簡易檢索 / 詳目顯示

研究生: 翁靖雅
Jing-ya Wong
論文名稱: 氮摻雜還原石墨烯氧化物的電化學電容器應用
Applications of nitrogen-doped reduced graphene oxide on electrochemical capacitor
指導教授: 蔡大翔
Dah-shyang Tsai
口試委員: 江志強
Jyh-chiang Jiang
姜嘉瑞
Chia-jui Chiang
葛明德
Ming-der Ger
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 117
中文關鍵詞: 還原石墨烯氧化物氮摻雜電化學電容器室溫離子液體嵌入電位分解電位工作電壓
外文關鍵詞: reduced graphene oxide, nitrogen doped, electrochemical capacitor, room temperature ionic liquid, intercalation window, decomposition window, working potential
相關次數: 點閱:725下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討氮摻雜還原石墨烯氧化物(N-doped rGO)在非對稱性的離子液體[EMI][TFSI]中的電容相關特性。我們採用Staudenmaier法將石墨烯氧化物剝離且還原,發現氮摻雜還原石墨烯氧化物的比表面積高於1100oC下未摻雜還原石墨烯氧化物。因此本論文主要探討由氮摻雜還原石墨烯氧化物組成的電容器其如何在電解質[EMI][TFSI]中使用最大的電位窗口範圍。
    由白金線作為工作電極測量出離子液體[EMI][TFSI]分解電位窗口範圍為:-1.65 +2.6 V (vs. RHE)。另由循環伏安法量測出氮摻雜還原石墨烯氧化物的離子嵌入嵌出下界電位為-1.6 V,上界電位為1.2 V。當我們在電位窗口為2.0 V的電容器做充放電時,其正、負極的電位變化皆在嵌入嵌出電位範圍內,因此其正、負極的比電容值比會符合從電雙層電容範圍中掃循環伏安圖譜所得到的比電容值比。當在沒有適當的重量比例下將工作電壓設成3.8 V時,我們往往會發現負極的電位易觸及-1.65 V而導致電解質的分解,在個別電位下仔細分析得知電容器電位窗口的主要限制在負極,因此在不對稱的電位窗口中,其正、負極重量比例(M+/M-)應該小於一,我們在正、負極重量比例(M+/M-)為0.736下探討電容器的性能。


    This study explores the capacity of nitrogen doped reduced graphene oxide (N-doped rGO) in the asymmetric electrolyte [EMI][TFSI]. We employ the Staudenmaier method to exfoliate and reduce the graphene oxide, and find the sample of N-doped rGO owns a surface area, higher than 1100C undoped rGO. Hence, the capacitor investigation focuses on how to make most of the electrochemical window of [EMI][TFSI] with N-doped rGO.
    The electrochemical window of [EMI][TFSI] is measured between -1.65 and +2.6 V (vs. RHE) with platinum electrodes. Another window rarely mentioned in the literature is the intercalation window, which is -1.6 V the lower window limit and +1.2 V (vs. RHE) the upper window limit for N-doped rGO. If we charge/discharge the capacitor in the working window of 2.0 V, the positive and negative potentials vary within the intercalation window. Consequently, the electrode capacitance ratio of positive and negative electrode is near the ratio measured with cyclic voltammetry, assuming energy storage depends on double layer capacitance entirely. When we impose the 3.8 V working window without considering a proper mass balance, we often found the negative electrode exceeds -1.65 V and decomposes the electrolyte. Careful analysis of the electrode potential variations indicates the main restriction is on the negative potential, therefore, the mass ratio of positive over negative (M+/M-) ought to be less than 1 to use the lopsided potential window sufficiently. The capacitor performance of an M+/M- ratio 0.736 is investigated with details.

    摘要 I ABSTRACT III 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1前言 1 1.2 研究動機 4 第二章 文獻回顧與理論基礎 6 2.1 電化學電容器 6 2.2 石墨烯 8 2.2.1機械剝離法(Mechanical exfoliation) 10 2.2.2磊晶成長法(Epitaxial growth) 11 2.2.3化學氣相沉積法(Chemical Vapor Deposition;CVD) 12 2.2.4氧化石墨烯化學還原法(Reduction from Graphene Oxides) 13 2.3 氮摻雜石墨烯 15 2.4 室溫離子液體電解液(RTILS) 17 2.5 離子液體的應用 23 2.6 離子液體應用於電雙層電容器 24 第三章 實驗方法與步驟 27 3.1 實驗藥品耗材與儀器設備 27 3.1.1 電極材料 27 3.1.2 電極漿料製備 28 3.1.3 電流收集器清洗及準備工作 28 3.1.4 電極組裝 28 3.1.5 藥品耗材 29 3.1.6 電化學量測設備 29 3.2 實驗流程 31 3.2.1電極材料的製備 31 3.2.1.1石墨烯氧化物的製備 31 3.2.1.2還原石墨烯氧化物的製備 33 3.2.1.3氮摻雜還原石墨烯氧化物的製備 34 3.2.2電極漿料的製備 35 3.2.3電極片之製備 36 3.3 電極之特性分析與電容器特性分析 38 3.3.1 X光繞射晶相分析 38 3.3.2 表面結構分析-SEM 38 3.3.3 傅立葉轉換紅外線 38 3.3.4 拉曼光譜 39 3.3.5 比表面積與微孔徑分析 40 3.3.6 電化學性質分析 41 第四章 結果與討論 43 4.1 電極材料鑑定與分析 43 4.1.1電極材料之XRD分析 43 4.1.2電極材料之SEM表面型態與EDS分析 45 4.1.3電極材料之FTIR分析 48 4.1.4電極材料之Raman分析 51 4.1.5電極材料之BET分析 56 4.2 循環伏安法分析 60 4.2.1室溫離子液體之穩定電位窗口 60 4.2.2電極材料循環伏安分析 63 4.2.2.1還原石墨烯氧化物(300 oC)之循環伏安分析 65 4.2.2.2還原石墨烯氧化物(1100 oC)之循環伏安分析 70 4.2.2.3氮摻雜還原石墨烯氧化物(1100 oC-900 oC)之循環伏安分析 75 4.3 循環伏安法在不同電極材料的比電容值 80 4.4對稱式電容器充放電時各別電極之行為 83 4.3.1正負極重量比例大於一時各別電極之行為 90 4.3.2正負極重量比例小於一時各別電極之行為 94 4.5恆電流充、放電分析 103 第五章 結論 110 參考文獻 113

    [1] 胡啟章:電化學原理和方法 五南圖書出版公司出版
    [2] “Battery perform characteristics,” Available at: http://www.mpoweruk.com/performance.htm. Accessed 13 July 2014
    [3] P. Simon, and Y. Gogotsi, “Materials for Electrochemical Capacitors,” Nature materials, vol. 7, pp. 845-854 (2008).
    [4] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-Based Ultracapacitors,” Nano Lett., vol.8, pp. 3498-3502 (2008).
    [5] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett., vol. 8, pp. 902-907 (2008).
    [6] K. Xu, “Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries,” Chemical Reviews, vol. 104, pp. 4303-4417 (2004).
    [7] L. E. Barrosse-Antle, A. M. Bond, R. G. Compton, A. M. O’Mahony, E. I. Rogers, and D. S. Silvester, “Voltammetry in Room Temperature Ionic Liquids : Comparisons and Contrasts with Conventional Electrochemical Solvents,” Focus Reviews, vol. 5, pp. 202-230 (2010).
    [8] M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati, “Ionic-Liquid Materials for the Electrochemical Challenges of the Future,” Nature materials, vol. 8, pp. 621-629 (2009).
    [9] J. R. Miller, and P. Simon, “Materials science: Electrochemical capacitors for energy management,” Science, vol. 321, pp. 651-652(2008).
    [10] M. Winter, and R. J. Brodd, “What are batteries, fuel cells, and supercapacitors?,” Chemical Reviews, vol. 104, pp. 4245-4269(2004).
    [11] P. Sharma, and T. S. Bhatti, “A review on electrochemical double-layer capacitors,” Energy Conversion and Management, vol. 51, pp. 2901-2912 (2010).
    [12] M. S. Halper, and J. C. Ellenbogen “Supercapacitors: A Brief Overview,”(2006).
    [13] A. K. Geim, and K. S. Novoselov “The rise of graphene,” Nature materials, vol. 6, pp. 183-191 (2007).
    [14] H. Kim, A. A. Abdala, and C. W. Macosko, “Graphene/Polymer Nanocomposites,” Macromolecules, vol. 43 pp. 6515-6530 (2010).
    [15] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov “Electric Field Effect in Atomically Thin Carbon Films,” Science, vol. 306, pp. 666-669 (2004).
    [16] J. Hass, W. A. de Heer, and E. H. Conrad, “ The growth and morphology of epitaxial multilayer graphene,” Condensed Matter, vol. 20, pp.323202 (2008).
    [17] X. Li, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science, vol. 324, pp.1312-1314 (2009).
    [18] Y. J. Hu, J. Jin, H. Zhang, P. Wu, and C. X. Tsai, “Graphene: Synthesis, Functionalization and Applications in Chemistry,” Acta Phys. Chim. Sin., vol. 26, pp. 2073-2086 (2009).
    [19] W. S. Hummers, and R. E. Offeman, J. Am. Chem. Soc., 1958, 80(6): 1339.
    [20] B.C. Brodie, Phil. Trans. R. Soc. Lond., 1859, 149: 249.
    [21] L. Staudenmaier, Ber. Dtsch. Chem. Ges., 1898,31(2): 1481
    [22] H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Efficient Reduction of Graphite Oxide by Sodium Borohydrilde and Its Effect on Electrical Conductance,” Adv. Funct. Mater., vol. 12, pp.1987-1992 (2009).
    [23] M. Zhou, Y. L. Wang, Y. M. Zhai, J. F. Zhai, W. Ren, F. Wang, and S. Dong, “Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films,” Chem. A Eur. J., vol. 15, pp.6116-6120 (2009).
    [24] P. Steurer, R. Wissert, R. Thomann, and R. Mulhaupt, “Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide,” Macromol Rapid Commun, vol. 30, pp.316-327 (2009).
    [25] J. M. Michael, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, H. A. Margarita, L. M. David, C. Roberto, K. P. Robert, A. A. Ilhan, “Single sheet Functionalized Graphene by Oxidation amd Thermal,” Chem. Mater., vol. 19, pp. 4396-4404 (2007).
    [26] X. Chen, D. He, S. Mu, “Nitrogen-Doped Graphene,” Pro. In Chem., vol. 25, pp. 1292-1301 (2013).
    [27] C. S. Hannes, J. L. Li, J. M. Michael, S. Hiroaki, H. A. Margarita, H. A. Douglas, K. P. Robert, C. Roberto, A. S. Dudley, and A. A. Ilhan, “Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide,” J. Phys. Chem. B, vol. 110, pp. 8535-8539 (2006).
    [28] O. C. Compton, and S. T. Nguyen, “Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials,” small, vol. 6, pp.711-723 (2010).
    [29] S. Latil, S. Roche, D. Mayou, and J. C. Charlier, “Mesoscopic Transport in Chemically Doped Carbon Nanotubes,” Phys Rev Lett., vol. 92, pp.256805 (2004).
    [30] K. Gong, F. Du, Z. Xia, M. Durstock, and L. Dai, “Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction,” Science Magazine, vol. 323, pp.760-764 (2009).
    [31] X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, and H. Dai, “Simultaneous Nitrogen-Doping and Reduction of Graphene Oxide,” J. Am. Chem. Soc., vol. 131, pp.15939-15944 (2009).
    [32] Chemical engineering(The Taiwan I. Ch. E.)Vol. 58, No.3 JUN. 2011.
    [33] P. T. Anastas, and J. B. Zimmerman, “Design through the 12 principles of green engineering,” Environ. Sci. Technol., 2003, 37, 94A.
    [34] 張娟華, “離子液體嵌入奈米碳管對電化學微電容器的儲能性質影響,” 國立台灣科技大學碩士論文(2013)
    [35] A. Balducci, U. Bardi, S. Caporali, M. Mastragostino, and F. Soavi, “Ionic liquids for hybrid supercapacitors,” Electrochem. Commun., vol. 6, pp. 566-570 (2004).
    [36] E. Frackowiak, G. Lota, and J. Pernak, “Room-temperature phosphonium ionic liquids for supercapacitor application,” Appl. Phys.Lett., vol. 86, pp.1-3 (2005).
    [37] M. Lazzari, M. Mastragostino, and F. Soavi, “Capacitance response of carbons in solvent-free ionic liquid lectrolytes,” Electrochem. Commum., vol. 9, pp. 1567-1572 (2007).
    [38] Placke, Tobias, O. Fromm, S. F. Lux, P. Bieker, S. Rothermel, H. W. Meyer, S. Passerini, and M. Winter. “Reversible Intercalation of Bis (Trifluoromethanesulfonyl) Imide Anions from an Ionic Liquid Electrolyte into Graphite for High Performance Dual-Ion Cells,” Journal of The Electrochemical Society, vol. 159, pp. 1755-1765 (2012).
    [39] Lu, Wen, L. Qu, K. Henry, and L. Dai, “High Performance Electrochemical Capacitors from Aligned Carbon Nanotube Electrodes and Ionic Liquid Electrolytes,” Journal of Power Sources, vol. 189, pp. 1270-1277 (2009).
    [40] Balducci, Andrea, W. A. Henderson, M. Mastragostino, S. Passerini, P. Simon, and F. Soavi, “Cycling Stability of a Hybrid Activated Carbon//Poly(3-Methylthiophene) Supercapacitor with N-Butyl-N-Methylpyrrolidinium Bis(Trifluoromethanesulfonyl)Imide Ionic Liquid as Electrolyte,” Electrochimica Acta, vol. 50, pp. 2233-2237 (2005).
    [41] M. Lazzari, F. Soavi, and M. Mastragostino, “High Voltage, Asymmetric Edlcs Based on Xerogel Carbon and Hydrophobic Il Electrolytes,” Journal of Power Sources, vol. 178, pp. 490-496 (2008).
    [42] A. Balducci , R. Dugas, P. L. Taberna, P. Simon, D. Plee, M. Mastragostino, and S. Passerini, “High Temperature Carbon–Carbon Supercapacitor Using Ionic Liquid as Electrolyte,” Journal of Power Sources, vol. 165,pp. 922-927 (2007).
    [43] M. Mastragostino, and F. Soavi, “Capacitors | Electrochemical Capacitors: Ionic Liquid Electrolytes,” Encyclopedia of Electrochemical Power Sources, pp. 649-657 ( 2009).
    [44] Balducci, Andrea, U. Bardi, S. Caporali, M. Mastragostino, and F. Soavi, “Ionic Liquids for Hybrid Supercapacitors,” Electrochemistry Communications, vol. 6, pp. 566-570 (2004).
    [45] M. F. El-Kady, and R. B. Kaner, “Scalable Fabrication of High-Power Graphene Micro-Supercapacitors for Flexible and on-Chip Energy Storage,” Nature Communications, vol. 4, (2013).
    [46] Y. J. Kang, H. Chung, C. H. Han, and W. Kim, “All-Solid-State Flexible Supercapacitors Based on Papers Coated with Carbon Nanotubes and Ionic-Liquid-Based Gel Electrolytes,” Nanotechnology, vol. 23, pp. 289501 (2012).
    [47] B. Kim, H. Chung, and W. Kim, “High-Performance Supercapacitors Based on Vertically Aligned Carbon Nanotubes and Nonaqueous Electrolytes,” Nanotechnology, vol. 23, pp. 155401 (2012).
    [48] R. T. Carlin, H. C. De Long, J. Fuller, and P. C. Trulove, “Dual Intercalating Molten Electrolyte Batteries,” Journal of The Electrochemical Society, vol. 141 , pp. 73-76 (1994).
    [49] J. A. Seel, and J. R. Dahn, “Electrochemical Intercalation of Pf6 into Graphite,” Journal of The Electrochemical Society, vol. 147, pp. 892-898(2000).
    [50] L. J. Hardwick, M. Hahn, P. Ruch, M. Holzapfel, W. Scheifele, H. Buqa, F. Krumeich, P. Novak, and R. Kotz, “An in Situ Raman Study of the Intercalation of Supercapacitor-Type Electrolyte into Microcrystalline Graphite,” Electrochimica Acta, vol. 52, pp. 675-680(2006).
    [51] M. Hahn, O. Barbieri, F. P. Campana, R. Kotz, and R. Gallay, “Carbon Based Double Layer Capacitors with Aprotic Electrolyte Solutions: The Possible Role of Intercalation/Insertion Processes,” Applied Physics A, vol. 82, pp. 633-638 (2006).
    [52] L. E. Smart, and E. A. Moore. Solid State Chemistry: An Introduction, Third Edition: Taylor & Francis,pp.296 (2005).
    [53] Scott Handy, Middle Tennessee State University, USA “Applications of Ionic Liquids in Science and Technology,” ISBN 978-953-307-605-8, Published: September 22, 2011 under CC BY-NC-SA 3.0 license
    [54] Mitani, Satoshi, M. Sathish, D. Rangappa, A. Unemoto, T.Tomai, and I. Honma, “Nanographene Derived from Carbon Nanofiber and Its Application to Electric Double-Layer Capacitors,” Electrochimica Acta, vol. 68, pp. 146-152 (2012).
    [55] S. Brunauer, P. H. Emmett, E. Teller, “Adsorption of gases in multimolecular layers”, Journal of the American Chemical Society, vol. 60, pp. 309-319 (1938).

    無法下載圖示 全文公開日期 2019/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE