簡易檢索 / 詳目顯示

研究生: 陳昱翔
Yu-Hsiang-Chen
論文名稱: 以Pickering乳化聚合法製備高分子/氧化石墨烯與高分子/熱還原氧化石墨烯之核殼型顆粒,並探討其對不飽和聚酯樹脂與乙烯基酯樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質及熱傳導與導電性質的影響研究
Synthesis of polymer/graphene oxide (GO) and polymer/thermally reduced graphene oxide (TRGO) core-shell particles by Pickering emulsion polymerizations, and their effects on cured sample morphologies, volume shrinkage, mechanical properties, and thermal and electrical conductivities for unsaturated polyester and vinyl ester resins
指導教授: 黃延吉
Yan-Jyi-Huang
口試委員: 陳崇賢
Chorng-Shyan Chern
邱文英
Wen-Yen Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 211
中文關鍵詞: 不飽和聚酯樹脂環氧樹脂乙烯基酯樹脂無乳化劑乳化聚合Pickering乳化聚合核殼型顆粒體積收縮
外文關鍵詞: unsaturated polyester resins, epoxy resins, vinyl ester resins, emulsifier-free emulsion polymerization, Pickering emulsion polymerization, core-shell particle, volume shrinkage
相關次數: 點閱:395下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以總體聚合法以及溶液聚合法合成不飽和聚酯樹脂(UP)、環氧樹脂(EPR)以及乙烯基指樹脂(VER)作為研究基材。其中,UP樹脂依據不同化學結構包含MA-PG、MA-PA-PG以及MA-HD三種類型,並且EPR與VER樹脂皆包含三種聚合度(0.16、2、5)。樹脂的各項分子特性透過末端官能基滴定法、核磁共振光譜儀(Nuclear Magnetic Resonance Spectrometer, NMR)以及凝膠滲透層析儀(Gel Permeation Chromatography, GPC)進行鑑定分析。
    添加劑合成的部分,以無乳化劑之乳化聚合法合成核心為聚丙烯酸丁酯(PBA),外殼為甲基丙烯酸甲酯(MMA)的核殼型橡膠顆粒(CSR)。其中,外殼單體以15 mol%甲基丙烯酸環氧丙酯(GMA)改質。另外,由石墨烯衍生的材料應用則是以自行合成之氧化石墨烯(GO)作為Pickering穩定劑,透過Pickering乳化聚合法合成外殼為GO,核心為聚苯乙烯(PS)的高分子/GO核殼型顆粒(PS-GO)。作為添加劑的CSR以及PS-GO核殼型顆粒皆為次微米尺寸,顆粒的型態以及實際分布狀態以TEM顯微影像觀察及以動態光散射法(DLS)測量。
    研究目標為探討以添加劑改質後的樹脂基材之性質變化以及添加劑對樹脂固化時的體積收縮影響。預期以CSR顆粒降低St/UP/additive三成分系統聚合固化體積收縮與改善樹脂材料的機械性質,提升樹脂基材的韌性。另外,利用PS-GO顆粒降低St/UP/additive三成分系統聚合固化體積收縮與增進樹脂基材之導熱與導電性質。


    In this study, unsaturated polyester resins (UP), epoxy resins (EPR) and vinyl ester resins (VER) were synthesized by bulk polymerization and solution polymerization as the thermoset resin matrices. Among them, there are three types of UP resins, including MA-PG, MA-PA-PG and MA-HD. Both EPR and VER resins include different degree of polymerization (0.16, 2 and 5). The molecular properties of resins were characterized and analyzed by end group titration method, nuclear magnetic resonance spectrometer (NMR) and gel permeation chromatography (GPC).
    For additive synthesis, the core-shell rubber particles (CSR) with poly(butyl acrylate) (PBA) as core and poly(methyl methacrylate) (PMMA) as the shell were synthesized by emulsifier-free emulsion polymerization. The shell was modified with 15 mol% glycidyl methacrylate (GMA). In addition, the polymer/graphene oxide (GO) core-shell particles (PS-GO) were synthesized by Pickering emulsion polymerization, where the GO was used as Pickering stabilizer. The core structure of PS-GO is polystyrene. Both CSR and PS/GO particles were sub-micron scale, and the morphology and actual distribution of particles were observed with TEM and measured by DLS.
    The research objective is to investigate the properties change of the resin matrix after modification with additives, such as CSR and PS-GO core-shell particle, and the effect of additives on volume shrinkage during the curing reaction of resins. It is expected that the addition of CSR particles can lead to a decrease in volume shrinkage, improve the mechanical properties and enhance the toughness of the cured resin matrix. In addition, the addition of PS/GO particle is expected to increase thermal conductivity and electrical conductivity properties of the cured resin matrix.

    摘要 I Abstract II 目錄 IV 表目錄 XV 第一章 緒論 1 1-1 高分子簡介 1 1-2 不飽和聚酯樹脂(Unsaturated Polyester Resins, UP)簡介 2 1-3 環氧樹脂(Epoxy Resins)簡介 2 1-3 乙烯基酯樹脂(Vinyl Ester Resins)簡介 3 1-4 抗收縮劑(Low-Profile Additives,LPA) 4 1-5 增韌劑(Tougheners) 5 1-6 石墨烯 5 1-7 研究範疇 6 第二章 文獻回顧 7 2-1 不飽和聚酯樹脂(UP)合成 7 2-2 環氧樹脂(EPR)合成 8 2-3 乙烯基酯樹脂(VER)合成 9 2-4 乳化聚合(Emulsion Polymerization) 10 2-5 無乳化劑乳化聚合(Emulsifier-Free Emulsion Polymerization) 10 2-6 以GO為穩定劑之Pickering乳化聚合 15 2-7 核殼型橡膠(Core-Shell Rubber, CSR)顆粒增韌樹脂之應用 18 2-8 核殼型橡膠(CSR)增韌機制 19 2-9 石墨烯/高分子複合材料 20 第三章 實驗方法及設備 21 3-1 實驗藥品 21 3-1-1 不飽和聚酯(UP)樹脂合成原料 21 3-1-2 環氧樹脂(EPR)合成原料 22 3-1-3 用於鏈延伸法合成之觸媒Ethyltriphenylphosphonium acetate. Acetic acid complex (ETPP.Ac.HAc)合成原料 23 3-1-4 乙烯基酯樹脂(VER)合成原料 24 3-1-5 次微米級核殼型橡膠(CSR)合成原料 25 3-1-6 聚苯乙烯/GO(PS-GO)核殼型顆粒合成原料 26 3-2 實驗設備 27 3-2-1 不飽和聚酯(UP)樹脂合成裝置 27 3-2-2 環氧樹脂(EPR)合成裝置 28 3-2-3 乙烯基酯樹脂(VER)合成裝置 30 3-2-4 次微米級核殼型橡膠(CSR)合成裝置 31 3-2-5 聚苯乙烯/GO(PS-GO)核殼型顆粒合成裝置 32 3-2-6 其他設備 33 3-2-6 鑑定儀器 34 3-3 實驗步驟 35 3-3-1 MA-PG型不飽和聚酯(UP)樹脂 35 3-3-2 MA-PA-PG型不飽和聚酯(UP)樹脂 37 3-3-3 MA-HD型不飽和聚酯(UP)樹脂 39 3-3-4 不飽和聚酯(UP)樹脂分子量測定-末端官能基滴定法 41 3-3-5 環氧樹脂(EPR) 43 3-3-6 乙烯基酯樹脂(VER) 48 3-3-7 次微米級核殼型橡膠(CSR) 51 3-3-8 Pickering乳化聚合法合成聚苯乙烯/GO(PS-GO)核殼型顆粒 54 第四章 結果與討論 55 4-1 不飽和聚酯(UP)樹脂之合成 55 4-1-1 MA-PG型UP樹脂(AN=20,30) 55 4-1-2 MA-PA-PG型UP樹脂(AN=20,30) 58 4-1-3 MA-HD型UP樹脂(HN=0.1) 61 4-2 環氧樹脂(EPR)之合成 64 4-2-1 液態低分子量環氧樹脂 (EPR-1,n=0.16) 64 4-2-2 固態高分子量環氧樹脂(EPR-2,n=2) 66 4-2-3 固態高分子量環氧樹脂(EPR-3,n=5) 68 4-3 乙烯基酯樹脂(VER)之合成 69 4-3-1低分子量乙烯基酯樹脂 (VER-1,n=0.16) 70 4-3-2高分子量乙烯基酯樹脂 (VER-2,n=2) 71 4-3-3高分子量乙烯基酯樹脂 (VER-3,n=5) 72 4-4 UP樹脂之NMR鑑定 73 4-4-1 MA-PG以及MA-PA-PG型UP樹脂(AN=20、30) 73 4-4-2 MA-HD型UP樹脂(HN=0.1) 107 4-5 MA-PG以及MA-PA-PG型UP樹脂分子量鑑定 111 4-6 環氧樹脂(EPR)NMR鑑定 119 4-6-1液態低分子量環氧樹脂(EPR-1,n=0.16) 126 4-6-2 固態高分子量環氧樹脂(EPR-2,n=2) 130 4-6-3 固態高分子量環氧樹脂(EPR-3,n=5) 134 4-7 乙烯基酯樹脂(VER)NMR鑑定 138 4-7-1 低分子量乙烯基酯樹脂(VER-1,n=0.14) 138 4-7-2 高分子量乙烯基酯樹脂(VER-2,n=2) 142 4-7-3 高分子量乙烯基酯樹脂(VER-3,n=5) 146 4-8 次微米級核殼型橡膠(CSR)合成與粒徑鑑定 151 4-8-1 核心顆粒製備 152 4-8-2 核心顆粒放大以及外殼加成 153 4-8-3 以TEM觀察CSR顆粒尺寸 163 4-9 PS-GO核殼型顆粒合成與粒徑鑑定 165 第五章 結論 171 第六章 建議與未來工作 173 6-1 未來工作 173 6-2 建議 173 第七章 附錄 174 7-1 樹脂分子極性 174 7-1-1 不飽和聚酯(UP)樹脂分子極性 174 7-1-2 環氧樹脂(EPR)分子極性 181 7-1-3乙烯基酯樹脂(VER)分子極性 184 7-2 St/UP(MA-PA-PG, AN=30)/PS-GO三成分試片體積收縮 187 第八章 參考文獻 188

    1. Cowie, J.M.G. and V. Arrighi, Polymers: chemistry and physics of modern materials. 2007: CRC press.
    2. Brazel, C.S. and S.L. Rosen, Fundamental principles of polymeric materials. 2012: John Wiley & Sons.
    3. Malik, M., V. CHOUDHARY, and I. Varma, Current status of unsaturated polyester resins. Journal of Macromolecular Science, Part C: Polymer Reviews, 2000. 40(2-3): p. 139-165.
    4. Pham, H.Q. and M.J. Marks, Epoxy resins. Ullmann's Encyclopedia of Industrial Chemistry, 2000.
    5. Launikitis, M.B., Vinyl ester resins, in Handbook of composites. 1982, Springer. p. 38-49.
    6. Haider, M., P. Hubert, and L. Lessard, Cure shrinkage characterization and modeling of a polyester resin containing low profile additives. Composites Part A: Applied Science and Manufacturing, 2007. 38(3): p. 994-1009.
    7. Zare, L., M.H. Beheshty, and M. Vafayan, The evaluation of low profile additives on the shrinkage control of unsaturated polyester resin cured at room temperature. Polymers and Polymer Composites, 2012. 20(3): p. 289-298.
    8. Chandresh, M., et al., Toughening of unsaturated polyester resin by solid elastomers and liquid rubbers: A review. International Research Journal of Engineering and Technology, 2021. 8(4): p. 4885-4891.
    9. Hayes, B.S. and J.C. Seferis, Modification of thermosetting resins and composites through preformed polymer particles: a review. Polymer composites, 2001. 22(4): p. 451-467.
    10. Kim, H., A.A. Abdala, and C.W. Macosko, Graphene/polymer nanocomposites. Macromolecules, 2010. 43(16): p. 6515-6530.
    11. Jones, F.R., Unsaturated polyester resins, in Brydson's Plastics Materials. 2017, Elsevier. p. 743-772.
    12. Ellis, B., Introduction to the chemistry, synthesis, manufacture and characterization of epoxy resins, in Chemistry and technology of epoxy resins. 1993, Springer. p. 1-36.
    13. Hodgkin, J., Thermosets: epoxies and polyesters. Encyclopedia of materials: Science and Technology, 2001: p. 9215-9221.
    14. Marechal, E., B. Rao, and P. Madec, Synthesis of vinyl ester resins–evidence of secondary reactions by C-13 NMR. Polym. Bull, 1986. 16: p. 153-157.
    15. The Dow Chemical Company, PCT Int. Appl. WO 86/07067 (Dec. 4, 1986).
    16. Lovell, P.A. and F.J. Schork, Fundamentals of emulsion polymerization. Biomacromolecules, 2020. 21(11): p. 4396-4441.
    17. Chern, C., Emulsion polymerization mechanisms and kinetics. Progress in polymer science, 2006. 31(5): p. 443-486.
    18. Goodall, A., M. Wilkinson, and J. Hearn, Mechanism of emulsion polymerization of styrene in soap‐free systems. Journal of polymer science: Polymer chemistry edition, 1977. 15(9): p. 2193-2218.
    19. de Carvalho-Guimarães, F.B., et al., A Review of Pickering Emulsions: Perspectives and Applications. Pharmaceuticals, 2022. 15(11): p. 1413.
    20. Xie, P., et al., Pickering emulsion polymerization of graphene oxide-stabilized styrene. Colloid and Polymer Science, 2013. 291: p. 1631-1639.
    21. Yin, G., et al., Preparation of graphene oxide coated polystyrene microspheres by Pickering emulsion polymerization. Journal of colloid and interface science, 2013. 394: p. 192-198.
    22. Liu, Y., et al., Polystyrene/graphene oxide nanocomposites synthesized via Pickering polymerization. Progress in Organic Coatings, 2016. 99: p. 23-31.
    23. Lai, M., et al., Evaluation of residual strains in epoxy with different nano/micro-fillers using embedded fiber Bragg grating sensor. Composites Science and Technology, 2010. 70(15): p. 2168-2175.
    24. Mousavi, S.R., et al., Toughening of epoxy resin systems using core–shell rubber particles: a literature review. Journal of Materials Science, 2021: p. 1-23.
    25. Lin, K.F. and Y.D. Shieh, Core–shell particles to toughen epoxy resins. I. Preparation and characterization of core–shell particles. Journal of applied polymer science, 1998. 69(10): p. 2069-2078.
    26. Lin, K.F. and Y.D. Shieh, Core‐shell particles designed for toughening the epoxy resins. II. Core‐shell‐particle‐toughened epoxy resins. Journal of applied polymer science, 1998. 70(12): p. 2313-2322.
    27. Giannakopoulos, G., K. Masania, and A. Taylor, Toughening of epoxy using core–shell particles. Journal of Materials Science, 2011. 46: p. 327-338.
    28. Kim, J.K. and S. Datta, Rubber-Thermoset Blends: Micro and Nano Structured, in Advances in Elastomers I. 2013. p. 229-262.
    29. Kim, H., Y. Miura, and C.W. Macosko, Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chemistry of materials, 2010. 22(11): p. 3441-3450.
    30. Swain, S., Synthesis and characterization of graphene based unsaturated polyester resin composites. Transactions on Electrical and Electronic Materials, 2013. 14(2): p. 53-58.
    31. Li, Q., et al., Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chemistry of Materials, 2014. 26(15): p. 4459-4465.
    32. 江文慶, 不飽和聚酯樹脂之合成及苯乙烯/不飽和聚酯二成份系與苯乙烯/不飽和聚酯/抗收縮劑三成份系之相溶性研究,碩士論文,國立台灣科技大學,1996.
    33. 高慶霖,以乳化聚合法合成反應型微膠顆粒及以Pickering乳化聚合法製備反應性微膠/氧化石墨烯之核殼結構顆粒,並探討其對不飽和聚酯樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質及熱傳導與導電性質的影響,碩士論文,國立台灣科技大學,2020.
    34. Liang, L. and W. Funke, Cross-linking self-emulsifying copolymerization of an unsaturated polyester and styrene. Macromolecules, 1996. 29(27): p. 8650-8655.
    35. Carlisle Chemical works, Inc., U.S. Patent 3,341,580, 1967.
    36. The Dow Chemical Company, U.S. Patent 3,948,855, 1976.
    37. 陳彥博,以乳化聚合法合成用於乙烯基酯聚脂及不飽和聚酯樹脂之奈米級及次微米級反應性微膠顆粒之抗收縮劑及增靭劑,碩士論文,國立台灣科技大學,2019.
    38. 吳嘉鴻, 以無乳化劑之乳化聚合法合成核心為壓克力橡膠之核殼型橡膠以增韌不飽和聚酯,碩士論文,國立台灣科技大學,2003.
    39. Huang, Y.J., et al., Toughening of unsaturated polyester resins with core–shell rubbers. Journal of applied polymer science, 2008. 107(2): p. 939-950.
    40. 楊昌叡, 以傳統乳化聚合法合成用於不飽和聚酯及乙烯基酯樹脂之奈米級及次微米級高分子核殼型橡膠及反應性微膠顆粒之抗收縮劑及增韌劑,碩士論文,國立台灣科技大學,2017.
    41. 詹承穎,以乳化聚合法合成用於乙烯基酯樹脂及環氧樹脂之奈米級及次微米級高分子核殼型橡膠及反應型微膠顆粒之抗收縮劑及增韌劑,碩士論文,國立台灣科技大學,2008.
    42. 黃俊翰, 以傳統乳化聚合法及RAFT活自由基乳化聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級及次微米級壓克力核殼型橡膠添加劑,碩士論文,國立台灣科技大學. 2009.
    43. Huang, Y.-J. and W.-C. Jiang, Effects of chemical composition and structure of unsaturated polyester resins on the miscibility, cured sample morphology and mechanical properties for styrene/unsaturated polyester/low-profile additive ternary systems. 1: Miscibility and cured sample morphology. Polymer, 1998. 39(25): p. 6631-6641.
    44. 王詠正,以Pickering乳化聚合法製備高分子/氧化石墨烯與高分子/熱還原氧化石墨烯之核殼型顆粒,並探討其對環氧樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導與導電性質的影響研究,碩士論文,國立台灣科技大學,2021.
    45. Van Krevelen, D.W. and K. Te Nijenhuis, Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. 2009: Elsevier.

    QR CODE