簡易檢索 / 詳目顯示

研究生: 石喻任
Yu-Ren Shih
論文名稱: 使用反應式離子束濺鍍法沉積製備掺氮氧化鋅薄膜
Nitrogen doped ZnO prepared by reactive ion beam sputtering deposition
指導教授: 趙良君
Liang -Chiun Chao
口試委員: 黃鶯聲
Ying-Sheng Huang
莊敏宏
Miin-Horng Juang
李奎毅
Kuei-Yi Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 40
中文關鍵詞: 氧化鋅離子束濺鍍法毛細式
外文關鍵詞: ZnO, Nitrogen, Ion beam sputtering deposition, Capillaritron
相關次數: 點閱:215下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以離子濺鍍法,在沈積氧化鋅薄膜同時,除了通入氬氣作為轟擊靶材之離子源,也直接加入氮氣,可將氮摻雜到氧化鋅薄膜,形成摻氮氧化鋅(ZnO:N)。以XRD分析成長溫度為300C之摻氮氧化鋅薄膜中只有氧化鋅(002)繞射峰值位於34.40°,可知薄膜結構延著C軸成長。剛成長完之摻氮氧化鋅薄膜存在著表面應力,退火至500 ~ 600C則為無應力情況(stress free condition)。隨退火溫度的增加,得知薄膜有再結晶的情況。剛沈積結束的摻氮氧化鋅表面粗糙度為3.6 nm,明顯地高於無摻雜氧化鋅表面粗糙度0.8 nm。從未退火到退火800C之摻氮氧化鋅薄膜,其表面粗糙度大約從3.6升到6 nm。使用拉曼光譜分析可得到275、436、582及640 cm-1此四種峰值,證明氮已掺入氧化鋅薄膜中。在退火溫度越高的情況下,275、582及640 cm-1峰值逐漸消失,而436 cm-1峰值逐漸明顯,氮則離開了氧化鋅薄膜。而在氧氣或氬氣氛中退火至800C,摻氮氧化鋅薄膜之缺陷比值將會減低許多,表示產生氧缺陷的情況較低。


    Nitrogen doped ZnO (ZnO:N) thin films were prepared by reactive ion beam sputtering deposition utilizing a capillaritron ion source at 300C. XRD analysis indicates that the as-deposited ZnO:N exhibits a single (002) diffraction peak at 34.40. Annealing at 500 ~ 800C causes the stress of the film changes from strain to compressive stress. The surface root mean square roughness of ZnO:N is 3.6 nm, higher than that of un-doped ZnO which is 0.8 nm. Micro Raman spectroscopy analysis of the as-deposited film shows strong nitrogen related local vibration mode at 275, 582 and 640 cm-1, while the E2 mode of ZnO at 436 cm-1 can barely be identified. Annealing at 500 ~ 800C causes decrease of 275, 582 and 640 cm-1 and increase of 436 cm-1 intensity, indicating out diffusion of nitrogen and improvement of ZnO crystalline quality. The surface roughness of ZnO:N increases from 3.6 to 6.0 nm after annealing which is attributed due to out diffusion of nitrogen. Photoluminescence study of ZnO:N shows a near-band-edge emission (NBE) centered at 3.25 eV and a broad band defect related deep level emission centered at 2.2 eV. The ratio of the integrated deep level defect emission Idefect to that of integrated NBE emission INBE reaches a minimum after annealing at 800C in flowing oxygen ambient. P-type ZnO:N may be achieved by finding an optimized annealing condition between out-diffusion of nitrogen and reducing oxygen vacancy defect densities.

    目錄 中文摘要 I 英文摘要 II 目錄 III 圖目錄 IV 表目錄 V 第一章 緒論 1 1.1 前言 1 1.2 研究目的 1 第二章 研究理論與文獻回顧 3 2.1 毛細式離子束(Capillaritron ion beam) 3 2.2 P型氧化鋅文獻探討 4 2.2.1 不同的摻雜元素 4 2.2.2 摻氮氧化鋅薄膜的製備方式 5 第三章 實驗與分析 9 3.1 實驗設備、條件及流程 9 3.2 特性分析儀器 13 3.2.1 X-ray繞射儀(X-ray diffraction, XRD) 13 3.2.2 場發射掃描式電子顯微鏡(Field-Emission Scanning Electron Microscopy, FESEM) 14 3.2.3 原子力顯微鏡(Atom Force Microscopy, AFM) 15 3.2.4 拉曼光譜儀(micro-Raman spectrum) 16 3.2.5 光激發螢光光譜系統(Photoluminescence, PL) 17 第四章 實驗結果與討論 18 4.1 X-ray 繞射分析 18 4.2 場發射式電子顯微鏡 23 4.3 原子力顯微鏡 28 4.4 拉曼光譜分析 29 4.5 光激發螢光光譜分析 32 第五章 結論 35 參考文獻 37

    [1] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., Vol. 98, pp. 041301-1-041301-103, 2005.
    [2] S. B. Zhang, S. H. Wei and A. Zunger, “Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B: Condens. Matter, Vol. 63, pp. 075205-1-075205-7, 2001.
    [3] D. C. Look and B. Claflin, “P-type doping and devices based on ZnO,” Phys. Status Solidi B, Vol. 241, pp. 624-630, 2004.
    [4] J. F. Mahoney, J. Perel and A. T. Forrester, “Capillaritron: A new, versatile ion source,” Appl. Phys. Lett., Vol. 38, pp. 320-322, 1981.
    [5] B. Xiang, P. Wang, X. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, D. Yu and D. Wang, “Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition,” Nano Lett., Vol. 7, pp. 323-328, 2007.
    [6] Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong and H.W. White, “Synthesis of p-type ZnO films,” J. Cryst. Growth, Vol. 216, pp. 330-334, 2000.
    [7] V. Vaithianathan, Y. H. Lee, B. T. Lee, S. Hishita and S. S. Kim, “Doping of As, P and N in laser deposited ZnO films,” J. Cryst. Growth, Vol. 287, pp. 85-88, 2006.
    [8] X. Li, B. Keyes, S. Asher, S. B. Zhang, S. H. Wei, T. J. Coutts, S. Limpijumnong and C. G. Van De Walle, “Hydrogen passivation effect in nitrogen-doped ZnO thin films,” Appl. Phys. Lett., Vol. 86, pp. 122107-1-122107-3, 2005.
    [9] X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu and R. P. H. Chang, “Nitrogen doped ZnO film grown by the plasma-assisted metal-organic chemical vapor deposition,” J. Cryst. Growth, Vol. 226, pp. 123-129, 2001.
    [10] A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett., Vol. 80, pp. 1909-1911, 2002.
    [11] C. L. Perkins, S. H. Lee, X. Li, S. E. Asher and T. J. Coutts, “Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy,” J. Appl. Phys., Vol. 97, pp. 034907-1-034907-7, 2005.
    [12] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett., Vol. 81, pp. 1830-1832, 2002.
    [13] J. W. Sun, Y. M. Lu, Y. C. Liu, D. Z. Shen, Z. Z. Zhang, B. H. Li, J. Y. Zhang, B. Yao, D. X. Zhao and X. W. Fan, “The activation energy of the nitrogen acceptor in p-type ZnO film grown by plasma-assisted molecular beam epitaxy,” Solid State Commun., Vol. 140, pp. 345-348, 2006.
    [14] X. A. Zhang, J. W. Zhang, W. F. Zhang, D. Wang, Z. Bi , X. M. Bian and X. Hou, “Enhancement-mode thin film transistor with nitrogen-doped ZnO channel layer deposited by laser molecular beam epitaxy,” Thin Solid Films, Vol. 516, pp. 3305-3308, 2008.
    [15] F. Yakuphanoglu, Y. Caglar, S. Ilican and M. Caglar, “The effects of fluorine on the structural, surface morphology and optical properties of ZnO thin films,” Physica B, Vol. 394, pp. 86-92, 2007.
    [16] V. Gupta and A. Mansingh, “Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film,” J. Appl. Phys., Vol. 80, pp. 1063-1073, 1996.
    [17] S. A. Studenikin, N. Golego and M. Cocivera, “Fabrication of green and orange photoluminescence , undoped ZnO films using spray pyrolysis,” J. Appl. Phys., Vol. 84, pp. 2287-2294, 1998.
    [18] A. A. Gladyshchuk, A. L. Gurskii, V. A. Nikitenko, V. V. Parashchuk, L. N. Tvoronovich and G. P. Yablonskii, “Luminescence of ZnO monocrystals at excitation by streamer discharges and laser radiation,” J. Lumim., Vol. 42, pp. 49-55, 1988.

    QR CODE