簡易檢索 / 詳目顯示

研究生: 王彥翔
Yen-hsiang Wang
論文名稱: 聚己內酯混和石墨烯製備生醫支架性質及生物相容性分析
Analysis on properties and biocompatibility of PCL/graphene biomedical scaffold
指導教授: 陳明志
Ming-jyh Chern
口試委員: 周賢鎧
Shyan-kay Jou
沈永康
Yung-kang Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 50
中文關鍵詞: 石墨烯生醫支架溶液澆鑄/粒子析出法細胞培養生物相容性
外文關鍵詞: Graphene, Biomedical scaffolds, Solution casting/particulate leaching method, Cell culture, Biocompatibility
相關次數: 點閱:286下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯由於其優良的導熱、導電及機械性質,受到極大的關注,目前此種材料在電子及材料領域已有相關應用,近年來在生醫領域的研究多直接將石墨烯用於細胞培養等體外生物實驗,而目前僅有少數石墨烯複合材料相關研究。三維多孔性可降解生醫支架廣泛應用於骨組織工程的修復與再生,此支架的主要功能為提供可讓細胞附著、增生的結構及暫時支撐骨頭受損部位,然而以高分子為基材之支架其有機械強度不佳、疏水性質…等缺點。本論文選用生醫高分子材料聚己內酯(Poly-ε-caprolactone, PCL)為基材,添加石墨烯(Graphene)粉末,以氯化鈉(Sodium Chloride, NaCl)為致孔劑,經由溶液澆鑄/粒子析出法製備生醫多孔性支架。
    本論文將不同比例之石墨烯(Graphene)粉末混入生醫高分子材料(PCL),針對製備之支架探討其表面形貌、機械強度(壓縮試驗)及物理特性(親疏水性測試、孔隙率),並以降解實驗測試支架之重量損失及pH值變化。生物相容性研究部分,將類骨母細胞(MG63)培養於支架上,並且進行細胞存活率分析(MTT assay)及鹼性磷酸酶檢測(ALP assay)。


    Graphene has attracted many attentions because of its excellent thermal, electrical and mechanical properties. Graphene-based materials have been applied in electrical and material fields. In recent years, graphene was directly used in cell culture in a number of studies. Researches on graphene composites are in the minority. Three -dimensional porous biodegradable polymer scaffolds have been widely used for tissue engineering of bone repair or regeneration. The primary function of scaffolds is to provide structure support for the cells adhesion and proliferation. However, scaffolds based on polymer material have some drawbacks such as poor mechanical property, hydrophobicity, and so on. In this study, porous scaffolds were fabricated using Poly-ε-caprolactone (PCL) and graphene platelets by the solution casting/particulate leaching method.
    Graphene platelets were blended with PCL in this study. Mechanical properties, physical properties (porosity, contact angle) of fabricated scaffolds were investigated first. Subsequently, the weight loss and pH values variation of PCL/graphene scaffolds were also obtained by degradation test. Biocompatibilities of PCL/graphene were observed by seeding osteoblast-like cells (MG-63) in PCL/graphene scaffolds. Investigations of biocompatibility were undertaken by 3-[4,5-dimethylthiahiazo-2-y1] -2,4-diphenytetrazolium bromide (MTT) assay and alkaline phosphatase (ALP) assay.

    Chinese abstract Abstract Acknowledgements Contents Nomenclature List of Tables List of Figures 1 INTRODUCTION 1.1 Motivation 1.2 Literature review 2 EXPERIMENTAL METHODS 2.1 Preparation of scaffolds 2.2 Characterization of scaffolds 2.3 Degradation test 2.4 Cell culture 3 RESULTS AND DISCUSSION 3.1 Physical properties of scaffolds 3.2 Degradation test 3.3 Cell culture 4 CONCLUSIONS AND FUTURE WORKS 4.1 Conclusions 4.2 Future works REFERENCES APPENDIX A APPENDIX B

    1. Mikos, A.G., Thorsen, A.J., Czerwonka, L.A., Bao, Y., and Langer, R., “Preparation and characterization of poly(L-lactic acid) foams”, Polymer, Vol. 35, pp. 1068-1077 (1994)
    2. Pamula, E., Bacakova, L., Filova, E., Buczynska, J., Dobrzynski, P., Noskova, L., and Grausova, L., “The influence of pore size on colonization of poly(L-lactide-glycolide) scaffolds with human osteoblast-like MG 63 cells in vitro”, Journal of Materials Science: Materials in Medicine, Vol. 19, pp. 425-435 (2008)
    3. Wu, H., Wan, Y., Cao, X.Y., Dalai, S.Q., Wang, S., Zhang, S.M., “Fabrication of chitosan-g-polycaprolactone copolymer scaffolds with gradient porous microstructures”, Materials Letters, Vol. 62, pp. 2733-2736 (2008)
    4. Fabbri, P., Bondioli, F., Messori, M., Bartoli, C., Dinucci, D., Chiellini, F., “Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering”, Journal of Material Science: Materials in Medicine, Vol. 21, pp. 343-351 (2010)
    5. Fabbri, P., Valentini, L., Hum, J., Detsch, R., and Boccaccini, A.R., “45S5 BioglassR-derived scaffolds coated with organic–inorganic hybrids containing graphene”, Materials Science and Engineering: C, Vol. 33, pp. 3592-3600 (2013)
    6. Chen, Y., Qi, Y., Tai, Z., Yan, X., Zhu, F., and Xue, Q., “Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites”, European Polymer Journal, Vol. 48, pp. 1026-1033 (2012)
    7. Sridhar, V., Lee, I., Chun, H.H., and Park, H., “Graphene reinforced biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) nano-composites”, eXPRESS Polymer Letters, Vol. 7, pp. 320-328 (2013)
    8. Jaworski, S., Sawosz, E., Grodzik, M., Winnicka, A., Prasek, M., Wierzbicki, P., and Chwalibog, A., “In vitro evaluation of the effects of graphene platelets on glioblastoma multiforme cells”, International Journal of Nanomedicine, Vol. 8, pp. 413-420 (2013)
    9. Tang, M., Song, Q., Li, N., Jiang, Z., Huang, R., and Cheng, G., “Enhancement of electrical signaling in neural networks on graphene films”, Biomaterials, Vol. 34, pp. 6402-6411 (2013)
    10. Kandiah, K., Muthusamy, P., Mohan, S., and Venkatachalam, R., “TiO2–graphene nanocomposites for enhanced osteocalcin induction”, Materials Science and Engineering: C, Vol. 38, pp. 252-262 (2014)
    11. Yang, S., Leong, K., and Chua, C., “The design of scaffold for use in tissue engineering part I. traditional factors”, Tissue Engineering, Vol. 7, pp. 1-12 (2001)
    12. Yang, J., Shi, G.X., Bei, J.H., Wang, S.G., Cao, Y.L., Shang, Q.X., Yang, G.H., Wang, W.J., “Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture”, Journal of Biomedical Materials Research, Vol. 62, pp. 438-446 (2002)
    13. Esposito, A.R., Moda, M., Cattani, S.M.M., Santana, G.M., Barbieri, J.A., Munhoz, M.M., Cardoso, T.P., Barbo, M.L.P., Russo, T., D’Amora, U., Gloria, A., Ambrosio, L., and Duek, E.A.R., “PLDLA/PCL-T Scaffold for Meniscus Tissue Engineering”, BioResearch Open Access, Vol. 2, pp. 138-147 (2013)
    14. Patricio, T., Gloria A., and Bartolo P., “Mechanical and Biological Behaviour of PCL and PCL/PLA Scaffolds for Tissue Engineering Applications”, Chemical Engineering Transactions, Vol. 32, pp. 1645-1650 (2013)
    15. Hutmacher, D.W., “Scaffolds in tissue engineering bone and cartilage”, Biomaterials, Vol. 21, pp. 2529-2543 (2000)
    16. Lien, S.M., Ko, L.Y., and Huang, T.J., “Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering”, Acta Biomaterialia, Vol. 5, pp. 670-679 (2009)
    17. Oh, S.H., Park, I.K., Kim, J.M., and Lee, J.H., “In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method”, Biomaterials, Vol. 28, pp. 1664-1671 (2007)
    18. Chen, Y., Qi, Y., Tai, Z., Yan, X., Zhu, F., and Xue, Q., “Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites”, European Polymer Journal, Vol. 48, pp. 1026-1033 (2012)
    19. Fan, H.L., Wang, L.L., Zhao, K.K., Li, N., Shi, Z.J., Ge, Z.G., and Jin, Z.X., “Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites”, Biomacromolecules, Vol. 11, pp. 2345-2351 (2010)
    20. Chern, M.J., Yang, L.Y., Shen, Y.K., and Hung, J.H., “3D Scaffold with PCL Combined Biomedical Ceramic Materials for Bone Tissue Regeneration”, International Journal of Precision Engineering and Manufacturing, Vol. 14, pp. 2201-2207 (2013)

    QR CODE