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. Journal of the American Chemical Society, 1999. 121(43): p. 9932-9939.
    6. Rycenga, M., et al., Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chemical Reviews, 2011. 111(6): p. 3669-3712.
    7. Dick, L.A., et al., Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss. The Journal of Physical Chemistry B, 2002. 106(4): p. 853-860.
    8. Jones, M.R., et al., Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chemical Reviews, 2011. 111(6): p. 3736-3827.
    9. Udayabhaskararao, T., et al., Ag7Au6: A 13‐Atom Alloy Quantum Cluster. Angewandte Chemie International Edition, 2012. 51(9): p. 2155-2159.
    10. Wang, A.-Q., et al., A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization. Journal of Catalysis, 2005. 233(1): p. 186-197.
    11. Xia, B., F. He, and L. Li, Preparation of bimetallic nanoparticles using a facile green synthesis method and their application. Langmuir, 2013. 29(15): p. 4901-4907.
    12. Cobley, C.M., et al., Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics, 2009. 4(2): p. 171-179.
    13. Haldar, K.K., S. Kundu, and A. Patra, Core-size-dependent catalytic properties of bimetallic Au/Ag core–shell nanoparticles. ACS Applied Materials & Interfaces, 2014. 6(24): p. 21946-21953.
    14. Tsao, Y.-C., et al., Aqueous phase synthesis of Au–Ag core–shell nanocrystals with tunable shapes and their optical and catalytic properties. Journal of the American Chemical Society, 2013. 136(1): p. 396-404.
    15. Murphy, C.J. and N.R. Jana, Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials, 2002. 14(1): p. 80-82.
    16. Chiang, W.-H., C. Richmonds, and R.M. Sankaran, Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase. Plasma Sources Science and Technology, 2010. 19(3): p. 034011.
    17. Yan, T., et al., Microplasma-chemical synthesis and tunable real-time plasmonic responses of alloyed Au x Ag 1− x nanoparticles. Chemical Communications, 2014. 50(24): p. 3144-3147.
    18. Richmonds, C., et al., Electron-transfer reactions at the plasma–liquid interface. Journal of the American Chemical Society, 2011. 133(44): p. 17582-17585.
    19. Patel, J., et al., Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry. Nanotechnology, 2013. 24(24): p. 245604.
    20. Mariotti, D., et al., Plasma–liquid interactions at atmospheric pressure for nanomaterials synthesis and surface engineering. Plasma Processes and Polymers, 2012. 9(11‐12): p. 1074-1085.
    21. Akolkar, R. and R.M. Sankaran, Charge transfer processes at the interface between plasmas and liquids. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2013. 31(5): p. 050811.
    22. Wiley, B.J., et al., Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. 2006.
    23. Kreibig, U. and M. Vollmer, Optical properties of metal clusters. Vol. 25. 2013: Springer Science & Business Media.
    24. Kottmann, J.P., et al., Plasmon resonances of silver nanowires with a nonregular cross section. Physical Review B, 2001. 64(23): p. 235402.
    25. Fuchs, R., Theory of the optical properties of ionic crystal cubes. Physical review B, 1975. 11(4): p. 1732.
    26. Kelly, K.L., et al., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. 2003. p. 668-677.
    27. Sun, Y., et al., Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Letters, 2003. 3(7): p. 955-960.
    28. Im, S.H., et al., Large‐scale synthesis of silver nanocubes: the role of hcl in promoting cube perfection and monodispersity. Angewandte Chemie International Edition, 2005. 44(14): p. 2154-2157.
    29. Wiley, B., et al., Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Letters, 2004. 4(9): p. 1733-1739.
    30. Wiley, B.J., et al., Right bipyramids of silver: a new shape derived from single twinned seeds. Nano Letters, 2006. 6(4): p. 765-768.
    31. Wiley, B.J., et al., Synthesis and optical properties of silver nanobars and nanorice. Nano Letters, 2007. 7(4): p. 1032-1036.
    32. Sun, Y., B. Mayers, and Y. Xia, Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Letters, 2003. 3(5): p. 675-679.
    33. Lin, L., et al., Ag nanocrystals with nearly ideal optical quality: synthesis, growth mechanism, and characterizations. Journal of the American Chemical Society, 2018. 140(50): p. 17734-17742.
    34. Jackson, J., Multipoles, electrostatics of macroscopic media, dielectrics. Classical electrodynamics, 2nd edn. Wiley, Inc., New York, 1975.
    35. Grouchko, M., et al., Merging of metal nanoparticles driven by selective wettability of silver nanostructures. Nature Communications, 2014. 5(1): p. 1-6.
    36. Zhang, Q., et al., Synthesis of Ag@ AgAu metal core/alloy shell bimetallic nanoparticles with tunable shell compositions by a galvanic replacement reaction. Small, 2008. 4(8): p. 1067-1071.
    37. Selvakannan, P. and M. Sastry, Hollow gold and platinum nanoparticles by a transmetallation reaction in an organic solution. Chemical Communications, 2005(13): p. 1684-1686.
    38. Yang, J., et al., A bis (p-sulfonatophenyl) phenylphosphine-based synthesis of hollow Pt nanospheres. The Journal of Physical Chemistry B, 2006. 110(1): p. 125-129.
    39. Teng, X., et al., Formation of Pd/Au nanostructures from Pd nanowires via galvanic replacement reaction. Journal of the American Chemical Society, 2008. 130(3): p. 1093-1101.
    40. Shore, M.S., et al., Synthesis of Au (Core)/Ag (Shell) nanoparticles and their conversion to AuAg alloy nanoparticles. Small, 2011. 7(2): p. 230-234.
    41. Ma, Y., et al., Au@ Ag core− shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACS nano, 2010. 4(11): p. 6725-6734.
    42. Maier, S.A. and H.A. Atwater, Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. Journal of Applied Physics, 2005. 98(1): p. 10.
    43. Samal, A.K., et al., Size tunable Au@ Ag core–shell nanoparticles: synthesis and surface-enhanced Raman scattering properties. Langmuir, 2013. 29(48): p. 15076-15082.
    44. Jiang, H.-L., et al., Synergistic catalysis of Au@ Ag core− shell nanoparticles stabilized on metal− organic framework. Journal of the American Chemical Society, 2011. 133(5): p. 1304-1306.
    45. Endo, T., et al., Multiple label-free detection of antigen− antibody reaction using localized surface plasmon resonance-based core− shell structured nanoparticle layer nanochip. Analytical Chemistry, 2006. 78(18): p. 6465-6475.
    46. Das, J., M.A. Aziz, and H. Yang, A nanocatalyst-based assay for proteins: DNA-free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold-nanoparticle labels. Journal of the American Chemical Society, 2006. 128(50): p. 16022-16023.
    47. Quaresma, P., et al., Green photocatalytic synthesis of stable Au and Ag nanoparticles. Green Chemistry, 2009. 11(11): p. 1889-1893.
    48. Bastús, N.G., et al., Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties. Chemistry of Materials, 2014. 26(9): p. 2836-2846.
    49. Wei, Z., et al., Bimetallic catalysts for hydrogen generation. Chemical Society Reviews, 2012. 41(24): p. 7994-8008.
    50. Yang, Y., et al., Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering. Scripta Materialia, 2008. 58(10): p. 862-865.
    51. Morton, S.M. and L. Jensen, Understanding the molecule− surface chemical coupling in SERS. J. Am. Chem. Soc, 2009. 131(11): p. 4090-4098.
    52. Schatz, G.C., Theoretical studies of surface enhanced Raman scattering. Accounts of Chemical Research, 1984. 17(10): p. 370-376.
    53. Khurana, P., et al., Agcore–Aushell bimetallic nanocomposites: Gold shell thickness dependent study for SERS enhancement. Microchemical Journal, 2016. 124: p. 819-823.
    54. Anker, J.N., et al., Biosensing with plasmonic nanosensors, in Nanoscience and Technology: A Collection of Reviews from Nature Journals. 2010, World Scientific. p. 308-319.
    55. Fan, M. and A.G. Brolo, Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Physical Chemistry Chemical Physics, 2009. 11(34): p. 7381-7389.
    56. Anema, J.R., et al., Enhanced Raman scattering from nanoholes in a copper film. The Journal of Physical Chemistry C, 2008. 112(44): p. 17051-17055.
    57. Min, Q., et al., Localized Raman enhancement from a double-hole nanostructure in a metal film. The Journal of Physical Chemistry C, 2008. 112(39): p. 15098-15101.
    58. Cui, Y., et al., Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. The Journal of Physical Chemistry B, 2006. 110(9): p. 4002-4006.
    59. Jana, N.R., Silver coated gold nanoparticles as new surface enhanced Raman substrate at low analyte concentration. Analyst, 2003. 128(7): p. 954-956.
    60. Kumar, G.P., et al., Hot spots in Ag core− Au shell nanoparticles potent for surface-enhanced Raman scattering studies of biomolecules. The Journal of Physical Chemistry C, 2007. 111(11): p. 4388-4392.
    61. Shen, A., et al., Triplex Au–Ag–C core–shell nanoparticles as a novel Raman label. Advanced Functional Materials, 2010. 20(6): p. 969-975.
    62. Yang, Y., et al., Galvanic replacement-free deposition of Au on Ag for core–shell nanocubes with enhanced chemical stability and SERS activity. Journal of the American Chemical Society, 2014. 136(23): p. 8153-8156.
    63. Zhang, L., et al., Defect-Assisted Deposition of Au on Ag for the Fabrication of Core–Shell Nanocubes with Outstanding Chemical and Thermal Stability. Chemistry of Materials, 2019. 31(3): p. 1057-1065.
    64. Tao, A., P. Sinsermsuksakul, and P. Yang, Tunable plasmonic lattices of silver nanocrystals. Nature Nanotechnology, 2007. 2(7): p. 435-440.
    65. Rycenga, M., et al., Generation of Hot Spots with Silver Nanocubes for Single‐Molecule Detection by Surface‐Enhanced Raman Scattering. Angewandte Chemie International Edition, 2011. 50(24): p. 5473-5477.
    66. Cobley, C.M., et al., Gold nanostructures: a class of multifunctional materials for biomedical applications. Chemical Society Reviews, 2011. 40(1): p. 44-56.
    67. Lim, I.-I.S., et al., Assembly− Disassembly of DNAs and Gold Nanoparticles: A Strategy of Intervention Based on Oligonucleotides and Restriction Enzymes. Analytical chemistry, 2008. 80(15): p. 6038-6044.
    68. Jakab, A., et al., Highly sensitive plasmonic silver nanorods. ACS nano, 2011. 5(9): p. 6880-6885.
    69. Álvarez-Puebla, R.n.A., Effects of the Excitation Wavelength on the SERS Spectrum. The Journal of Physical Chemistry Letters, 2012. 3(7): p. 857-866.
    70. Lismont, M. and L. Dreesen, Comparative study of Ag and Au nanoparticles biosensors based on surface plasmon resonance phenomenon. Materials Science and Engineering: C, 2012. 32(6): p. 1437-1442.
    71. Li, Y.-T., et al., Label-free in-situ monitoring of protein tyrosine nitration in blood by surface-enhanced Raman spectroscopy. Biosensors and Bioelectronics, 2015. 69: p. 1-7.
    72. Choi, Y., et al., Galvanically replaced hollow Au–Ag nanospheres: study of their surface plasmon resonance. Langmuir, 2012. 28(16): p. 6670-6676.
    73. Dong, Z.-Z., et al., Construction of a nano biosensor for cyanide anion detection and its application in environmental and biological systems. ACS sensors, 2017. 2(10): p. 1517-1522.
    74. Mallin, M.P. and C.J. Murphy, Solution-phase synthesis of sub-10 nm Au− Ag alloy nanoparticles. Nano Letters, 2002. 2(11): p. 1235-1237.
    75. Chang, F.-C., C. Richmonds, and R.M. Sankaran, Microplasma-assisted growth of colloidal Ag nanoparticles for point-of-use surface-enhanced Raman scattering applications. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2010. 28(4): p. L5-L8.
    76. Fan, M., et al., Surface-enhanced Raman scattering (SERS) from Au: Ag bimetallic nanoparticles: the effect of the molecular probe. Chemical Science, 2013. 4(1): p. 509-515.
    77. Evanoff, D.D. and G. Chumanov, Size-controlled synthesis of nanoparticles. 1.“Silver-only” aqueous suspensions via hydrogen reduction. The Journal of Physical Chemistry B, 2004. 108(37): p. 13948-13956.
    78. Tsuji, M., et al., Rapid synthesis of silver nanostructures by using microwave-polyol method with the assistance of Pt seeds and polyvinylpyrrolidone. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007. 293(1-3): p. 185-194.
    79. Li, Z., et al., Porous PdRh nanobowls: facile synthesis and activity for alkaline ethanol oxidation. Nanoscale, 2019. 11(6): p. 2974-2980.
    80. Picoli, S.U., et al., Silver nanoparticles/silver chloride (Ag/AgCl) synthesized from Fusarium oxysporumacting against Klebsiella pneumouniae carbapenemase (KPC) and extended spectrum beta-lactamase (ESBL). Front Nanosci Nanotech, 2016. 2: p. 107-110.
    81. Heidarpour, F., et al., NANO SILVER-COATED POLYPROPYLENE WATER FILTER: I. MANUFACTURE BY ELECTRON BEAM GUN USING A MODIFIED BALZERS 760 MACHINE. Digest Journal of Nanomaterials & Biostructures (DJNB), 2010. 5(3): p. 787-796.
    82. Darroudi, M., et al., Synthesis and characterization of UV-irradiated silver/montmorillonite nanocomposites. Solid State Sciences, 2009. 11(9): p. 1621-1624.
    83. Zhou, Q., et al., Charge transfer between metal nanoparticles interconnected with a functionalized molecule probed by surface‐enhanced Raman spectroscopy. Angewandte Chemie International Edition, 2006. 45(24): p. 3970-3973.
    84. Kim, H., D.-H. Lee, and Y.-A. Son, Characteristics of HOMO and LUMO Energy Potentials toward Rhodamine 6G-Naphthaldehyde Chemosensor. Textile Coloration and Finishing, 2013. 25(1): p. 1-6.
    85. Sun, Y. and T. Li, Composition-Tunable hollow Au/Ag SERS nanoprobes coupled with target-catalyzed hairpin assembly for triple-amplification detection of miRNA. Analytical Chemistry, 2018. 90(19): p. 11614-11621.
    86. Zhang, C., et al., Gold@ silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS. Scientific Reports, 2016. 6(1): p. 1-8.
    87. Nam, J.-M., et al., Plasmonic nanogap-enhanced Raman scattering with nanoparticles. Accounts of Chemical Research, 2016. 49(12): p. 2746-2755.
    88. Han, Q., et al., Ag-Au alloy nanoparticles: Synthesis and in situ monitoring SERS of plasmonic catalysis. Sensors and Actuators B: Chemical, 2016. 231: p. 609-614.
    89. Austin, L.A., et al., The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Archives of Toxicology, 2014. 88(7): p. 1391-1417.
    90. Guo, F., et al., Bioinspired fabrication SERS substrate based on superwettable patterned platform for multiphase high-sensitive detecting. Composites Communications, 2018. 10: p. 151-156.
    91. Fu, W.L., S.J. Zhen, and C.Z. Huang, One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection. Analyst, 2013. 138(10): p. 3075-3081.
    92. Yu, H., et al., Plasmon-enhanced light–matter interactions and applications. npj Computational Materials, 2019. 5(1): p. 1-14.

    無法下載圖示 全文公開日期 2025/07/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE