簡易檢索 / 詳目顯示

研究生: 李秉諺
Bing-Yan Li
論文名稱: 密度泛函理論於二氧化碳補捉及水氣轉移在釕-鉑/含硼石墨烯表面反應之研究
DFT Study of Carbon Dioxide Capture and Water-Gas Shift Reaction on Ru-Pt/Boron-Doped Graphene Surface
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 魏金明
Ching-Ming Wei
何嘉仁
Jia-Jen Ho
林聖賢
Sheng-Hsien Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 82
中文關鍵詞: 密度泛函理論石墨稀二氧化碳捕捉水氣轉移反應合金表面
外文關鍵詞: DFT, Graphene, Carbon Dioxide, Water-gas Shift Reaction, Bimetallic Surface
相關次數: 點閱:210下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文藉由密度泛函理論(DFT)探討在釕-鉑/含硼石墨稀表面上的二氧化碳捕捉與水氣轉移反應。在二氧化碳分解與水氣轉移反應的反應機制中,各個最穩定吸附結構以及過渡狀態皆由理論計算所確定。由計算結果得知,摻雜在石墨稀中的硼具有抑制釕-鉑合金在表面形成叢集的現象,並且相較於純金屬鉑(111)表面,釕-鉑/含硼石墨稀有較低的製造成本及出色的觸媒性質。二氧化碳吸附在釕-鉑/含硼石墨稀十分穩定,吸附能為-0.76 eV,相較之下其吸附能高於分解反應能障(0.63 eV),此結果顯示釕-鉑/含硼石墨稀擁有二氧化碳捕捉能力與活性,使得二氧化碳可以進一步分解。根據計算結果,在釕-鉑/含硼石墨稀表面上的一氧化碳可透過表面上氧原子進行氧化反應(redox mechanism),與先形成羧基(COOH)進行羧基反應(carboxyl mechanism)或是形成甲酸基(formate)進行甲酸基反應(formate mechanism),之後皆形成二氧化碳。最後實驗結果顯示氧化還原及羧基反應路徑的速率決定步驟皆為二氧化碳在表面上的脫附反應,其反應能障為0.64 eV,而甲酸基反應的速率決定步驟能障相對較高,為1.00 eV。


    In this article, we have performed density functional theory (DFT) calculations to investigate CO2 capture and water-gas shift (WGS) reaction over the Ru-Pt/boron-doped graphene surface. The structures and energies of the most important minima and transition states corresponding to the CO2 decomposition and three mechanisms of WGS reaction pathways have been determined based on DFT calculation. From our calculated results, we found that one layer of Ru-Pt/boron-doped graphene nano-sheet, which caused by the substitutive boron defects in graphene model restraining the growth of the metal cluster, has lower the production costs and excellent catalyst compared with the pure Pt(111) surface. The adsorption energy of CO2 molecule on the Ru-Pt/boron-doped graphene surface is quite large, -0.76 eV, which is higher than the further decomposition barrier, 0.63 eV. It indicates that Ru-Pt/boron-doped graphene surface, due to the intrinsic high surface areas and polarity, is a good catalyst for CO2 capture and also has high activity for CO2 decomposition. Predicting from our results, three mechanisms of WGS reaction on Ru-Pt/boron-doped graphene surface, redox, carboxyl and formate mechanisms can happen. The rate-determining steps for both redox and carboxyl mechanisms are CO2 desorption, and the reaction barrier of this step is 0.69 eV on Ru-Pt/boron-doped graphene surface. However, the rate-determining steps for formate mechanisms is relatively higher, 1.00 eV, compare with the other mechanisms.

    ABSTRACT I 摘要 II 致謝 III INDOX OF FIGURE VI INDOX OF TABLE VIII CHAPTER 1. INTRODUCTION 1 1.1 CO2 Capture 1 1.2 Water-Gas Shift Reaction 3 1.3 Graphene 6 1.3.1 What is Graphene ? 6 1.3.2 Different Forms of Carbon 6 1.3.3 The Properties of Graphene and Applications 8 1.4 Bimetallic Catalysts 8 1.5 This Research 11 CHAPTER 2. METHODOLOGY 12 2.1 Theoretical Background 12 2.1.1 Quantum Chemistry 12 2.1.2 Density Functional Theory 12 2.1.3 Periodic Systems 15 2.1.4 Brillouin Zone Sampling 18 2.1.5 Plane Wave Basis Set 21 2.1.6 Pseudopotential 24 2.1.7 Ultrasoft-pseudopotential 28 2.1.8 Projected Augmented Wave (PAW) 30 2.1.8 Generalized Gradient Approximation (GGA) 32 2.1.9 Nudged Elastic Band Method (NEB) 33 2.2 Computational Details 36 2.2.1 Method 36 2.2.2 Surface Model 38 a. Graphene 38 b. Ru-Pt/Boron-doped Graphene 38 CHAPTER 3. RESULTS AND DISCUSSION 43 3.1 CO2 Capture 43 3.1.1 CO2 adsorption 44 3.1.2 Reaction Mechanisms of CO2 molecular 47 3.2 Water-Gas Shift Reaction 53 3.2.1 Adsorptions of WGS Reaction Intermediates 53 3.2.2 Reaction Mechanisms of Water-Gas Shift Reaction 57 a. Water Activation 58 b. Redox Mechanism 61 c. Carboxyl Mechanism 65 d. Formate Mechanism 68 e. Hydrogen Recombination 70 CHAPTER 4. CONCLUSION 75 REFERENCE 77

    1. Metz, B.; Davidson, O.; de Coninck, H.; Loos, M.; Meyer, L. Intergovernmental Panel on Climate Change (IPCC), Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press, Cambridge 2007.
    2. Aaron, D.; Tsouris, C. Sep. Sci. Technol. 2005, 40, 321.
    3. Choi, S.; Drese, J. H.; Jones, C. W. ChemSusChem 2009, 2, 796.
    4. Satterfield, C. N. Heterogeneous Catalysis in Industrial Practice, 2nd ed.; McGraw-Hill: New York, 1991.
    5. Campbell, C. T.; Ernst, K. H. Surface science of catalysis: In situ probes and reaction kinetics; Dwyer, D. J., Hoffmann, F. M., Eds.; ACS Symposium Series 482; American Chemical Society: Washington, DC, 1992; pp. 130.
    6. Ovesen, C. V.; Stoltze, P.; Nørskov, J. K.; Campbell, C. T. J. Catal. 1992, 134, 445.
    7. Capek, P.; Klusacek, K. Catal. Today 1994, 20, 367.
    8. Koryabkina, N. A.; Phatak, A. A.; Ruettinger, W. F.; Farruto, R. J.; Rebeiro, F. H. J. Catal. 2003, 217, 233.
    9. Phatak, A. A.; Koryabkina, N.; Rai, S.; Ratts, J. L.; Ruettinger, W.; Farrauto, R. J.; Blau, G. E.; Delgass, W. N.; Ribeiro, F. H. Catal. Today 2007, 123, 224.
    10. Grabow, L. C.; Gokhale, A. A.; Evans, S. T.; Dumesic, J. A.; Mavrikakis, M. J. Phys. Chem. C 2008, 112, 4608.
    11. Gokhale, A. A.; Dumesic, J. A.; Manos Mavrikakis, M. J. Am. Chem. Soc. 2008, 130, 1402.
    12. Wang, G.; Jiang, L.; Cai, Z.; Pan, Y.; Zhao, X.; Huang, W.; Xie, K.; Li, Y.; Sun, Y.; Zhong, B. J. Phys. Chem. B 2003, 107, 557.
    13. Shubina, T. E.; Koper, M. T. M. J. Electroanal. Chem. 2006, 8, 703.
    14. Ovesen, C. V.; Clausen, B. S.; Hammershoi, B. S.; Steffensen, G.; Askgaard, T.; Chorkendorff, I.; Norskov, J. T.; Rasmussen, P. B.; Stoltze, P.; Taylor, P. J. Catal. 1996, 158, 170.

    15. Tserpe, E.; Waugh, K. C. A microkinetic analysis of the reverse water-gas shift reaction. In Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis; G. F. Froment, K. C. W., Ed.; Elsevier: Amsterdam, 1997; pp. 401.
    16. Callaghan, C. A, A Dissertation, Worcester Polytechnic Institute, Department of Chemical Engineering, 2006.
    17. Campbell, C. T.; Daube, K. A. J. Catal. 1987, 104, 109.
    18. Hinrichsen, O.; Genger, T.; Muhler, M. Stud. Surf. Sci. Catal. 2000, 130, 3825. .
    19. Nakamura, J.; Campbell, J. M.; Campbell, C. T. J. Chem. Soc. Faraday Trans. 1990, 86, 2725.
    20. Mhadeshwar, A. B.; Vlachos, D. G. Catal. Today 2005, 105, 162.
    21. Mhadeshwar, A. B.; Vlachos, D. G. J. Phys. Chem. B 2005, 109, 16819.
    22. Reich, S.; Maultzsch, J.; Thomsen, C.; Ordej; oacute; n, P. Phys. Rev. B 2002, 66, 035412.
    23. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
    24. Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
    25. Oberlin, A.; Endo, M.; Koyama, T. Journal of Crystal Growth 1976, 32, 335.
    26. Iijima, S.; Ichihashi, T. Nature 1993, 363, 603.
    27. Bethune, D. S.; Kiang, C. H.; Devries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Nature 1993, 363, 605.
    28. Geim, A. K.; Novoselov, K. S. Nat Mater 2007, 6, 183.
    29. Al-Mashat, L.; Shin, K.; Kalantar-zadeh, K.; Plessis, J. D.; Han, S. H.; Kojima, R. W.; Kaner, R. B.; Li, D.; Gou, X.; Ippolito, S. J.; Wlodarski, W. J. Phys. Chem. C 2010, 114, 16168.
    30. Heller, I.; Chatoor, S.; Männik, J.; Zevenbergen, M. A. G.; Oostinga, J. B.; Morpurgo, A. F.; Dekker, C.; Lemay, S. G. Nano Letters 2010, 10, 1563.
    31. Li, W.; Tan, C.; Lowe, M. A.; Abruña, H. c. D.; Ralph, D. C. ACS Nano 2011, 5, 2264.

    32. Rangel, N. L.; Gimenez, A.; Sinitskii, A.; Seminario, J. M. J. Phys. Chem. C 2011, 115, 12128.
    33. Schneider, G. g. F.; Kowalczyk, S. W.; Calado, V. E.; Pandraud, G. g.; Zandbergen, H. W.; Vandersypen, L. M. K.; Dekker, C. Nano Letters 2010, 10, 3163.
    34. Yoo, J. J.; Balakrishnan, K.; Huang, J.; Meunier, V.; Sumpter, B. G.; Srivastava, A.; Conway, M.; Mohana Reddy, A. L.; Yu, J.; Vajtai, R.; Ajayan, P. M. Nano Letters 2011, 11, 1423.
    35. Lin, Y. M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H. Y.; Grill, A.; Avouris, P. Science 2010, 327, 662.
    36. Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Science 2009, 324, 1312.
    37. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Nature Materials 2007, 6, 652.
    38. Schmidt, T. J.; Noeske, M.; Gasteiger, H. A.; Behm R. J. J. Electrochem. Soc. 1998, 145, 925.
    39. Kua, J.; Goddard, W. A. J. Am. Chem. Soc. 1999, 121, 10928.
    40. Binder, H.; Kbhling, A.; Sandstede, G. In From Electrocatalysis to Fuel Cells, Sandstede, G., Ed.; University of Washington Press: Seattle, 1972; pp. 43.
    41. McNicol, B. D.; Short, R. T. J. Electroanal. Chem. 1977, 81, 249.
    42. Watanabe, M.; Motoo, S. J. Electroanal. Chem. 1975, 60, 275.
    43. Tremiliosi-Filho, G.; Kim, H.; Chrzanowski, W.; Wieckowski, A.; Grzybowska, B.; Kulesza, P. J. Electroanal. Chem. 1999, 467, 143.
    44. Lin, W.F.; Iwasita T.; Vielstich W. J. Phys. Chem. B 1999, 103, 3250.
    45. Davies, J. C.; Hayden, B. E.; Pegg, D. J. Surf. Sci. 2000, 467, 118.
    46. Krausa, M.; Vielstich, W. J. Electroanal. Chem. 1994, 379, 307.
    47. Swanson, H. E.; Tatge, E. National Bureau of Standards Circular 539, 1953; Vol. 1, pp. 31.
    48. Li, L.; Xing, Y., J. Phys. Chem. C 2007, 111, 2803.
    49. Wu, G.; Swaidan, R.; Li, D.; Li, N., Electrochim. Acta 2008, 53, 7622.
    50. Acharya, C. K.; Sullivan, D. I.; Turner, C. H., J. Phys. Chem. C 2008, 112, 13607.
    51. Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864.
    52. Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133.
    53. Villullas, H. M.; Mattos-Costa, F. I.; Bulhoes, L. O. S. J. Phys. Chem. B 2004, 108, 12898.
    54. Brillouin, L. Wave Propagation in Periodic Structures; Dover: New York, 1946.
    55. Lebowitz, J. L.; Lieb., E. H. Phys. Rev. Lett. 1969, 22, 631.
    56. Bouckaert, L. P.; Smoluchowski, R.; Wigner, L. P. Phys. Rev. 1969, 50, 58.
    57. Chadi, D. J. Phys. Rev. B 1977, 16, 1746.
    58. Evarestov, R. A.; Smirnov, V. P. Phys. Stat. Sol. 1983, 119, 9.
    59. Froyen, S. Phys. Rev. B 1989, 39, 3168.
    60. Robertson, I. J.; Payne, M. C. J. Phys. Cond. Matt. 1990, 2, 9837.
    61. Robertson, I. J.; Payne, M. C. J. Phys. Cond. Matt. 1991, 3, 8841.
    62. Denteneer, P. J. H.; van Haeringer, W. J. Phys. Cond. Matt. 1985, 18, 4127.
    63. Chadi, D. L.; Cohen, M. L. Phys. Rev. B 1973, 8, 5747.
    64. Troullier, N.; Martins, J. L. Phys. Rev. B 1991, 43, 1993.
    65. Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
    66. Hamann, D. R.; Schlüter, M.; Chiang, C. Phys. Rev. Lett. 1979, 43, 1494.
    67. Bachelet, G. B.; Hamann, D. R.; Schlüter, M. Phys. Rev. B 1982, 26, 4199.
    68. Vanderbilt, D. Phys. Rev. B 1985, 32, 8412.
    69. Troullier, N.; Martins, J. L. Solid State Comm. 1990, 74, 613.
    70. Goedecker, S. ; Teter, M.; Hutter, J. Phys. Rev. B 1996, 54, 1703.
    71. Hartwigsen, C.; Goedecker, S.; Hutter, J. Phys. Rev. B 1998, 58, 3641.
    72. Laasonen, K.; Pasquarello, A.; Car, R.; Lee, C.; Vanderbilt, D. Phys. Rev. B 1993, 47,10142.
    73. Burke, P. K.; Ernzerhof , M. Phys. Rev. Lett. 1996, 77, 18.
    74. Blöchl, P. E. Phys. Rev. B 1994, 50, 17953.
    75. Blöchl, P. E. J. Phys. Chem. 1995, 99, 7422.
    76. Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
    77. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
    78. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. Phys. Rev. B 1992, 46, 6671.
    79. Jónsson, H.; Mills, G.; Jacobsen, K. W. Nudged Elastic Band Method for Finding Minimum Energy Paths of Transition, In Classical and Quantum Dynamics in Condensed Phase Simulations, Berne, B. J.; Ciccotti, G.; Coker, D. F., Eds.; World Scientific, 1998.
    80. Mills, G.; Jónsson, H. Phys. Rev. Lett. 1994, 72, 1124.
    81. Mills, G.; Jónsson, H.; Schenter, G. K. Surf. Sci. 1995, 324, 305.
    82. White, K. A.; Bird, D. M. Phys. Rev. B 1994, 50, 4954.
    83. Branger, V.; Pelosin, V.; Badawi, K. F.; Goudeau, P. Thin Solid Films 1996, 275, 22.
    84. Structure data of Elements and Intermetallic phases, Springer, Berlin, 1977, Vol IIIb.
    85. Halgren, T. A.; Lipscomb, W. N. Chem. Phys. Lett. 1977, 49, 225.
    86. (a) Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15. (b) Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169.
    87. (a) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 48, 13115. (b) Kresse, G.; Hafner, J. J. Phys. Cond. Matt. 1994, 6, 8245.
    88. Perdew, J. P.; Wang, Y. Phys. Rev. B 1986, 33, 8800.
    89. Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 46, 6671.
    90. Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.
    91. Blöchl, P. E. Phys. Rev. B 1994, 50, 17953.
    92. Cervenka, J.; Flipse, C. F. J. Journal of Physics: Conference Series 2007, 61, 190.

    93. Naeini, J. G.; Way, B. M.; Dahn, J. R.; Irwin, J. C. Phys. Rev. B 1996, 54, 144.
    94. Acharya, C. K.; Turner, C. H. Surf. Sci. 2008, 602, 3595.
    95. Munshi, P.; Main, A. D.; Linehan, J. C.; Tai, C. C.; Jessop, P. G. Journal of the American Chemical Society 2002, 124, 7963.
    96. Eckle, S.; Anfang, H.-G.; Behm, R. J. r. J. Phys. Chem. C 2010, 115, 1361.
    97. Tsai, C.-W.; Chen, H. M.; Liu, R.-S.; Asakura, K.; Chan, T.-S., J. Phys. Chem. C 2011, 115, 10180.
    98. Jakobsen, J. G.; Jørgensen, T. L.; Chorkendorff, I.; Sehested, J. Applied Catalysis A: General 2010, 377, 158.
    99. Sharma, S.; Hu, Z.; Zhang, P.; McFarland, E. W.; Metiu, H. Journal of Catalysis 2011, 278, 297.
    100. Hwang, C.-S.; Wang, N.-C. Materials Chemistry and Physics 2004, 88, 258.
    101. Montoya, A.; Mondragón, F.; Truong, T. N. Carbon 2003, 41, 29.
    102. Allouche, A.; Ferro, Y. Carbon 2006, 44, 3320.
    103. Cinke, M.; Li, J.; Bauschlicher, C. W.; Ricca, A.; Meyyappan, M. Chem. Phys. Lett 2003, 376, 761.
    104. Zhao, J.; et al. Nanotechnology 2002, 13, 195.
    105. Gokhale, A. A.; Dumesic, J. A.; Mavrikakis, M. Journal of the American Chemical Society 2008, 130, 1402.
    106. Grabow, L. C.; Gokhale, A. A.; Evans, S. T.; Dumesic, J. A.; Mavrikakis, M., J. Phys. Chem. C 2008, 112, 4608.

    無法下載圖示 全文公開日期 2016/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE