簡易檢索 / 詳目顯示

研究生: Filimon Hadish
Filimon Hadish
論文名稱: Graphene and Graphene Quantum Dots for Glucose Sensing
Graphene and Graphene Quantum Dots for Glucose Sensing
指導教授: 周賢鎧
Shyankay Jou
口試委員: Cheng-I Hsieh
Cheng-I Hsieh
Yi Hu
Yi Hu
黃柏仁
Bohr-Ran Huang
王丞浩
Chen-Hao Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 156
中文關鍵詞: GrapheneDownstream oxygen plasmaGlucose sensorGraphene quantum dotsSpent coffee groundPhotoluminescence
外文關鍵詞: Graphene, Downstream oxygen plasma, Glucose sensor, Graphene quantum dots, Spent coffee ground, Photoluminescence
相關次數: 點閱:255下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Diabetic patients were concerned in most developed countries and stimulate the advancement of glucose biosensors. Accurate and rapid detection of glucose, based on enzymatic glucose oxidase (GOx) electrode sensors can be developed with graphene as electron mediator. Pristine graphene (PG) attracted researchers for its extraordinary properties. The remarkably high electron mobility in graphene at room temperature, which exceeds 2000 cm2/Vs, highest thermal conductivity (3000 W/mK), combined with the excellent optical characteristic of graphene-based materials holds promises in electronic, optoelectronics and biosensor application. However, development of graphene-based devices requires control over the functionalization and modification of the graphene surface. Thus, in the first work modification of monolayer graphene surface with downstream oxygen plasma treatment to form graphene oxide (GO) for use in glucose biosensors was studied. Raman spectrum and XPS characterization techniques were involved to confirm the functionalization of graphene. Amperometric and voltammetric methods were engaged to ensure the simultaneous reduction of GO with fast immobilization of glucose oxidase (GOx) enzyme modified graphene surface. Cyclic voltammetry investigation indicated that fabricated glucose sensor shows a high surface resistance as a resultant sensitivity of 0.118 µA mM-1cm-2 and a detection limit of 0.0526 mM towards glucose confirmed by amperometric measurments. This method provides fast and simultaneous immobilization of GOx and reduction of GO, and can be used in the fabrication of other electrochemical biosensors. Considering success and limitations of the first work, we projected the glucose sensor to use graphene quantum dots as substitute of reduced graphene oxide.
    Graphene quantum dots (GQDs) have fascinating photoluminescence (PL) properties with promising applications in fluorescent sensing. In this work, PL properties of GQDs obtained from precursors of glucose and spent coffee ground (SCG) were synthesized via a simple hydrothermal reduction. In the second work we developed a hydrothermal approach for synthesis of GQDs and boro-graphene quantum dots (BGQDs) with glucose precursor for application of simple and sensitive PL probe glucose sensing, which provides an alternative to the commonly used potentiometric detection method. Boron free and doped GQD based sensor was used for detection of glucose in the range of 5–50 mM after 5 months of preparation. Thus, this fluorescent based sensor was easily synthesized and can be stored for a period of long time. In general, GQDs PL probe showed a satisfactory detection of glucose, however up on doping with boron the BGQDs based sensor provided a linear response to glucose with a correlation coefficient of 0.98985 and a low detection limit of 4.8 mM.
    Third work was similar in all aspect except SCG was utilized as precursor. Thus, we have prepared BGQDs employing glucose in second work and SCG where less amount of boric acid was mixed as boron dopant to realize fluorescent glucose sensor. Various characterizations reveal that the boron atoms have been successfully doped into graphene structures with the atomic percentage of 19 and 70.8% for both BGQDs made from glucose and SGC. The photoluminescence of developed BGQDs showed a linear response to glucose over a concentration range of 5–45 mM. The BGQDs biosensor exhibited a sensitivity of 0.00772 mM-1 and a limit of detection of 3.23 mM for glucose sensing. These results demonstrate that the synthesized BGQD, has a promising potential in electro catalytic and efficient to the PL enhancement mechanism determination of glucose.

    Keywords: Graphene, downstream oxygen plasma, glucose sensor, graphene quantum dots, spent coffee ground, photoluminescence.


    Diabetic patients were concerned in most developed countries and stimulate the advancement of glucose biosensors. Accurate and rapid detection of glucose, based on enzymatic glucose oxidase (GOx) electrode sensors can be developed with graphene as electron mediator. Pristine graphene (PG) attracted researchers for its extraordinary properties. The remarkably high electron mobility in graphene at room temperature, which exceeds 2000 cm2/Vs, highest thermal conductivity (3000 W/mK), combined with the excellent optical characteristic of graphene-based materials holds promises in electronic, optoelectronics and biosensor application. However, development of graphene-based devices requires control over the functionalization and modification of the graphene surface. Thus, in the first work modification of monolayer graphene surface with downstream oxygen plasma treatment to form graphene oxide (GO) for use in glucose biosensors was studied. Raman spectrum and XPS characterization techniques were involved to confirm the functionalization of graphene. Amperometric and voltammetric methods were engaged to ensure the simultaneous reduction of GO with fast immobilization of glucose oxidase (GOx) enzyme modified graphene surface. Cyclic voltammetry investigation indicated that fabricated glucose sensor shows a high surface resistance as a resultant sensitivity of 0.118 µA mM-1cm-2 and a detection limit of 0.0526 mM towards glucose confirmed by amperometric measurments. This method provides fast and simultaneous immobilization of GOx and reduction of GO, and can be used in the fabrication of other electrochemical biosensors. Considering success and limitations of the first work, we projected the glucose sensor to use graphene quantum dots as substitute of reduced graphene oxide.
    Graphene quantum dots (GQDs) have fascinating photoluminescence (PL) properties with promising applications in fluorescent sensing. In this work, PL properties of GQDs obtained from precursors of glucose and spent coffee ground (SCG) were synthesized via a simple hydrothermal reduction. In the second work we developed a hydrothermal approach for synthesis of GQDs and boro-graphene quantum dots (BGQDs) with glucose precursor for application of simple and sensitive PL probe glucose sensing, which provides an alternative to the commonly used potentiometric detection method. Boron free and doped GQD based sensor was used for detection of glucose in the range of 5–50 mM after 5 months of preparation. Thus, this fluorescent based sensor was easily synthesized and can be stored for a period of long time. In general, GQDs PL probe showed a satisfactory detection of glucose, however up on doping with boron the BGQDs based sensor provided a linear response to glucose with a correlation coefficient of 0.98985 and a low detection limit of 4.8 mM.
    Third work was similar in all aspect except SCG was utilized as precursor. Thus, we have prepared BGQDs employing glucose in second work and SCG where less amount of boric acid was mixed as boron dopant to realize fluorescent glucose sensor. Various characterizations reveal that the boron atoms have been successfully doped into graphene structures with the atomic percentage of 19 and 70.8% for both BGQDs made from glucose and SGC. The photoluminescence of developed BGQDs showed a linear response to glucose over a concentration range of 5–45 mM. The BGQDs biosensor exhibited a sensitivity of 0.00772 mM-1 and a limit of detection of 3.23 mM for glucose sensing. These results demonstrate that the synthesized BGQD, has a promising potential in electro catalytic and efficient to the PL enhancement mechanism determination of glucose.

    Keywords: Graphene, downstream oxygen plasma, glucose sensor, graphene quantum dots, spent coffee ground, photoluminescence.

    Table of Contents Table of Contents Acknowledgements i Table of Contents ii List of Figures vi List of Tables xii List of Abbreviations xiii Abstract xv 1. Introduction 1 2. Introduction to graphene 4 2.1. Preparation of graphene 6 2.1.1. Mechanical Exfoliation 7 2.1.2. Chemical Exfoliation 8 2.1.3. Chemical Vapor deposition 10 2.2. Electronic properties 15 2.2.1. Graphene’s theoretical electronic structural expression 16 2.2.2. Functionalization of graphene 19 2.2.2.1. Substitutional Doping (covalent doping) 20 2.2.2.2. Charge-transfer doping (non-covalent doping) 23 2.2.3. Quantum Confinement effect 24 2.2.3.1. Graphene Quantum dot (GQD) 27 2.2.3.2. Photoluminescence of GQDs 28 2.2.3.3. Synthesis approach of GQDs 30 2.3. Graphene based glucose sensor 33 2.3.1. Electrochemical 38 2.3.1.1. Cyclic Voltammetry 38 2.3.1.2. Amperometric 41 2.3.1.3. First generation 42 2.3.1.4. Second generation 43 2.3.1.5. Third generation 45 2.3.2. Photoluminescence 46 2.4. Raman spectrum of graphene 50 2.4.1. Instrument Set-Up 51 2.4.2. Graphene phonon 52 2.4.2.1. G-band 55 2.4.2.2. 2D (G')-band in Graphene 55 2.4.2.3. D-Band 57 3. Motivation and objectives 59 3.1. Objectives 59 4. Experimental section 60 4.1. Materials 60 4.2. Instruments 61 4.2.1. Raman Spectrophotometry 61 4.2.2. Electrochemical techniques 62 4.2.3. Fourier transform infrared (FTIR)spectrophotometer 63 4.2.4. UV-Visible and Photoluminescence (PL) spectrophotometer 65 4.2.5. X-ray photo spectrometer (XPS) 66 5. Functionalization of graphene surfaces with downstream plasma for glucose biosensor145 67 5.1. Introduction 67 5.1.1. Graphene synthesis 68 5.1.2. Plasma treatment of PrG/SiO2/Si 69 5.1.3. Electrode fabrication 70 5.1.4. Immobilization of GOx to GO/SiO2/Si 70 5.1.5. Sensor characterization 71 5.2. Results and Discussion 71 5.2.1. Raman characterization 71 5.2.2. XPS characterization 72 5.2.3. Electrochemical characterization 74 5.2.4. Amperometric determination of glucose at GOx/RGO/SiO2/Si electrode 76 5.3. Summery 80 6. Graphene quantum dot from glucose for glucose sensing 81 6.1. Introduction 81 6.1.1. Hydrothermal method 83 6.1.2. Microwave method 83 6.1.3. Immobilization of GOx/GQDs modified GCE electrodes 84 6.2. Result and Discussion 84 6.2.1. Raman characterization 84 6.2.2. FTIR Characterization 86 6.2.3. UV Characterization 87 6.2.4. Photoluminescence characterization 89 6.2.5. PL quenching of GQDs and BGQDs as a probe sensor to glucose 90 6.3. Summery 92 7. Graphene quantum dot from spent ground coffee for glucose sensing 93 7.1. Introduction 93 7.2. Preparation method 93 7.3. Results and Discussion 94 7.3.1. QY measurements 94 7.3.2. Raman and FTIR characterization 95 7.3.3. XPS chracterization 96 7.3.4. Optical Characterization GQDs and BGQDs 99 7.3.5. Electrochemical SGCGQDs 102 7.4. Summery 103 8. Conclusions and Future outlooks 104 8.1. Conclusions 104 8.2. Future Perspectives 106 9. Extended graphene application 109 9.1. Polycaprolacton (PCL)/Graphene composite scaffold for bone tissue engineering (work conducted at Taipei medical University in Prof. Yung-Kang Shen Lab) 109 9.1.1. Introduction 109 9.1.2. Materials and Preparation methods 111 9.1.2.1. Materials 111 9.1.2.2. Preparation of PCL/G composite scaffold 112 9.1.3. Characterization 112 9.1.3.1. Porosity measurement 112 9.1.3.2. Compression test: mechanical properties 113 9.1.3.3. Hydrophilicity 113 9.1.3.4. FTIR Spectroscopy 113 9.1.3.5. Degradation test 113 9.1.3.6. In Vitro cell culture 114 9.1.4. Result and Discussion 114 9.1.4.1. FTIR Spectrum 116 9.1.4.2. Mechanical properties 117 9.1.4.3. Hydrophilicity 118 9.1.4.4. Porosity 120 9.1.5. Summery 120 References 121 Appendices 136 Appendix-A 136 Appendix-B 137

    References
    1. Diagnosis and classification of diabetes mellitus. Diabetes care 2012, 35 Suppl 1, S64-71.
    2. Mohd Yazid, S. N. A.; Md Isa, I.; Abu Bakar, S.; Hashim, N.; Ab Ghani, S., A Review of Glucose Biosensors Based on Graphene/Metal Oxide Nanomaterials. Analytical Letters 2014, 47 (11), 1821-1834.
    3. Zhang, Y.; Shen, J.; Li, H.; Wang, L.; Cao, D.; Feng, X.; Liu, Y.; Ma, Y.; Wang, L., Recent Progress on Graphene-based Electrochemical Biosensors. The Chemical Record 2016, 16 (1), 273-294.
    4. Foulds, N. C.; Lowe, C. R., Enzyme entrapment in electrically conducting polymers. Immobilisation of glucose oxidase in polypyrrole and its application in amperometric glucose sensors. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1986, 82 (4), 1259-1264.
    5. Yamanaka, S. A.; Nishida, F.; Ellerby, L. M.; Nishida, C. R.; Dunn, B.; Valentine, J. S.; Zink, J. I., Enzymatic activity of glucose oxidase encapsulated in transparent glass by the sol-gel method. Chemistry of Materials 1992, 4 (3), 495-497.
    6. Wang, Y.; Caruso, F., Mesoporous Silica Spheres as Supports for Enzyme Immobilization and Encapsulation. Chemistry of Materials 2005, 17 (5), 953-961.
    7. Rakhi, R. B.; Sethupathi, K.; Ramaprabhu, S., A Glucose Biosensor Based on Deposition of Glucose Oxidase onto Crystalline Gold Nanoparticle Modified Carbon Nanotube Electrode. The Journal of Physical Chemistry B 2009, 113 (10), 3190-3194.
    8. Liu, Y.; Wang, M.; Zhao, F.; Xu, Z.; Dong, S., The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosensors and Bioelectronics 2005, 21 (6), 984-988.
    9. Yang, S.; Lu, Z.; Luo, S.; Liu, C.; Tang, Y., Direct electrodeposition of a biocomposite consisting of reduced graphene oxide, chitosan and glucose oxidase on a glassy carbon electrode for direct sensing of glucose. Microchimica Acta 2013, 180 (1), 127-135.
    10. Chang, Q.; Tang, H., Optical determination of glucose and hydrogen peroxide using a nanocomposite prepared from glucose oxidase and magnetite nanoparticles immobilized on graphene oxide. Microchimica Acta 2014, 181 (5), 527-534.
    11. Wang, K.; Liu, Q.; Guan, Q.-M.; Wu, J.; Li, H.-N.; Yan, J.-J., Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals. Biosensors and Bioelectronics 2011, 26 (5), 2252-2257.
    12. Wang, Y.; Zhen, S. J.; Zhang, Y.; Li, Y. F.; Huang, C. Z., Facile Fabrication of Metal Nanoparticle/Graphene Oxide Hybrids: A New Strategy To Directly Illuminate Graphene for Optical Imaging. The Journal of Physical Chemistry C 2011, 115 (26), 12815-12821.
    13. Wu, P.; Shao, Q.; Hu, Y.; Jin, J.; Yin, Y.; Zhang, H.; Cai, C., Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochimica Acta 2010, 55 (28), 8606-8614.
    14. Willner, I. I.; Katz, E., Integration of Layered Redox Proteins and Conductive Supports for Bioelectronic Applications. Angewandte Chemie (International ed. in English) 2000, 39 (7), 1180-1218.
    15. House, J. L.; Anderson, E. M.; Ward, W. K., Immobilization techniques to avoid enzyme loss from oxidase-based biosensors: a one-year study. Journal of diabetes science and technology 2007, 1 (1), 18-27.
    16. Datta, S.; Christena, L. R.; Rajaram, Y. R. S., Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 2013, 3 (1), 1-9.
    17. Unnikrishnan, B.; Palanisamy, S.; Chen, S.-M., A simple electrochemical approach to fabricate a glucose biosensor based on graphene–glucose oxidase biocomposite. Biosensors and Bioelectronics 2013, 39 (1), 70-75.
    18. Yousef Elahi, M.; Khodadadi, A. A.; Mortazavi, Y., A Glucose Biosensor Based on Glucose Oxidase Immobilized on ZnO/Cu2O Graphene Oxide Nanocomposite Electrode. 2014; Vol. 161, p B81-B87.
    19. Hossain, M. F.; Park, J. Y., Amperometric Glucose Biosensor Based on Pt-Pd Nanoparticles Supported by Reduced Graphene Oxide and Integrated with Glucose Oxidase. Electroanalysis 2014, 26 (5), 940-951.
    20. Palanisamy, S.; Cheemalapati, S.; Chen, S.-M., Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite. Materials Science and Engineering: C 2014, 34 (Supplement C), 207-213.
    21. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science (New York, N.Y.) 2004, 306 (5696), 666-9.
    22. Geim, A. K.; Novoselov, K. S., The rise of graphene. 2007, 6, 183.
    23. Katsnelson, M. I., Graphene: carbon in two dimensions. Materials Today 2007, 10 (1), 20-27.
    24. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Reviews of Modern Physics 2009, 81 (1), 109-162.
    25. Chen, D.; Feng, H.; Li, J., Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chemical Reviews 2012, 112 (11), 6027-6053.
    26. Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S., Preparation and characterization of graphene oxide paper. Nature 2007, 448 (7152), 457-60.
    27. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M., Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4 (8), 4806-4814.
    28. Shi, Y.; Li, X.; Ye, M.; Hu, C.; Shao, H.; Qu, L., An Imperata Cylindrical Flowers-Shaped Porous Graphene Microelectrode for Direct Electrochemistry of Glucose Oxidase. Journal of The Electrochemical Society 2015, 162 (7), B138-B144.
    29. Liu, Y.; Yu, D.; Zeng, C.; Miao, Z.; Dai, L., Biocompatible Graphene Oxide-Based Glucose Biosensors. Langmuir 2010, 26 (9), 6158-6160.
    30. Akbari Sehat, A.; Khodadadi, A. A.; Shemirani, F.; Mortazavi, Y., Fast Immobilization of Glucose Oxidase on Graphene Oxide for Highly Sensitive Glucose Biosensor Fabrication. 2015; Vol. 10, p 272-286.
    31. Devasenathipathy, R.; Mani, V.; Chen, S.-M.; Huang, S.-T.; Huang, T.-T.; Lin, C.-M.; Hwa, K.-Y.; Chen, T.-Y.; Chen, B.-J., Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes. Enzyme and Microbial Technology 2015, 78 (Supplement C), 40-45.
    32. Gautam, M.; Jayatissa, A. H., Gas sensing properties of graphene synthesized by chemical vapor deposition. Materials Science and Engineering: C 2011, 31 (7), 1405-1411.
    33. Chen, C. W.; Hung, S. C.; Yang, M. D.; Yeh, C. W.; Wu, C. H.; Chi, G. C.; Ren, F.; Pearton, S. J., Oxygen sensors made by monolayer graphene under room temperature. Applied Physics Letters 2011, 99 (24), 243502.
    34. Nursakinah Mohd, Z.; Shogo, O.; Takashi, I.; Yasuhide, O.; Kenzo, M.; Masato, M.; Paul, G.; Kenneth, B. K. T.; Kazuhiko, M., pH Sensor Based on Chemical-Vapor-Deposition-Synthesized Graphene Transistor Array. Japanese Journal of Applied Physics 2013, 52 (6S), 06GK04.
    35. Huang, Y.; Dong, X.; Shi, Y.; Li, C. M.; Li, L.-J.; Chen, P., Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2010, 2 (8), 1485-1488.
    36. Kwak, Y. H.; Choi, D. S.; Kim, Y. N.; Kim, H.; Yoon, D. H.; Ahn, S. S.; Yang, J. W.; Yang, W. S.; Seo, S., Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosensors & bioelectronics 2012, 37 (1), 82-7.
    37. Pospischil, A.; Humer, M.; Furchi, M. M.; Bachmann, D.; Guider, R.; Fromherz, T.; Mueller, T., CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photonics 2013, 7, 892.
    38. Ramón, M. E.; Gupta, A.; Corbet, C.; Ferrer, D. A.; Movva, H. C. P.; Carpenter, G.; Colombo, L.; Bourianoff, G.; Doczy, M.; Akinwande, D.; Tutuc, E.; Banerjee, S. K., CMOS-Compatible Synthesis of Large-Area, High-Mobility Graphene by Chemical Vapor Deposition of Acetylene on Cobalt Thin Films. ACS Nano 2011, 5 (9), 7198-7204.
    39. Han, T.-H.; Kim, H.; Kwon, S.-J.; Lee, T.-W., Graphene-based flexible electronic devices. Materials Science and Engineering: R: Reports 2017, 118 (Supplement C), 1-43.
    40. Rao, C. N. R.; Biswas, K.; Subrahmanyam, K. S.; Govindaraj, A., Graphene, the new nanocarbon. Journal of Materials Chemistry 2009, 19 (17), 2457-2469.
    41. Suk-Ho, C., Unique properties of graphene quantum dots and their applications in photonic/electronic devices. Journal of Physics D: Applied Physics 2017, 50 (10), 103002.
    42. Rabouw, F. T.; de Mello Donega, C., Excited-State Dynamics in Colloidal Semiconductor Nanocrystals. Topics in Current Chemistry 2016, 374 (5), 58.
    43. Ando, T., The electronic properties of graphene and carbon nanotubes. Npg Asia Materials 2009, 1, 17.
    44. Luo, Y.; Li, M.; Sun, L.; Xu, Y.; Hu, G.; Tang, T.; Wen, J.; Li, X., Tuning the photoluminescence of graphene quantum dots by co-doping of nitrogen and sulfur. Journal of Nanoparticle Research 2017, 19 (11), 363.
    45. Li, K.; Liu, W.; Ni, Y.; Li, D.; Lin, D.; Su, Z.; Wei, G., Technical synthesis and biomedical applications of graphene quantum dots. Journal of Materials Chemistry B 2017, 5 (25), 4811-4826.
    46. Deka, M. J.; Dutta, A.; Chowdhury, D., Tuning the wettability and photoluminescence of graphene quantum dots via covalent modification. New Journal of Chemistry 2018, 42 (1), 355-362.
    47. Zhu, S.; Zhang, J.; Qiao, C.; Tang, S.; Li, Y.; Yuan, W.; Li, B.; Tian, L.; Liu, F.; Hu, R.; Gao, H.; Wei, H.; Zhang, H.; Sun, H.; Yang, B., Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chemical Communications 2011, 47 (24), 6858-6860.
    48. Qu, D.; Zheng, M.; Li, J.; Xie, Z.; Sun, Z., Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light: Science &Amp; Applications 2015, 4, e364.
    49. Qu, A.; Xie, H.; Xu, X.; Zhang, Y.; Wen, S.; Cui, Y., High quantum yield graphene quantum dots decorated TiO2 nanotubes for enhancing photocatalytic activity. Applied Surface Science 2016, 375 (Supplement C), 230-241.
    50. Pan, D.; Zhang, J.; Li, Z.; Wu, M., Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Advanced Materials 2010, 22 (6), 734-738.
    51. Li, L.-L.; Ji, J.; Fei, R.; Wang, C.-Z.; Lu, Q.; Zhang, J.-R.; Jiang, L.-P.; Zhu, J.-J., A Facile Microwave Avenue to Electrochemiluminescent Two-Color Graphene Quantum Dots. Advanced Functional Materials 2012, 22 (14), 2971-2979.
    52. Hai, X.; Mao, Q.-X.; Wang, W.-J.; Wang, X.-F.; Chen, X.-W.; Wang, J.-H., An acid-free microwave approach to prepare highly luminescent boron-doped graphene quantum dots for cell imaging. Journal of Materials Chemistry B 2015, 3 (47), 9109-9114.
    53. Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L. B.; Zhan, X.; Gao, G.; Vithayathil, S. A.; Kaipparettu, B. A.; Marti, A. A.; Hayashi, T.; Zhu, J.-J.; Ajayan, P. M., Graphene Quantum Dots Derived from Carbon Fibers. Nano Letters 2012, 12 (2), 844-849.
    54. Bak, S.; Kim, D.; Lee, H., Graphene quantum dots and their possible energy applications: A review. Current Applied Physics 2016, 16 (9), 1192-1201.
    55. Li, Z.; Yu, H.; Bian, T.; Zhao, Y.; Zhou, C.; Shang, L.; Liu, Y.; Wu, L.-Z.; Tung, C.-H.; Zhang, T., Highly luminescent nitrogen-doped carbon quantum dots as effective fluorescent probes for mercuric and iodide ions. Journal of Materials Chemistry C 2015, 3 (9), 1922-1928.
    56. Van Tam, T.; Kang, S. G.; Babu, K. F.; Oh, E.-S.; Lee, S. G.; Choi, W. M., Synthesis of B-doped graphene quantum dots as a metal-free electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A 2017, 5 (21), 10537-10543.
    57. Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B., The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Research 2015, 8 (2), 355-381.
    58. Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J.-J., Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 2013, 5 (10), 4015-4039.
    59. Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S., Graphene based materials: Past, present and future. Progress in Materials Science 2011, 56 (8), 1178-1271.
    60. Akbar, F.; Kolahdouz, M.; Larimian, S.; Radfar, B.; Radamson, H. H., Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. Journal of Materials Science: Materials in Electronics 2015, 26 (7), 4347-4379.
    61. Avouris, P.; Dimitrakopoulos, C., Graphene: synthesis and applications. Materials Today 2012, 15 (3), 86-97.
    62. Soldano, C.; Mahmood, A.; Dujardin, E., Production, properties and potential of graphene. Carbon 2010, 48 (8), 2127-2150.
    63. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science (New York, N.Y.) 2008, 321 (5887), 385-388.
    64. Tang, Q.; Zhou, Z., Graphene-analogous low-dimensional materials. 2013; Vol. 58, p 1244–1315.
    65. Terasawa, T.-o.; Saiki, K., Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon 2012, 50 (3), 869-874.
    66. Yan, K.; Peng, H.; Zhou, Y.; Li, H.; Liu, Z., Formation of Bilayer Bernal Graphene: Layer-by-Layer Epitaxy via Chemical Vapor Deposition. Nano Letters 2011, 11 (3), 1106-1110.
    67. Ismach, A.; Druzgalski, C.; Penwell, S.; Schwartzberg, A.; Zheng, M.; Javey, A.; Bokor, J.; Zhang, Y., Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. Nano Letters 2010, 10 (5), 1542-1548.
    68. Boyd, D. A.; Lin, W. H.; Hsu, C. C.; Teague, M. L.; Chen, C. C.; Lo, Y. Y.; Chan, W. Y.; Su, W. B.; Cheng, T. C.; Chang, C. S.; Wu, C. I.; Yeh, N. C., Single-step deposition of high-mobility graphene at reduced temperatures. 2015, 6, 6620.
    69. Chae, S. J.; Güneş, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H.-J.; Yoon, S.-M.; Choi, J.-Y.; Park, M. H.; Yang, C. W.; Pribat, D.; Lee, Y. H., Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation. Advanced Materials 2009, 21 (22), 2328-2333.
    70. Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S.-S., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters 2008, 93 (11), 113103.
    71. Liu, W.; Chung, C.-H.; Miao, C.-Q.; Wang, Y.-J.; Li, B.-Y.; Ruan, L.-Y.; Patel, K.; Park, Y.-J.; Woo, J.; Xie, Y.-H., Chemical vapor deposition of large area few layer graphene on Si catalyzed with nickel films. Thin Solid Films 2010, 518 (6, Supplement 1), S128-S132.
    72. Batzill, M.; Sutter, P.; Addou, R.; Dahal, A., Monolayer Graphene Growth on Ni(111) by Low Temperature Chemical Vapor Deposition. 2012; Vol. 100.
    73. Huang, M.; Zhang, Y.; Wang, C.; Ren, J.-G.; Wu, Q.-H.; Li, Q.-B., Growth of graphene films on Cu catalyst in hydrogen plasma using polymethylmethacrylate as carbon source. Catalysis Today 2015, 256 (Part 1), 209-214.
    74. Qiu, C.; Zhou, H.; Cao, B.; Sun, L.; Yu, T., Raman spectroscopy of morphology-controlled deposition of Au on graphene. Carbon 2013, 59 (Supplement C), 487-494.
    75. Linas, S.; Jean, F.; Zhou, T.; Albin, C.; Renaud, G.; Bardotti, L.; Tournus, F., Moiré induced organization of size-selected Pt clusters soft landed on epitaxial graphene. Scientific Reports 2015, 5, 13053.
    76. Choi, W.; Lee, J., Graphene: Synthesis and Applications. CRC Press: 2011.
    77. Wu, Y. H.; Yu, T.; Shen, Z. X., Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. Journal of Applied Physics 2010, 108 (7), 071301.
    78. C. N. R. Rao (Editor), A. K. S. E., Graphene : synthesis, properties, and phenomena. 2012; Vol. Graphene : synthesis, properties, and phenomena.
    79. Kang, F.; Leng, Y.; Zhang, T.-Y., Influences of H2O2 on synthesis of H2SO4-GICs. Journal of Physics and Chemistry of Solids 1996, 57 (6), 889-892.
    80. Duquesne, S.; Bras, M. L.; Bourbigot, S.; Delobel, R.; Vezin, H.; Camino, G.; Eling, B.; Lindsay, C.; Roels, T., Expandable graphite: A fire retardant additive for polyurethane coatings. Fire and Materials 2003, 27 (3), 103-117.
    81. Viculis, L. M.; Mack, J. J.; Mayer, O. M.; Hahn, H. T.; Kaner, R. B., Intercalation and exfoliation routes to graphite nanoplatelets. Journal of Materials Chemistry 2005, 15 (9), 974-978.
    82. Nobuhara, K.; Nakayama, H.; Nose, M.; Nakanishi, S.; Iba, H., First-principles study of alkali metal-graphite intercalation compounds. Journal of Power Sources 2013, 243 (Supplement C), 585-587.
    83. Kumar, P.; Lahiri, I.; Mitra, A., Direct graphene growth from highly ordered pyrolytic graphite using pulsed Nd: YAG laser on p-Si (100) substrate at 700°c. AIP Conference Proceedings 2016, 1728 (1), 020452.
    84. Wellmann, R.; Böttcher, A.; Kappes, M.; Kohl, U.; Niehus, H., Growth of graphene layers on HOPG via exposure to methyl radicals. Surface Science 2003, 542 (1), 81-93.
    85. Norimatsu, W.; Kusunoki, M., Epitaxial graphene on SiC{0001}: advances and perspectives. Physical Chemistry Chemical Physics 2014, 16 (8), 3501-3511.
    86. Mattias, K.; Klaus, P.; Stefan, W.; Rainer, S.; Thorsten, D.; Cay-Christian, K.; André, M.; Jens, B.; Christoph, T.; Franz, J. A.; Hans, W. S., Epitaxial graphene on SiC: modification of structural and electron transport properties by substrate pretreatment. Journal of Physics: Condensed Matter 2015, 27 (18), 185303.
    87. Walt, A. d. H.; Claire, B., Epitaxial graphene. Journal of Physics D: Applied Physics 2012, 45 (15), 150301.
    88. Seah, C.-M.; Chai, S.-P.; Mohamed, A. R., Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon 2014, 70 (Supplement C), 1-21.
    89. Lee, S.; Lee, K.; Zhong, Z., Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition. Nano Letters 2010, 10 (11), 4702-4707.
    90. Fu, Y.; Rudnev, A. V.; Wiberg, G. K. H.; Arenz, M., Single Graphene Layer on Pt(111) Creates Confined Electrochemical Environment via Selective Ion Transport. Angewandte Chemie International Edition 2017, 56 (42), 12883-12887.
    91. Jimenez-Villacorta, F.; Alvarez-Fraga, L.; Bartolome, J.; Climent-Pascual, E.; Salas-Colera, E.; Aguilar-Pujol, M. X.; Ramirez-Jimenez, R.; Cremades, A.; Prieto, C.; de Andres, A., Nanocrystalline cubic ruthenium carbide formation in the synthesis of graphene on ruthenium ultrathin films. Journal of Materials Chemistry C 2017, 5 (39), 10260-10269.
    92. Coraux, J.; N‘Diaye, A. T.; Busse, C.; Michely, T., Structural Coherency of Graphene on Ir(111). Nano Letters 2008, 8 (2), 565-570.
    93. Ning, J.; Wang, D.; Han, D.; Shi, Y.; Cai, W.; Zhang, J.; Hao, Y., Comprehensive nucleation mechanisms of quasi-monolayer graphene grown on Cu by chemical vapor deposition. Journal of Crystal Growth 2015, 424 (Supplement C), 55-61.
    94. Huang, B.-R.; Chan, H.-W.; Jou, S.; Chen, G.-Y.; Kuo, H.-A.; Song, W.-J., Structure and field emission of graphene layers on top of silicon nanowire arrays. Applied Surface Science 2016, 362 (Supplement C), 250-256.
    95. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science (New York, N.Y.) 2009, 324 (5932), 1312-1314.
    96. Li, X.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S., Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. Journal of the American Chemical Society 2011, 133 (9), 2816-2819.
    97. Juang, Z.-Y.; Wu, C.-Y.; Lu, A.-Y.; Su, C.-Y.; Leou, K.-C.; Chen, F.-R.; Tsai, C.-H., Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process. Carbon 2010, 48 (11), 3169-3174.
    98. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters 2009, 9 (1), 30-35.
    99. Fujita, J.-i.; Hiyama, T.; Hirukawa, A.; Kondo, T.; Nakamura, J.; Ito, S.-i.; Araki, R.; Ito, Y.; Takeguchi, M.; Pai, W. W., Near room temperature chemical vapor deposition of graphene with diluted methane and molten gallium catalyst. Scientific Reports 2017, 7 (1), 12371.
    100. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I.; Kim, Y.-J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J.-H.; Hong, B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano 2010, 5 (8), 574-578.
    101. Polsen, E. S.; McNerny, D. Q.; Viswanath, B.; Pattinson, S. W.; John Hart, A., High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. 2015, 5, 10257.
    102. Eva, Y. A.; Guohong, L.; Xu, D., Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport. Reports on Progress in Physics 2012, 75 (5), 056501.
    103. Ando, T., Theory of Electronic States and Transport in Carbon Nanotubes. Journal of the Physical Society of Japan 2005, 74 (3), 777-817.
    104. Yao, J.; Sun, Y.; Yang, M.; Duan, Y., Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine. Journal of Materials Chemistry 2012, 22 (29), 14313-14329.
    105. Omidvar, A., Electronic structure tuning and band gap opening of nitrogen and boron doped holey graphene flake: The role of single/dual doping. Materials Chemistry and Physics 2017, 202 (Supplement C), 258-265.
    106. Garg, R.; Dutta, N. K.; Choudhury, N. R., Work Function Engineering of Graphene. Nanomaterials (Basel, Switzerland) 2014, 4 (2), 267-300.
    107. Guan, Z.; Ni, S.; Hu, S., Band gap opening of graphene by forming a graphene/PtSe2 van der Waals heterojunction. RSC Advances 2017, 7 (72), 45393-45399.
    108. Misseeuw, L.; Krajewska, A.; Pasternak, I.; Ciuk, T.; Strupinski, W.; Reekmans, G.; Adriaensens, P.; Geldof, D.; Blockhuys, F.; Van Vlierberghe, S.; Thienpont, H.; Dubruel, P.; Vermeulen, N., Optical-quality controllable wet-chemical doping of graphene through a uniform, transparent and low-roughness F4-TCNQ/MEK layer. RSC Advances 2016, 6 (106), 104491-104501.
    109. Sreeprasad, T. S.; Berry, V., How Do the Electrical Properties of Graphene Change with its Functionalization? Small 2013, 9 (3), 341-350.
    110. Umrao, S.; Gupta, T. K.; Kumar, S.; Singh, V. K.; Sultania, M. K.; Jung, J. H.; Oh, I.-K.; Srivastava, A., Microwave-Assisted Synthesis of Boron and Nitrogen co-doped Reduced Graphene Oxide for the Protection of Electromagnetic Radiation in Ku-Band. ACS Applied Materials & Interfaces 2015, 7 (35), 19831-19842.
    111. Li, X.-F.; Lian, K.-Y.; Liu, L.; Wu, Y.; Qiu, Q.; Jiang, J.; Deng, M.; Luo, Y., Unraveling the formation mechanism of graphitic nitrogen-doping in thermally treated graphene with ammonia. Scientific Reports 2016, 6, 23495.
    112. Pullamsetty, A.; Sundara, R., Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium. Journal of Colloid and Interface Science 2016, 479, 260-270.
    113. Liu, A.; Li, W.; Jin, H.; Yu, X.; Bu, Y.; He, Y.; Huang, H.; Wang, S.; Wang, J., The enhanced electrocatalytic activity of graphene co-doped with chlorine and fluorine atoms. Electrochimica Acta 2015, 177, 36-42.
    114. Lu, H.; Guo, Y.; Robertson, J., Charge transfer doping of graphene without degrading carrier mobility. Journal of Applied Physics 2017, 121 (22), 224304.
    115. Hu, T.; Gerber, I. C., Theoretical Study of the Interaction of Electron Donor and Acceptor Molecules with Graphene. The Journal of Physical Chemistry C 2013, 117 (5), 2411-2420.
    116. Lv, R.; Terrones, M., Towards new graphene materials: Doped graphene sheets and nanoribbons. Materials Letters 2012, 78 (Supplement C), 209-218.
    117. Mali, K. S.; Greenwood, J.; Adisoejoso, J.; Phillipson, R.; De Feyter, S., Nanostructuring graphene for controlled and reproducible functionalization. Nanoscale 2015, 7 (5), 1566-1585.
    118. Sk, M. A.; Ananthanarayanan, A.; Huang, L.; Lim, K. H.; Chen, P., Revealing the tunable photoluminescence properties of graphene quantum dots. Journal of Materials Chemistry C 2014, 2 (34), 6954-6960.
    119. Koole, R.; Groeneveld, E.; Vanmaekelbergh, D.; Meijerink, A.; de Mello Donegá, C., Size Effects on Semiconductor Nanoparticles. In Nanoparticles: Workhorses of Nanoscience, de Mello Donegá, C., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2014; pp 13-51.
    120. dispay, S., Quantum Dot Physics: A Guide to Understanding QD Displays. https://pid.samsungdisplay.com: 2017
    121. Kim, S.; Seo, J. K.; Park, J. H.; Song, Y.; Meng, Y. S.; Heller, M. J., White-light emission of blue-luminescent graphene quantum dots by europium (III) complex incorporation. Carbon 2017, 124 (Supplement C), 479-485.
    122. Güçlü, A. D.; Potasz, P.; Hawrylak, P., Excitonic absorption in gate-controlled graphene quantum dots. Physical Review B 2010, 82 (15), 155445.
    123. Zhu, S.; Song, Y.; Wang, J.; Wan, H.; Zhang, Y.; Ning, Y.; Yang, B., Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today 2017, 13, 10-14.
    124. Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C., Graphene photonics and optoelectronics. Nature Photonics 2010, 4, 611.
    125. Jin, S. H.; Kim, D. H.; Jun, G. H.; Hong, S. H.; Jeon, S., Tuning the Photoluminescence of Graphene Quantum Dots through the Charge Transfer Effect of Functional Groups. ACS Nano 2013, 7 (2), 1239-1245.
    126. Gao, T.; Wang, X.; Yang, L.-Y.; He, H.; Ba, X.-X.; Zhao, J.; Jiang, F.-L.; Liu, Y., Red, Yellow, and Blue Luminescence by Graphene Quantum Dots: Syntheses, Mechanism, and Cellular Imaging. ACS Applied Materials & Interfaces 2017, 9 (29), 24846-24856.
    127. Gu, J.; Hu, M. J.; Guo, Q. Q.; Ding, Z. F.; Sun, X. L.; Yang, J., High-yield synthesis of graphene quantum dots with strong green photoluminescence. RSC Advances 2014, 4 (91), 50141-50144.
    128. Tang, L.; Ji, R.; Li, X.; Teng, K. S.; Lau, S. P., Energy-level structure of nitrogen-doped graphene quantum dots. Journal of Materials Chemistry C 2013, 1 (32), 4908-4915.
    129. Bayat, A.; Saievar-Iranizad, E., Synthesis of green-photoluminescent single layer graphene quantum dots: Determination of HOMO and LUMO energy states. Journal of Luminescence 2017, 192, 180-183.
    130. Akhavan, O., Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system. Journal of Materials Chemistry B 2016, 4 (19), 3169-3190.
    131. Hadish, F.; Jou, S.; Huang, B. R.; Kuo, H. A.; Tu, C. W., Functionalization of CVD Grown Graphene with Downstream Oxygen Plasma Treatment for Glucose Sensors. Journal of the Electrochemical Society 2017, 164 (7), B336-B341.
    132. Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y., Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis 2010, 22 (10), 1027-1036.
    133. Liang, B.; Fang, L.; Yang, G.; Hu, Y.; Guo, X.; Ye, X., Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene. Biosensors and Bioelectronics 2013, 43, 131-136.
    134. Mani, V.; Devadas, B.; Chen, S.-M., Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosensors and Bioelectronics 2013, 41 (Supplement C), 309-315.
    135. Vilian, A. T. E.; Chen, S.-M.; Ali, M. A.; Al-Hemaid, F. M. A., Direct electrochemistry of glucose oxidase immobilized on ZrO2 nanoparticles-decorated reduced graphene oxide sheets for a glucose biosensor. RSC Advances 2014, 4 (57), 30358-30367.
    136. Liu, Y.; Zhang, X.; He, D.; Ma, F.; Fu, Q.; Hu, Y., An amperometric glucose biosensor based on a MnO2/graphene composite modified electrode. RSC Advances 2016, 6 (22), 18654-18661.
    137. Teymourian, H.; Salimi, A.; Firoozi, S., A High Performance Electrochemical Biosensing Platform for Glucose Detection and IgE Aptasensing Based on Fe3O4/Reduced Graphene Oxide Nanocomposite. Electroanalysis 2014, 26 (1), 129-138.
    138. Derya Bal, A.; Yudum, T.; Ulku, A., Graphene-metallic nanocomposites as modifiers in electrochemical glucose biosensor transducers. 2D Materials 2016, 3 (3), 034001.
    139. Yang, M. H.; Choi, B. G.; Park, H.; Hong, W. H.; Lee, S. Y.; Park, T. J., Development of a Glucose Biosensor Using Advanced Electrode Modified by Nanohybrid Composing Chemically Modified Graphene and Ionic Liquid. Electroanalysis 2010, 22 (11), 1223-1228.
    140. Zhao, Y.; Li, W.; Pan, L.; Zhai, D.; Wang, Y.; Li, L.; Cheng, W.; Yin, W.; Wang, X.; Xu, J.-B.; Shi, Y., ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor. Scientific Reports 2016, 6, 32327.
    141. Rafighi, P.; Tavahodi, M.; Haghighi, B., Fabrication of a third-generation glucose biosensor using graphene-polyethyleneimine-gold nanoparticles hybrid. Sensors and Actuators B: Chemical 2016, 232, 454-461.
    142. Manoj, D.; Theyagarajan, K.; Saravanakumar, D.; Senthilkumar, S.; Thenmozhi, K., Aldehyde functionalized ionic liquid on electrochemically reduced graphene oxide as a versatile platform for covalent immobilization of biomolecules and biosensing. Biosensors and Bioelectronics 2018, 103, 104-112.
    143. Ho Yang, M.; Choi, B. G.; Park, H.; Park, T. J.; Hong, W. H.; Lee , S. Y., Directed Self-Assembly of Gold Nanoparticles on Graphene-Ionic Liquid Hybrid for Enhancing Electrocatalytic Activity. Electroanalysis 2011, 23 (4), 850-857.
    144. Razmi, H.; Mohammad-Rezaei, R., Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: Application to sensitive glucose determination. Biosensors and Bioelectronics 2013, 41, 498-504.
    145. Hadish, F.; Jou, S.; Huang, B.-R.; Kuo, H.-A.; Tu, C.-W., Functionalization of CVD Grown Graphene with Downstream Oxygen Plasma Treatment for Glucose Sensors. Journal of The Electrochemical Society 2017, 164 (7), B336-B341.
    146. Wonbong Choi, J.-W. L., Graphene Synthesis and Application. 2012, 235.
    147. Brownson, D. A. C.; Banks, C. E., CVD graphene electrochemistry: the role of graphitic islands. Physical Chemistry Chemical Physics 2011, 13 (35), 15825-15828.
    148. Surudžić, R.; Janković, A.; Mitrić, M.; Matić, I.; Juranić, Z. D.; Živković, L.; Mišković-Stanković, V.; Rhee, K. Y.; Park, S. J.; Hui, D., The effect of graphene loading on mechanical, thermal and biological properties of poly(vinyl alcohol)/graphene nanocomposites. Journal of Industrial and Engineering Chemistry 2016, 34, 250-257.
    149. Rahman, M. M.; Ahammad, A. J.; Jin, J. H.; Ahn, S. J.; Lee, J. J., A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors (Basel, Switzerland) 2010, 10 (5), 4855-86.
    150. Chen, C.; Xie, Q.; Yang, D.; Xiao, H.; Fu, Y.; Tan, Y.; Yao, S., Recent advances in electrochemical glucose biosensors: a review. RSC Advances 2013, 3 (14), 4473-4491.
    151. Lv, Y.; Jin, S.; Wang, Y.; Lun, Z.; Xia, C., Recent advances in the application of nanomaterials in enzymatic glucose sensors. Journal of the Iranian Chemical Society 2016, 13 (10), 1767-1776.
    152. Zhu, Z.; Garcia-Gancedo, L.; Flewitt, A. J.; Xie, H.; Moussy, F.; Milne, W. I., A Critical Review of Glucose Biosensors Based on Carbon Nanomaterials: Carbon Nanotubes and Graphene. Sensors 2012, 12 (5), 5996.
    153. Patolsky, F.; Weizmann, Y.; Willner, I., Long-range electrical contacting of redox enzymes by SWCNT connectors. Angewandte Chemie (International ed. in English) 2004, 43 (16), 2113-7.
    154. Bollella, P.; Gorton, L.; Ludwig, R.; Antiochia, R., A Third Generation Glucose Biosensor Based on Cellobiose Dehydrogenase Immobilized on a Glassy Carbon Electrode Decorated with Electrodeposited Gold Nanoparticles: Characterization and Application in Human Saliva. Sensors 2017, 17 (8), 1912.
    155. Lakowicz, J. R., Principles of Fluorescence Spectroscopy. Springer US: 2011.
    156. Cheng, P. P. H.; Silvester, D.; Wang, G.; Kalyuzhny, G.; Douglas, A.; Murray, R. W., Dynamic and Static Quenching of Fluorescence by 1−4 nm Diameter Gold Monolayer-Protected Clusters. The Journal of Physical Chemistry B 2006, 110 (10), 4637-4644.
    157. Wang, G.-L.; Hu, X.-L.; Wu, X.-M.; Li, Z.-J., Quantum dots-based glucose sensing through fluorescence quenching by bienzyme-catalyzed chromogenic substrate oxidation. Sensors and Actuators B: Chemical 2014, 205 (Supplement C), 61-66.
    158. Shehab, M.; Ebrahim, S.; Soliman, M., Graphene quantum dots prepared from glucose as optical sensor for glucose. Journal of Luminescence 2017, 184 (Supplement C), 110-116.
    159. Durán, G. M.; Benavidez, T. E.; Ríos, Á.; García, C. D., Quantum Dot-Modified Paper-Based Assay for Glucose Screening. Mikrochimica acta 2016, 183 (2), 611-616.
    160. Sarangi, S. N.; Nozaki, S.; Sahu, S. N., ZnO Nanorod-Based Non-Enzymatic Optical Glucose Biosensor. Journal of Biomedical Nanotechnology 2015, 11 (6), 988-996.
    161. Dresselhaus, M. S.; Jorio, A.; R.Saito, Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy. Annual Review of Condensed Matter Physics 2010, 1 (1), 89-108.
    162. Peng, H.; Sun, M.; Zhang, D.; Yang, D.; Chen, H.; Cheng, R.; Zhang, J.; Wang, Y.; Yuan, W.; Wang, T.; Zhao, Y., Raman spectroscopy of graphene irradiated with highly charged ions. Surface and Coatings Technology 2016, 306 (Part A), 171-175.
    163. Nanda, S. S.; Kim, M. J.; Yeom, K. S.; An, S. S. A.; Ju, H.; Yi, D. K., Raman spectrum of graphene with its versatile future perspectives. TrAC Trends in Analytical Chemistry 2016, 80 (Supplement C), 125-131.
    164. Basov, D. N.; Fogler, M. M.; Lanzara, A.; Wang, F.; Zhang, Y., Colloquium. Reviews of Modern Physics 2014, 86 (3), 959-994.
    165. Jorio, A.; Cançado, L. G., Raman spectroscopy of twisted bilayer graphene. Solid State Communications 2013, 175-176 (Supplement C), 3-12.
    166. Gouadec, G.; Colomban, P., Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Progress in Crystal Growth and Characterization of Materials 2007, 53 (1), 1-56.
    167. Merlen, A.; Buijnsters, J.; Pardanaud, C., A Guide to and Review of the Use of Multiwavelength Raman Spectroscopy for Characterizing Defective Aromatic Carbon Solids: from Graphene to Amorphous Carbons. Coatings 2017, 7 (10), 153.
    168. Jorio, A.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S., The G-band and Time-Independent Perturbations. In Raman Spectroscopy in Graphene Related Systems, Wiley-VCH Verlag GmbH & Co. KGaA: 2011; pp 159-177.
    169. Jorio, A.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S., Dispersive G′-Band and Higher-Order Processes: The Double Resonance Process. In Raman Spectroscopy in Graphene Related Systems, Wiley-VCH Verlag GmbH & Co. KGaA: 2011; pp 277-298.
    170. Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S., Raman spectroscopy in graphene. Physics Reports 2009, 473 (5), 51-87.
    171. Cong, C.; Yu, T.; Sato, K.; Shang, J.; Saito, R.; Dresselhaus, G. F.; Dresselhaus, M. S., Raman characterization of ABA- and ABC-stacked trilayer graphene. ACS Nano 2011, 5 (11), 8760-8.
    172. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K., Raman spectrum of graphene and graphene layers. Physical review letters 2006, 97 (18), 187401.
    173. Gupta, A. K.; Russin, T. J.; Gutierrez, H. R.; Eklund, P. C., Probing graphene edges via Raman scattering. ACS Nano 2009, 3 (1), 45-52.
    174. Raicopol, M.; Vlsceanu, I.; Lupulescu, I.; Brezoiu, A. M.; Pilan, L., Amperometric glucose biosensors based on functionalized electrochemically reduced graphene oxide. 2016; Vol. 78, p 131-142.
    175. Krishnamoorthy, K.; Veerapandian, M.; Yun, K.; Kim, S. J., The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 2013, 53, 38-49.
    176. McEvoy, N.; Nolan, H.; Nanjundan, A. K.; Hallam, T.; Duesberg, G., Functionalization of graphene surfaces with downstream plasma treatments. 2013; Vol. 54, p 283-290.
    177. Kang, J.; Hwang, S.; Kim, J. H.; Kim, M. H.; Ryu, J.; Seo, S. J.; Hong, B. H.; Kim, M. K.; Choi, J.-B., Efficient Transfer of Large-Area Graphene Films onto Rigid Substrates by Hot Pressing. ACS Nano 2012, 6 (6), 5360-5365.
    178. Yoon, J.-C.; Thiyagarajan, P.; Ahn, H.-J.; Jang, J.-H., A case study: effect of defects in CVD-grown graphene on graphene enhanced Raman spectroscopy. RSC Advances 2015, 5 (77), 62772-62777.
    179. Hwa, K.; Subramani, B., Immobilization of Glucose Oxidase on Gold Surface for Applications in Implantable Biosensors. 2015; Vol. 4, p 297-301.
    180. Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R., Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics 2007, 9 (11), 1276-1290.
    181. Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C., Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Letters 2012, 12 (8), 3925-3930.
    182. Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C., Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Letters 2011, 11 (8), 3190-3196.
    183. Huang, C.-H.; Su, C.-Y.; Lai, C.-S.; Li, Y.-C.; Samukawa, S., Ultra-low-damage radical treatment for the highly controllable oxidation of large-scale graphene sheets. 2014; Vol. 73, p 244–251.
    184. Guo, M.; Diao, D.; Yang, L.; Fan, X., Restructured graphene sheets embedded carbon film by oxygen plasma etching and its tribological properties. Applied Surface Science 2015, 357 (Part A), 771-776.
    185. Valota, A. T.; Kinloch, I. A.; Novoselov, K. S.; Casiraghi, C.; Eckmann, A.; Hill, E. W.; Dryfe, R. A. W., Electrochemical Behavior of Monolayer and Bilayer Graphene. ACS Nano 2011, 5 (11), 8809-8815.
    186. Guo, H.-L.; Wang, X.-F.; Qian, Q.-Y.; Wang, F.-B.; Xia, X.-H., A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano 2009, 3 (9), 2653-2659.
    187. Radoi, A.; Compagnone, D.; Devic, E.; Palleschi, G., Low potential detection of NADH with Prussian Blue bulk modified screen-printed electrodes and recombinant NADH oxidase from Thermus thermophilus. Sensors and Actuators B: Chemical 2007, 121 (2), 501-506.
    188. Loock, H.-P.; Wentzell, P. D., Detection limits of chemical sensors: Applications and misapplications. Sensors and Actuators B: Chemical 2012, 173 (Supplement C), 157-163.
    189. Ali, I.; Omanovic, S., Thermodynamics and kinetics of NAD+ adsorption on a glassy carbon electrode. Journal of Solid State Electrochemistry 2014, 18 (3), 833-842.
    190. Wei, H.; Omanovic, S., Interaction of flavin adenine dinucleotide (FAD) with a glassy carbon electrode surface. Chemistry & biodiversity 2008, 5 (8), 1622-39.
    191. Bharathi, G.; Nataraj, D.; Premkumar, S.; Sowmiya, M.; Senthilkumar, K.; Thangadurai, T. D.; Khyzhun, O. Y.; Gupta, M.; Phase, D.; Patra, N.; Jha, S. N.; Bhattacharyya, D., Graphene Quantum Dot Solid Sheets: Strong blue-light-emitting & photocurrent-producing band-gap-opened nanostructures. Scientific Reports 2017, 7 (1), 10850.
    192. Son, D. I.; Kwon, B. W.; Park, D. H.; Seo, W.-S.; Yi, Y.; Angadi, B.; Lee, C.-L.; Choi, W. K., Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nature Nanotechnology 2012, 7, 465.
    193. Cheng, H.; Zhao, Y.; Fan, Y.; Xie, X.; Qu, L.; Shi, G., Graphene-Quantum-Dot Assembled Nanotubes: A New Platform for Efficient Raman Enhancement. ACS Nano 2012, 6 (3), 2237-2244.
    194. Zhuo, S.; Shao, M.; Lee, S.-T., Upconversion and Downconversion Fluorescent Graphene Quantum Dots: Ultrasonic Preparation and Photocatalysis. ACS Nano 2012, 6 (2), 1059-1064.
    195. Kuo, N.-J.; Chen, Y.-S.; Wu, C.-W.; Huang, C.-Y.; Chan, Y.-H.; Chen, I. W. P., One-Pot Synthesis of Hydrophilic and Hydrophobic N-Doped Graphene Quantum Dots via Exfoliating and Disintegrating Graphite Flakes. Scientific Reports 2016, 6, 30426.
    196. Roy, P.; Periasamy, A. P.; Lin, C.-Y.; Her, G.-M.; Chiu, W.-J.; Li, C.-L.; Shu, C.-L.; Huang, C.-C.; Liang, C.-T.; Chang, H.-T., Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells. Nanoscale 2015, 7 (6), 2504-2510.
    197. Ma, M.; Hu, X.; Zhang, C.; Deng, C.; Wang, X., The optimum parameters to synthesize bright and stable graphene quantum dots by hydrothermal method. Journal of Materials Science: Materials in Electronics 2017, 28 (9), 6493-6497.
    198. Chen, H.; Li, W.; Wang, Q.; Jin, X.; Nie, Z.; Yao, S., Nitrogen doped graphene quantum dots based single-luminophor generated dual-potential electrochemiluminescence system for ratiometric sensing of Co2+ ion. Electrochimica Acta 2016, 214, 94-102.
    199. Shen, P.; Xia, Y., Synthesis-Modification Integration: One-Step Fabrication of Boronic Acid Functionalized Carbon Dots for Fluorescent Blood Sugar Sensing. Analytical Chemistry 2014, 86 (11), 5323-5329.
    200. Zhang, L.; Zhang, Z.-Y.; Liang, R.-P.; Li, Y.-H.; Qiu, J.-D., Boron-Doped Graphene Quantum Dots for Selective Glucose Sensing Based on the “Abnormal” Aggregation-Induced Photoluminescence Enhancement. Analytical Chemistry 2014, 86 (9), 4423-4430.
    201. Li, M.; Yu, C.; Hu, C.; Yang, W.; Zhao, C.; Wang, S.; Zhang, M.; Zhao, J.; Wang, X.; Qiu, J., Solvothermal conversion of coal into nitrogen-doped carbon dots with singlet oxygen generation and high quantum yield. Chemical Engineering Journal 2017, 320, 570-575.
    202. Wang, Y.; Zhang, L.; Liang, R.-P.; Bai, J.-M.; Qiu, J.-D., Using Graphene Quantum Dots as Photoluminescent Probes for Protein Kinase Sensing. Analytical Chemistry 2013, 85 (19), 9148-9155.
    203. Shi, F.; Zhang, Y.; Na, W.; Zhang, X.; Li, Y.; Su, X., Graphene quantum dots as selective fluorescence sensor for the detection of ascorbic acid and acid phosphatase via Cr(vi)/Cr(iii)-modulated redox reaction. Journal of Materials Chemistry B 2016, 4 (19), 3278-3285.
    204. Gokoglan, T. C.; Soylemez, S.; Kesik, M.; Toksabay, S.; Toppare, L., Selenium containing conducting polymer based pyranose oxidase biosensor for glucose detection. Food Chemistry 2015, 172, 219-224.
    205. Wang, L.; Li, W.; Wu, B.; Li, Z.; Wang, S.; Liu, Y.; Pan, D.; Wu, M., Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing. Chemical Engineering Journal 2016, 300, 75-82.
    206. Ribeiro, J. P.; Vicente, E. D.; Gomes, A. P.; Nunes, M. I.; Alves, C.; Tarelho, L. A. C., Effect of industrial and domestic ash from biomass combustion, and spent coffee grounds, on soil fertility and plant growth: experiments at field conditions. Environmental Science and Pollution Research 2017, 24 (18), 15270-15277.
    207. Cho, D.-W.; Kwon, E. E.; Kwon, G.; Zhang, S.; Lee, S.-R.; Song, H., Co-pyrolysis of paper mill sludge and spend coffee ground using CO2 as reaction medium. Journal of CO2 Utilization 2017, 21, 572-579.
    208. Arulrajah, A.; Kua, T.-A.; Suksiripattanapong, C.; Horpibulsuk, S.; Shen, J. S., Compressive strength and microstructural properties of spent coffee grounds-bagasse ash based geopolymers with slag supplements. Journal of Cleaner Production 2017, 162, 1491-1501.
    209. Poonam, S.; Shantanu, B., Polyaniline silver nanoparticle coffee waste extracted porous graphene oxide nanocomposite structures as novel electrode material for rechargeable batteries. Materials Research Express 2017, 4 (3), 035501.
    210. Tadesse, A.; RamaDevi, D.; Hagos, M.; Battu, G.; Basavaiah, K., Synthesis of nitrogen doped carbon quantum dots/magnetite nanocomposites for efficient removal of methyl blue dye pollutant from contaminated water. RSC Advances 2018, 8 (16), 8528-8536.
    211. Arumugam, N.; Kim, J., Synthesis of carbon quantum dots from Broccoli and their ability to detect silver ions. Materials Letters 2018, 219, 37-40.
    212. Chalmers, J. M.; Griffiths, P. R., Handbook of Vibrational Spectroscopy. Wiley: 2002.
    213. Ballesteros, L. F.; Teixeira, J. A.; Mussatto, S. I., Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food and Bioprocess Technology 2014, 7 (12), 3493-3503.
    214. Yang, H. N.; Kim, W. J., Effect of boron-doping levels in Pt-B-graphene on the electrochemical properties and cell performance of high temperature proton exchange membrane fuel cells. Electrochimica Acta 2016, 209, 430-439.
    215. Liu, S.-H.; Huang, Y.-Y., Valorization of coffee grounds to biochar-derived adsorbents for CO2 adsorption. Journal of Cleaner Production 2018, 175, 354-360.
    216. Ke, C. C.; Yang, Y. C.; Tseng, W. L., Synthesis of Blue‐, Green‐, Yellow‐, and Red‐Emitting Graphene‐Quantum‐Dot‐Based Nanomaterials with Excitation‐Independent Emission. Particle & Particle Systems Characterization 2016, 33 (3), 132-139.
    217. Vacanti, J.; Vacanti, C. A., Chapter One - The History and Scope of Tissue Engineering. In Principles of Tissue Engineering (Third Edition), Academic Press: Burlington, 2007; pp 3-6.
    218. Diba, M.; Kharaziha, M.; Fathi, M. H.; Gholipourmalekabadi, M.; Samadikuchaksaraei, A., Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue regeneration. Composites Science and Technology 2012, 72 (6), 716-723.
    219. Zou, Y.; Qazvini, N. T.; Zane, K.; Sadati, M.; Wei, Q.; Liao, J.; Fan, J.; Song, D.; Liu, J.; Ma, C.; Qu, X.; Chen, L.; Yu, X.; Zhang, Z.; Zhao, C.; Zeng, Z.; Zhang, R.; Yan, S.; Wu, T.; Wu, X.; Shu, Y.; Li, Y.; Zhang, W.; Reid, R. R.; Lee, M. J.; Wolf, J. M.; Tirrell, M.; He, T.-C.; de Pablo, J. J.; Deng, Z.-L., Gelatin-Derived Graphene–Silicate Hybrid Materials Are Biocompatible and Synergistically Promote BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells. ACS Applied Materials & Interfaces 2017, 9 (19), 15922-15932.
    220. Wu, F.; Wei, J.; Liu, C.; O’Neill, B.; Ngothai, Y., Fabrication and properties of porous scaffold of zein/PCL biocomposite for bone tissue engineering. Composites Part B: Engineering 2012, 43 (5), 2192-2197.
    221. Cho, Y. S.; Kim, B.-S.; You, H.-K.; Cho, Y.-S., A novel technique for scaffold fabrication: SLUP (salt leaching using powder). Current Applied Physics 2014, 14 (3), 371-377.
    222. Murphy, M. B.; Mikos, A. G., Chapter Twenty-Two - Polymer Scaffold Fabrication A2 - Lanza, Robert. In Principles of Tissue Engineering (Third Edition), Langer, R.; Vacanti, J., Eds. Academic Press: Burlington, 2007; pp 309-321.
    223. Johari, N.; Fathi, M. H.; Golozar, M. A., Fabrication, characterization and evaluation of the mechanical properties of poly (ε-caprolactone)/nano-fluoridated hydroxyapatite scaffold for bone tissue engineering. Composites Part B: Engineering 2012, 43 (3), 1671-1675.
    224. Scaffaro, R.; Lopresti, F.; Maio, A.; Sutera, F.; Botta, L., Development of polymeric functionally graded scaffolds: a brief review. Journal of Applied Biomaterials & Functional Materials 2017, 15 (2), E107-E121.
    225. Woodruff, M. A.; Hutmacher, D. W., The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science 2010, 35 (10), 1217-1256.
    226. Armentano, I.; Dottori, M.; Fortunati, E.; Mattioli, S.; Kenny, J. M., Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polymer Degradation and Stability 2010, 95 (11), 2126-2146.
    227. Liu, T.; Koranteng, E.; Wu, Z.; Xiao, W.; Wu, Q., Structure and properties of a compatible starch-PCL composite using p-phthaloyl chloride-based prepolymer. Journal of Applied Polymer Science 2017, 134 (41), 45400-n/a.
    228. Bressan, E.; Ferroni, L.; Gardin, C.; Sbricoli, L.; Gobbato, L.; Ludovichetti, F. S.; Tocco, I.; Carraro, A.; Piattelli, A.; Zavan, B., Graphene based scaffolds effects on stem cells commitment. Journal of Translational Medicine 2014, 12, 296.
    229. Lalwani, G.; D'Agati, M.; Gopalan, A.; Rao, M.; Schneller, J.; Sitharaman, B., Three-dimensional macroporous graphene scaffolds for tissue engineering. Journal of biomedical materials research. Part A 2017, 105 (1), 73-83.
    230. Yang, K.; Hu, L.; Ma, X.; Ye, S.; Cheng, L.; Shi, X.; Li, C.; Li, Y.; Liu, Z., Multimodal Imaging Guided Photothermal Therapy using Functionalized Graphene Nanosheets Anchored with Magnetic Nanoparticles. Advanced Materials 2012, 24 (14), 1868-1872.
    231. Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S. T.; Liu, Z., Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 2010, 10 (9), 3318-23.
    232. Zhou, K.; Motamed, S.; Thouas, G. A.; Bernard, C. C.; Li, D.; Parkington, H. C.; Coleman, H. A.; Finkelstein, D. I.; Forsythe, J. S., Graphene Functionalized Scaffolds Reduce the Inflammatory Response and Supports Endogenous Neuroblast Migration when Implanted in the Adult Brain. Plos One 2016, 11 (3).
    233. Lee, W. C.; Lim, C. H. Y. X.; Shi, H.; Tang, L. A. L.; Wang, Y.; Lim, C. T.; Loh, K. P., Origin of Enhanced Stem Cell Growth and Differentiation on Graphene and Graphene Oxide. ACS Nano 2011, 5 (9), 7334-7341.
    234. Yang, J.; Shi, G.; Bei, J.; Wang, S.; Cao, Y.; Shang, Q.; Yang, G.; Wang, W., Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. Journal of biomedical materials research 2002, 62 (3), 438-46.
    235. Wan, Y.; Wu, H.; Cao, X.; Dalai, S., Compressive mechanical properties and biodegradability of porous poly(caprolactone)/chitosan scaffolds. Polymer Degradation and Stability 2008, 93 (10), 1736-1741.
    236. Wang, Y.; Liu, L.; Guo, S., Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro. Polymer Degradation and Stability 2010, 95 (2), 207-213.
    237. Guarino, V.; Lewandowska, M.; Bil, M.; Polak, B.; Ambrosio, L., Morphology and degradation properties of PCL/HYAFF11® composite scaffolds with multi-scale degradation rate. Composites Science and Technology 2010, 70 (13), 1826-1837.
    238. Elzein, T.; Nasser-Eddine, M.; Delaite, C.; Bistac, S.; Dumas, P., FTIR study of polycaprolactone chain organization at interfaces. J Colloid Interface Sci 2004, 273 (2), 381-7.
    239. Martínez-Abad, A.; Sánchez, G.; Fuster, V.; Lagaron, J. M.; Ocio, M. J., Antibacterial performance of solvent cast polycaprolactone (PCL) films containing essential oils. Food Control 2013, 34 (1), 214-220.
    240. Cristescu, R.; Doraiswamy, A.; Socol, G.; Grigorescu, S.; Axente, E.; Mihaiescu, D.; Moldovan, A.; Narayan, R. J.; Stamatin, I.; Mihailescu, I. N.; Chisholm, B. J.; Chrisey, D. B., Polycaprolactone biopolymer thin films obtained by matrix assisted pulsed laser evaporation. Applied Surface Science 2007, 253 (15), 6476-6479.
    241. Suganya, S.; Senthil Ram, T.; Lakshmi, B. S.; Giridev, V. R., Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: An excellent matrix for wound dressings. Journal of Applied Polymer Science 2011, 121 (5), 2893-2899.
    242. Naebe, M.; Wang, J.; Amini, A.; Khayyam, H.; Hameed, N.; Li, L. H.; Chen, Y.; Fox, B., Mechanical Property and Structure of Covalent Functionalised Graphene/Epoxy Nanocomposites. Scientific Reports 2014, 4, 4375.

    QR CODE