簡易檢索 / 詳目顯示

研究生: 陳怡璇
Yi-Syuan - Chen
論文名稱: 奈米導電高分子與二維奈米碳材於二氧化碳光催化還原之應用
Solar to Hydrocarbon Production using Conducting Polymer Nanoparticle and 2D Carbon Materials Heterojunction
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 林麗瓊
Li-Chyong Chen
陳貴賢
Kuei-Hsien Chen
孫嘉良
Chia-Liang Sun
戴龑
Yian Tai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 71
中文關鍵詞: 光觸媒二氧化碳還原氧化石墨烯P3HT量子效率
外文關鍵詞: P3HT nanoparticles
相關次數: 點閱:305下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以氧化石墨烯為光觸媒轉換二氧化碳為高經濟價值碳氫化合物,並為了提升二氧化碳轉換效率,加入小能隙之高分子以拓寬光吸收範圍從紫外光區域至可見光區域。分別探討高分子與氧化石墨烯混合比例、高分子顆粒大小以及氧化石墨烯能隙大小對二氧化碳光催化還原效率之影響。本研究結合紫外光-可見光光譜儀與紫外光光電子能譜(UPS),量測光觸媒之價電帶及導電帶位置;以X光光電子能譜分析儀(XPS)及傅里葉轉換紅外光譜(FTIR)分析氧化石墨烯之表面成分及官能基種類。最後,將製備完成之光觸媒樣品進行二氧化碳光催化實驗。
    第一部分為加入P3HT於氧化石墨烯,P3HT的加入不只會增進光吸收,還會與氧化石墨烯產生異質結,減少電子-電洞對再結合。其中以3 wt% P3HT/iGO之光觸媒,在六小時照光反應下具有最高碳氫化合物總產量3.09 μmole/g-catalyst及量子效率0.0039%,為自製氧化石墨烯的2.8倍。藉由光激發瑩光光譜與P3HT/iGO之分光效率結果,可得知P3HT/iGO為type II 異質結結構,其中P3HT於觸媒中為電子供體(donor),而氧化石墨烯則為受體(acceptor)。此外,結合二維光激發螢光光譜圖和時間解析光激發瑩光光譜,得以觀察到氧化石墨烯中P3HT奈米顆粒的分佈,這些數據表明導電高分子奈米球的分散性對於其光催化效率的重要性。
    第二,為了更進一步改善氧化石墨烯之光吸收,本研究藉由改變還原劑(NaBH4)濃度來調整氧化石墨烯的能隙值(Eg),使其還原為部分還原氧化石墨烯(rGO)。由於碳氧官能基被還原之故,部分還原氧化石墨烯的能隙值從4.07降低到2.58 eV。從二氧化碳光催化還原結果來看,在0.1 M NaBH4處理的部分還原氧化石墨烯中,最佳乙醛產率為1.88 μmole/ g-catalyst,量子效率為0.0024%,是氧化石墨烯的1.7倍。此外,通過傅里葉轉換紅外光譜和X光光電子能譜分析結果,部分還原氧化石墨烯中之碳氧官能基百分比與其光催化活性相關。


    Facilitating light absorption and charge separation toward photocatalytic redox reaction of CO2 is considered to be an important challenge in enhancing its solar fuel production efficiency. In this study, we demonstrated serious of methods to improve solar to fuel efficiency, especially in carbon dioxide reduction reaction (CO2RR). Various methods were performed to obtain the catalyst properties, like Ultraviolet–Visible Spectroscopy and Ultraviolet Photoelectron Spectroscopy (UPS) were used to measure the valence band and the conduction band position and the absorption behavior of the hybrid photocatalyst. The X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR) were used to analyze the material chemical composition and functional groups of photocatalyst matrix. The GC-FID were used to measure the CO2 conversion efficiency over 6 hours photocatalytic reaction test.
    First, conducting polymer was acted as co-catalytic or sensitizing role to to extend light absorption to visible range and create an exciton separation heterojunction with GO. The acetaldehyde was found to main products of photocatalytic CO2RR with best yield of 3.09 μmole / g-catalyst in 3 wt% P3HT/iGO and the quantum efficiency is 0.0039%, which is 2.8 times higher than used GO alone. Through the wavelength-dependent test, we concluded our hybrid catalyst interface exhibit type II heterojunction, which polymer work as electron donor and electron acceptor of iGO. Furthermore, Combining the confocal fluorescent microscopy and fluorescence lifetime imaging microscope (FLIM), we are able to examine the distribution of P3HT nanoparticles in GO matrix and exciton lifetime maps of our hybrid catalyst. Those data demonstrated the important of polymer dispersion toward to their photocatalytic efficiency.
    Second, to further improved the light absorbing behavior, we tuning the bandgap (Eg) of graphene oxide into reduced graphene oxide (rGO). The wet chemical reducing was through changing reducing agent (NaBH4) concentration, the Eg of rGO was reduced from 4.07 to 2.58 eV due to the loss of ethers bond. From photocatalytic efficiency, the best yield is 1.88 μmole / g-catalyst with QE of 0.0024% in 0.1M NaBH4-treated rGO which was 1.7 times higher than GO. Furthermore, by examining chemical and rGO through FTIR and XPS, the oxygen functionality can be correlated into their catalytic activity.

    目錄 中文摘要 I Abstract III 誌謝 V 圖目錄 IX 表目錄 XII 第1章 緒論 1 1.1 前言 1 1.2 光觸媒原理與發展 2 1.3 二氧化碳光還原 6 第2章 文獻回顧 12 2.1 光觸媒效率之提升 12 2.1.1 一步激發型之共觸媒(one-step excitation semiconductor) 12 2.1.2 光敏化共觸媒(photosensitized semiconductor) 13 2.1.3 Z-Scheme共觸媒 15 2.2 氧化石墨烯光觸媒 16 2.3 研究動機 18 第3章 實驗儀器與原理 19 3.1 氣相層析儀-火焰離子化偵測器(Gas Chromatography-Flame Ionization Detector) 19 3.1.1 氣相層析儀-火焰離子化偵測器 19 3.1.2 實驗系統 20 3.2 奈米粒徑量測儀(Dynamic Light Scattering,DLS) 23 3.3 X光光電子能譜儀(X-Ray Photoelectron Spectroscopy,XPS) 24 3.4 紫外光/可見光光譜分析儀(Ultraviolet–Visible Spectroscopy) 25 3.5 紫外光電子能譜學(Ultraviolet Photoelectron Spectroscopy, UPS) 27 3.6 光激發螢光光譜儀(Photo-Luminescence,PL) 28 3.7 傅里葉轉換紅外光譜(Fourier Transform Infrared Spectroscopy,FTIR) 29 第4章 實驗方法與製備 32 4.1 實驗藥品 32 4.2 實驗流程 33 4.2.1 實驗流程圖 33 4.2.2 改良式氧化石墨烯(iGO)合成 33 4.2.3 P3HT水溶液製備 34 4.2.4 部分還原氧化石墨烯(rGO)合成 35 4.2.5 不同重量濃度P3HT/iGO製備 36 第5章 實驗結果與討論 37 5.1 不同重量濃度的P3HT/iGO 37 5.1.1 P3HT/iGO能帶之分析 37 5.1.2 二維光激發螢光光譜分析 42 5.1.3 二氧化碳轉換效率分析 47 5.2 不同顆粒大小P3HT 50 5.2.1 奈米粒徑量測儀分析 50 5.2.2 二氧化碳轉換效率分析 52 5.3 部分還原氧化石墨烯(rGO) 54 5.3.1 能帶分析 54 5.3.2 傅里葉轉換紅外光譜分析 57 5.3.3 X光光電子能譜儀分析 59 5.3.4 二氧化碳轉換效率分析 61 5.4 P3HT/rGO 63 5.4.1 二維光激發螢光光譜分析 63 5.4.2 二氧化碳轉換效率分析 64 第6章 結論 67 參考文獻 68

    [1] https://scitechvista.nat.gov.tw/zh-tw/articles/c/0/1/10/1/882.htm, in.
    [2] http://e-info.org.tw/node/117552.
    [3] http://www.cwb.gov.tw/V7/climate/climate_info/climate_change/change_1.html.
    [4] http://www.taiwangreenenergy.org.tw/News/news-more.aspx?id=9D30164607EA15DF.
    [5] http://www.taiwangreenenergy.org.tw/News/news-more.aspx?id=91566574E95DB847.
    [6] http://www.taiwangreenenergy.org.tw/News/news-more.aspx?id=65F446D38BBC8FCC.
    [7] http://www.taiwangreenenergy.org.tw/News/news-more.aspx?id=B082FA2DDA443866.
    [8] http://www.ccsassociation.org/what-is-ccs/capture/.
    [9] B. Smit, Carbon Capture and Storage: introductory lecture. Faraday Discuss, 192 (2016) 9-25.
    [10] https://scitechvista.nat.gov.tw/zh-tw/articles/c/0/2/10/1/2325.htm.
    [11] A. Kudo, Photocatalyst materials for water splitting. Catalysis Surveys from Asia, 7 (2003) 31-38.
    [12] A. Fujishima, Electrochemical Photolysis of Water at a Semiconductor Electrod. Nature, 238 (1972) 37-38.
    [13] M. Halmann, Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature, 275 (1978) 115-116.
    [14] A.F. Tooru Inoue, Satoshi Konishi, Kenichi Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277 (1979) 637-638.
    [15] J. Mao, K. Li, T. Peng, Recent advances in the photocatalytic CO2 reduction over semiconductors. Catalysis Science & Technology, 3 (2013) 2481.
    [16] Z. Weng, J. Jiang, Y. Wu, Z. Wu, X. Guo, K.L. Materna, W. Liu, V.S. Batista, G.W. Brudvig, H. Wang, Electrochemical CO2 Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution. J Am Chem Soc, 138 (2016) 8076-8079.
    [17] D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang, X. Bao, Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc, 137 (2015) 4288-4291.
    [18] I. Hod, M.D. Sampson, P. Deria, C.P. Kubiak, O.K. Farha, J.T. Hupp, Fe-Porphyrin-Based Metal–Organic Framework Films as High-Surface Concentration, Heterogeneous Catalysts for Electrochemical Reduction of CO2. ACS Catalysis, 5 (2015) 6302-6309.
    [19] R. Kuriki, K. Sekizawa, O. Ishitani, K. Maeda, Visible-light-driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts. Angew Chem Int Ed Engl, 54 (2015) 2406-2409.
    [20] Y. Chen, C.W. Li, M.W. Kanan, Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J Am Chem Soc, 134 (2012) 19969-19972.
    [21] W.-J.O. Lling-Lling Tan, Siang-Piao Chai, Abdul Rahman Mohamed, Photocatalytic reduction of CO2 with H2O over graphene oxide-supported oxygen-rich TiO2 hybrid photocatalyst under visible light irradiation Process and kinetic studies. Chemical Engineering Journal, 308 (2017) 248-255.
    [22] L. Liu, F. Gao, H. Zhao, Y. Li, Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Applied Catalysis B: Environmental, 134-135 (2013) 349-358.
    [23] A.D. Handoko, J. Tang, Controllable proton and CO2 photoreduction over Cu2O with various morphologies. International Journal of Hydrogen Energy, 38 (2013) 13017-13022.
    [24] J. Kou, J. Gao, Z. Li, H. Yu, Y. Zhou, Z. Zou, Construction of Visible-Light-Responsive SrTiO3 with Enhanced CO2 Adsorption Ability: Highly Efficient Photocatalysts for Artifical Photosynthesis. Catalysis Letters, 145 (2014) 640-646.
    [25] H.C. Hsu, I. Shown, H.Y. Wei, Y.C. Chang, H.Y. Du, Y.G. Lin, C.A. Tseng, C.H. Wang, L.C. Chen, Y.C. Lin, K.H. Chen, Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale, 5 (2013) 262-268.
    [26] I. Shown, H.C. Hsu, Y.C. Chang, C.H. Lin, P.K. Roy, A. Ganguly, C.H. Wang, J.K. Chang, C.I. Wu, L.C. Chen, K.H. Chen, Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide. Nano Lett, 14 (2014) 6097-6103.
    [27] Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Helical graphitic carbon nitrides with photocatalytic and optical activities. Angew Chem Int Ed Engl, 53 (2014) 11926-11930.
    [28] Z.Q. He, D. Wang, H.Y. Fang, J.M. Chen, S. Song, Highly efficient and stable Ag/AgIO(3) particles for photocatalytic reduction of CO(2) under visible light. Nanoscale, 6 (2014) 10540-10544.
    [29] G.L. Amy L. Linsebigler, and John T. Yates, Jr., Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95 (1995) 735-758.
    [30] K. Li, B. Peng, T. Peng, Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels. ACS Catalysis, 6 (2016) 7485-7527.
    [31] W. Fan, Q. Zhang, Y. Wang, Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Phys Chem Chem Phys, 15 (2013) 2632-2649.
    [32] G. Liu, L. Wang, H.G. Yang, H.-M. Cheng, G.Q. Lu, Titania-based photocatalysts—crystal growth, doping and heterostructuring. J. Mater. Chem., 20 (2010) 831-843.
    [33] G.L. Amy L. Linsebigler, John T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95 (1995) 735-758.
    [34] Z. Xiong, H. Wang, N. Xu, H. Li, B. Fang, Y. Zhao, J. Zhang, C. Zheng, Photocatalytic reduction of CO2 on Pt2+–Pt0/TiO2 nanoparticles under UV/Vis light irradiation: A combination of Pt2+ doping and Pt nanoparticles deposition. International Journal of Hydrogen Energy, 40 (2015) 10049-10062.
    [35] M. Abou Asi, C. He, M. Su, D. Xia, L. Lin, H. Deng, Y. Xiong, R. Qiu, X.-z. Li, Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light. Catalysis Today, 175 (2011) 256-263.
    [36] C. Wang, R.L. Thompson, P. Ohodnicki, J. Baltrus, C. Matranga, Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts. Journal of Materials Chemistry, 21 (2011) 13452.
    [37] G. Mele, C. Annese, L. D'Accolti, A. De Riccardis, C. Fusco, L. Palmisano, A. Scarlino, G. Vasapollo, Photoreduction of carbon dioxide to formic acid in aqueous suspension: a comparison between phthalocyanine/TiO2 and porphyrin/TiO2 catalysed processes. Molecules, 20 (2015) 396-415.
    [38] W. Yu, D. Xu, T. Peng, Enhanced photocatalytic activity of g-C3N4for selective CO2reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. J. Mater. Chem. A, 3 (2015) 19936-19947.
    [39] M. Abou Asi, L. Zhu, C. He, V.K. Sharma, D. Shu, S. Li, J. Yang, Y. Xiong, Visible-light-harvesting reduction of CO2 to chemical fuels with plasmonic Ag@AgBr/CNT nanocomposites. Catalysis Today, 216 (2013) 268-275.
    [40] M.M. Gui, S.-P. Chai, B.-Q. Xu, A.R. Mohamed, Enhanced visible light responsive MWCNT/TiO2 core–shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane. Solar Energy Materials and Solar Cells, 122 (2014) 183-189.
    [41] W.N. Wang, Y. Jiang, J.D. Fortner, P. Biswas, Nanostructured Graphene-Titanium Dioxide Composites Synthesized by a Single-Step Aerosol Process for Photoreduction of Carbon Dioxide. Environ Eng Sci, 31 (2014) 428-434.
    [42] P. Kumar, H.P. Mungse, S. Cordier, R. Boukherroub, O.P. Khatri, S.L. Jain, Hexamolybdenum clusters supported on graphene oxide: Visible-light induced photocatalytic reduction of carbon dioxide into methanol. Carbon, 94 (2015) 91-100.
    [43] R.E.O. William S. HummersJr., Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80 (1958) 1339-1339.
    [44] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved Synthesis of Graphene Oxide. ACS nano, 4 (2010) 4806-4814.
    [45] W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, A.R. Mohamed, Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy, 13 (2015) 757-770.
    [46] X. Zhang, B. Peng, S. Zhang, T. Peng, Robust Wide Visible-Light-Responsive Photoactivity for H2Production over a Polymer/Polymer Heterojunction Photocatalyst: The Significance of Sacrificial Reagent. ACS Sustainable Chemistry & Engineering, 3 (2015) 1501-1509.
    [47] M.J. Wirix, P.H. Bomans, H. Friedrich, N.A. Sommerdijk, G. de With, Three-dimensional structure of P3HT assemblies in organic solvents revealed by cryo-TEM. Nano Lett, 14 (2014) 2033-2038.

    QR CODE