簡易檢索 / 詳目顯示

研究生: 姜羽柔
Yu-Jou Chiang
論文名稱: 開發高穿透度聚苯胺/還原氧化石墨烯奈米複合對電極及設計最適化電解液配比實現具高光著色效率之光驅動電致色變元件
Developing Highly Transparent PANI/rGO Nanocomposite Counter Electrode and Designing Optimized Electrolyte Composition to Achieve High Photocoloration Efficiency Photoelectrochromic Devices
指導教授: 葉旻鑫
Min-Hsin Yeh
口試委員: 江志強
Jyh-Chiang Jiang
何國川
Kuo-Chuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 121
中文關鍵詞: 染料敏化太陽能電池電致色變元件快速響應時間高透光電催化材料光驅動電致色變元件光著色效率聚苯胺還原氧化石墨烯自供電系統智慧節能窗
外文關鍵詞: Dye-sensitized solar cells, electrochromic device, fast response, highly transparent electrocatalytic layer, photoelectrochromic device, photocoloration efficiency, polyaniline, reduced graphene oxide, self-powered system, smart window
相關次數: 點閱:417下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光驅動電致色變元件(Photoelectrochromic devices, PECDs)為結合染料敏化太陽能電池(Dye-sensitized solar cells, DSSCs)與電致色變元件(Electrochromic devices, ECDs)的一種光電化學系統,讓此種元件兼具了DSSC轉換光能為電能的能力以及ECD通電產生氧化還原使其薄膜變色特性,使其在接收光能轉換成電能的同時,能直接驅動氧化還原反應進而產生光學響應的自供電智慧節能窗(Self-powered smart window),從而達到節約能源並實現永續綠色建築的終極目標。然而,現今PECDs受限於光陽極穿透度、電致色變材料選擇、電解質組成以及電催化材料選擇上差異的緣故,因此無法達到如同ECDs的高光學對比與快速響應時間進而阻礙PECDs的可行性以及商業化的可能性。為了解決上述議題,本論文首先將從電催化材料的設計著手,開發一種兼具高光學穿透度與電催化能力之PANI/rGO複合電催化材料導入PECD中;此外,本論文並進一步探討並優化電解液添加劑與氧化還原對濃度以提高整體元件的光電轉換效率進而實現具高光著色效率的PECD。
    一般而言,對於良好電催化Pt經常在PECD中作為對電極上的電催化材料來還原電解質中的I3-。然而,由於低透光度的Pt對電極將導致其PECD的整體光學對比度將受到限制。有鑑於此,在本論文第四章研究中將設計一種兼具有高光學穿透度以及優異電催化性能的PANI/rGO複合電催化材料來取代Pt並進一步提高PECD整體光學效能。由於成本相對低廉且可加工性高的PANI本身已具有催化I3-還原能力,為了使PANI電極在維持良好穿透度的前提下進一步增強其電催化能力,具有高透明度與良好的導電性的rGO將透過電聚合製程中一併將導入修飾PANI電極,期望能進一步使得PECD擁有更好的光學表現。在最適化rGO含量以及薄膜厚度後,由PANI/rGO對電極所組成的PECD具有比Pt對電極所組成的PECD更為出色的光學表現,其響應時間不僅可與搭配Pt對電極所組成的PECD相當,其光學對比度 (ΔT=26.8%)更顯著高於使用Pt對電極的PECD (ΔT=9.4 %),顯示兼具高光學透度與電催化能力的PANI/rGO複合電催化薄膜具有取代傳統Pt並進一步應用於PECD對電極的潛力。
    為了更進一步提升PECD的光著色效率,本論文第五章研究中將探討電解液中的添加劑以及氧化還原對濃度進而開發出最適化電解液配比來提升PECD的整體元件效能。從研究結果中可發現移除的電解液中I2能有效提高PECD的光電轉換效率 (Photoelectric conversion efficiency, η) 以及光著色效率 (Photocoloration efficiency, PhCE) 中,顯示傳統電解液中I2對於PECD中的光伏單元或是電致色變單元皆並無正向助益。此外,透過導入常用於DSSC中的電解質添加劑TBP於電解質研究中可發現隨著電解液中的TBP含量的增加,通過電化學阻抗譜 (Electrochemical impedance spectroscopy, EIS) 與暗電流量測,證明了光陽極電子再結合阻力增加以及TiO2費米能階的負移,顯示TBP的導入將能提高PECD的開環電位(Open-circuit voltage, VOC)並將有利於PECD於開路照光條件下的著色程度。透過最適化電解液組成並進一步導入PECD中,其VOC不僅從-0.56提升到-0.76 V且JSC幾乎不受影響,相對應的光學對比度更比原先顯著提升了40.7%且能夠同時具有出色的響應時間。結果顯示,透過最適化電解質組成與配比將能大幅提高PECD整體元件的光伏性能以及光著色效率。
    綜上所述,只要透過尋求可能的補救方案將PECD中觀察到的不利現象降低,高光學對比度PECD的發展是觸手可及的。這項研究展示了一種自供電的高性能PECD,其特點不僅是具有相對較高的光電轉換效率,在光學表現上更展現出了快速的切換響應時間以及顯著的光學對比。隨著環境問題與綠能技術所受到的日益重視,此高性能的PECD光電化學系統的提出拓寬了未來應用多樣化的可能性。


    The photoelectrochromic devices (PECDs) were composed of electrochromic devices (ECDs) and dye-sensitized solar cells (DSSCs), which were categorized as a classic type of self-powered systems. Among various types of self-powered systems, the solar-driven self-powered systems of PECDs seems to be the practical platform by simply combining the photovoltaic unit and electrochromic device since photo-energy can be easily harvested from solar or indoor light and then employed to trigger the coloring/bleaching reaction during the charging/discharging process. However, the low optical contrast (ΔT) and the sluggish response of PECD retarded the progress of practical development. To resolve these bottlenecks, a highly transparent polyaniline/reduced graphene oxide (PANI/rGO) nanocomposite with outstanding electrocatalytic performance is designed as a counter electrode (CE) for PECD. Moreover, after understanding the role of additive and optimizing the concentration of redox couple in the electrolyte, the PECD with outstanding photocoloration efficiency (PhCE) can be achieved by improving its photoelectric conversion efficiency (η).
    Conventionally, Pt was used as an electrocatalyst to reduce the I3- of electrolyte in PECD. However, the optical contrast of PECD with Pt-based CE was restricted by an intrinsic feature of opaque Pt. In view of this problem, in Chapter 4 of this thesis, a PANI/rGO nanocomposite electrocatalytic material with high optical transmittance and good electrocatalytic performance is designed to replace Pt CE for further improving the optical performance of corresponding PECD. Based on the advantages of low cost and promising electrocatalytic activity of PANI, highly transparent and remarkable conductive rGO was introduced to further boosting up its electrochemical performance. After systematically optimizing the film thickness and composition of PANI/rGO nanocomposite, the PECD with PANI/rGO based CE possesses better optical contrast (ΔT=26.8%) than that with Pt-based CE (ΔT=9.4%), which clearly revealed that PANI/rGO nanocomposites with high optical transparency and electrocatalytic ability has the great potential to replace traditional Pt CE in PECDs.
    To further improve the photocoloration efficiency of PECD, in Chapter 5 of this thesis, the additive and redox couple concentration in the electrolyte for PECD will be systematically studied and then optimized to improve the overall performance of PECD. Accorrding to research results, it can be found that the I2-free electrolyte could effectively improve the photoelectric conversion efficiency (η) and the photocoloration efficiency (PhCE) at the same time, indicates that the removal ) and the photocoloration efficiency (PhCE) at the same time, indicates that the removal of I2 in the electrolyte is beneficial for boosting up both of photovoltaic unit and electrochromic unit. By introducing 4-tert-butylpyridine (TBP), a common additive in the electrolyte for inhibiting the recombination reaction on photoanode in DSSC, the recombination resistance between TiO2 and the electrolyte increases and the Fermi level of TiO2 gradually negative shifted by increasing the concentration of TBP, which would facilitate coloration process under illumination with open-circuit condition. By optimizing the composition of the electrolyte, the open-circuit voltage (VOC) of corresponding PECD was not only increased from -0.56 to -0.76 V with similar short-circuit current density (JSC), but also significantly improved the corresponding optical contrast by 40.7% with a similar response time. The results revealed that the improvement of PhCE and η for PECD could be for PECD could be effectively achieved by optimizing the electrolyte composition with additive concentration and redox couple ratio.

    中文摘要I Abstract III Table of Contents V List of Tables VIII List of Figures IX Nomenclature XIV Chapter 1 Introduction 1 1.1 Preface 1 1.2 Introduction of electrochromism 1 1.2.1 Development and application of electrochromic technology 2 1.2.2 Electrochromic materials 4 1.2.3 Types of electrochromic devices 5 1.3 Introduction of dye-sensitized solar cells 9 1.3.1 The background and current development of solar cells 10 1.3.2 Working mechanism of dye-sensitized solar cells 11 1.3.3 Types of dye-sensitized solar cells 14 1.4 Introduction of self-powered system 17 1.5 Introduction of photoelectrochromic devices 19 1.5.1 Types of photoelectrochromic devices 21 1.5.2 The background and current development of photoelectrochromic devices 22 Chapter 2 Literature Review and Research Scope 25 2.1 Impact of Composition on the Performance of Photoelectrochromic Devices 25 2.1.1 The effect of electrolytes on photoelectrochromic devices 25 2.1.2 The effect of counter electrodes on photoelectrochromic devices 28 2.2 Development of Bifacial Dye-sensitized Solar Cell 29 2.3 Motivation of Research 32 Chapter 3 Experimental Procedure 36 3.1 Experimental Chemicals and Instrument 36 3.1.1 Experimental and analytical instruments 36 3.1.2 Electrochemical analysis 37 3.1.3 Photovoltaic properties for PECDs 40 3.1.4 Ultraviolet-visible (UV-Vis) spectroscopy 41 3.1.5 Field emission - scanning electron microscopy (FE-SEM) 42 3.1.6 Raman spectroscopy 43 3.2 Experimental Materials 45 3.3 Experimental Procedure 46 3.3.1 Fabrication of photoelectrodes 46 3.3.2 Preparation of PEDOT-MeOH films on photoelectrodes 46 3.3.3 Preparation of PANI, PANI/rGO films as counter electrodes 47 3.3.4 Assembly of PECDs 47 3.4 Experimental Setup 47 3.4.1 UV-Vis spectroscopy analysis of electrochromic film in three-electrode system 47 3.4.2 UV-Vis spectroscopy analysis of photoelectrochromic device 48 3.4.3 Measurement of photovoltaic efficiency 49 Chapter 4 Development a highly transparent electropolymerized PANI/rGO nanocomposites as a Pt-free electrocatalytic layer in photoelectrochromic device 51 4.1 Motivation and Conceptual Design 51 4.2 Results and Discussion 52 4.2.1 Electrochemical and optical properties of PEDOT-MeOH film 52 4.2.2 Optimizing the thickness of PANI films for PECDs 53 4.2.3 Morphological and structural characterizations of PANI and PANI/rGO films 56 4.2.4 Optimizing the content of rGO in PANI CEs 58 4.2.5 The coloration kinetics of PECDs 61 4.3 Summary 65 Chapter 5 Optimize the molar ratio of I-/I3- and the contents of TBP in the electrolyte to realize both high optical contrast and fast-responsive control photoelectrochromic device 66 5.1 Motivation and Conceptual Design 66 5.2 Results and Discussion 67 5.2.1 Optimizing the concentration of I2 in electrolyte 67 5.2.2 Effects of I2 concentration on devices 70 5.2.3 Optimizing the concentration of TBP in electrolyte 71 5.2.4 Effects of TBP concentration on devices 74 5.2.5 Effects of excessive TBP on electrolyte and CE 75 5.3 Summary 77 Chapter 6 Conclusion and Suggestion 80 6.1 Conclusion 80 6.2 Suggestions and Prospects 81 Reference 84 Appendix A 101

    [1] A. Cannavale, P. Cossari, G.E. Eperon, S. Colella, F. Fiorito, G. Gigli, H.J. Snaith, A. Listorti, Forthcoming perspectives of photoelectrochromic devices: a critical review, Energy Environmental Science, 2016, 9, 2682-2719.
    [2] Z. Tong, Y. Tian, H. Zhang, X. Li, J. Ji, H. Qu, N. Li, J. Zhao, Y. Li, Recent advances in multifunctional electrochromic energy storage devices and photoelectrochromic devices, Science China Chemistry, 2017, 60, 13-37.
    [3] K. Wang, H. Wu, Y. Meng, Y. Zhang, Z. Wei, Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window, Energy Environmental Science, 2012, 5, 8384-8389.
    [4] D. Ge, E. Lee, L. Yang, Y. Cho, M. Li, D.S. Gianola, S. Yang, A robust smart window: reversibly switching from high transparency to angle‐independent structural color display, Advanced Materials, 2015, 27, 2489-2495.
    [5] M.-H. Yeh, L. Lin, P.-K. Yang, Z.L. Wang, Motion-driven electrochromic reactions for self-powered smart window system, ACS Nano, 2015, 9, 4757-4765.
    [6] F. Bella, G. Leftheriotis, G. Griffini, G. Syrrokostas, S. Turri, M. Grätzel, C. Gerbaldi, A new design paradigm for smart windows: photocurable polymers for quasi‐solid photoelectrochromic devices with excellent long‐term stability under real outdoor operating conditions, Advanced Functional Materials, 2016, 26, 1127-1137.
    [7] S.Y. Chun, S. Park, S.I. Lee, H.D. Nguyen, K.-K. Lee, S. Hong, C.-H. Han, M. Cho, H.-K. Choi, K. Kwak, Operando Raman and UV-Vis spectroscopic investigation of the coloring and bleaching mechanism of self-powered photochromic devices for smart windows, Nano Energy, 2021, 82, 105721.
    [8] H. Ling, J. Wu, F. Su, Y. Tian, Y.J. Liu, Automatic light-adjusting electrochromic device powered by perovskite solar cell, Nature Communications, 2021, 12, 1-8.
    [9] R. Araujo, Photochromism in glasses containing silver halides, Contemporary Physics, 1980, 21, 77-84.
    [10] R.J. Araujo, Opthalmic glass particularly photochromic glass, Journal of Non-Crystalline Solids, 1982, 47, 69-86.
    [11] E. Hadjoudis, M. Vittorakis, I. Moustakali-Mavridis, Photochromism and thermochromism of schiff bases in the solid state and in rigid glasses, Tetrahedron, 1987, 43, 1345-1360.
    [12] S. Babulanam, T. Eriksson, G. Niklasson, C. Granqvist, Thermochromic VO2 films for energy-efficient windows, Solar Energy Materials, 1987, 16, 347-363.
    [13] C.M. Lampert, Electrochromic materials and devices for energy efficient windows, Solar Energy Materials, 1984, 11, 1-27.
    [14] J. Svensson, C. Granqvist, Electrochromic coatings for “smart windows”, Solar Energy Materials, 1985, 12, 391-402.
    [15] C. Granqvist, Chromogenic materials for transmittance control of large-area windows, Critical Reviews in Solid State and Material Sciences, 1990, 16, 291-308.
    [16] S. Araki, K. Nakamura, K. Kobayashi, A. Tsuboi, N. Kobayashi, Electrochemical optical‐modulation device with reversible transformation between transparent, mirror, and black, Advanced Materials, 2012, 24, OP122-OP126.
    [17] A. Tsuboi, K. Nakamura, N. Kobayashi, A Localized Surface Plasmon Resonance‐Based Multicolor Electrochromic Device with Electrochemically Size‐Controlled Silver Nanoparticles, Advanced Materials, 2013, 25, 3197-3201.
    [18] H.-J. Yen, K.-Y. Lin, G.-S. Liou, Transmissive to black electrochromic aramids with high near-infrared and multicolor electrochromism based on electroactive tetraphenylbenzidine units, Journal of Materials Chemistry, 2011, 21, 6230-6237.
    [19] F. Chen, X. Fu, J. Zhang, X. Wan, Near-infrared and multicolored electrochromism of solution processable triphenylamine-anthraquinone imide hybrid systems, Electrochimica Acta, 2013, 99, 211-218.
    [20] A. Llordés, G. Garcia, J. Gazquez, D.J. Milliron, Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites, Nature, 2013, 500, 323-326.
    [21] E.L. Runnerstrom, A. Llordés, S.D. Lounis, D.J. Milliron, Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals, Chemical Communications,
    2014, 50, 10555-10572.
    [22] E. Brimm, J. Brantley, J. Lorenz, M. Jellinek, Sodium and Potassium Tungsten Bronzes1, 1a, Journal of the American Chemical Society, 1951, 73, 5427-5432.
    [23] S. Deb, A novel electrophotographic system, Applied Optics, 1969, 8, 192-195.
    [24] L. Meunier, F.M. Kelly, C. Cochrane, V. Koncar, Flexible displays for smart clothing: Part II—Electrochromic displays, 2011.
    [25] P. Wójcik, Printable organic and inorganic materials for flexible electrochemical devices, 2013.
    [26] B.W. Faughnan, R.S. Crandall, P.M. Heyman, Electrochromism in WO3 amorphous films, Rca Rev, 1975, 36, 177-197.
    [27] S.F. Cogan, N.M. Nguyen, S.J. Perrotti, R.D. Rauh, Optical properties of electrochromic vanadium pentoxide, Journal of Applied Physics, 1989, 66, 1333-1337.
    [28] X. Xia, J. Tu, J. Zhang, X. Wang, W. Zhang, H. Huang, Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition, Solar Energy Materials and Solar Cells, 2008, 92, 628-633.
    [29] C.-S. Hsu, C.-C. Chan, H.-T. Huang, C.-H. Peng, W.-C. Hsu, Electrochromic properties of nanocrystalline MoO3 thin films, Thin Solid Films, 2008, 516, 4839-4844.
    [30] C. Dyer, J. Leach, Reversible optical changes within anodic oxide films on titanium and niobium, Journal of the Electrochemical Society, 1978, 125, 23.
    [31] L. Assis, R. Leones, J. Kanicki, A. Pawlicka, M.M. Silva, Prussian blue for electrochromic devices, Journal of Electroanalytical Chemistry, 2016, 777, 33-39.
    [32] K. Madasamy, D. Velayutham, V. Suryanarayanan, M. Kathiresan, K.-C. Ho, Viologen-based electrochromic materials and devices, Journal of Materials Chemistry C, 2019, 7, 4622-4637.
    [33] T.-H. Lin, K.-C. Ho, A complementary electrochromic device based on polyaniline and poly (3, 4-ethylenedioxythiophene), Solar Energy Materials and Solar Cells, 2006, 90, 506-520.
    [34] R. Rauh, F. Wang, J. Reynolds, D. Meeker, High coloration efficiency electrochromics and their application to multi-color devices, Electrochimica Acta, 2001, 46, 2023-2029.
    [35] S.-W. Huang, K.-C. Ho, An all-thiophene electrochromic device fabricated with poly (3-methylthiophene) and poly (3, 4-ethylenedioxythiophene), Solar Energy Materials and Solar Cells,2006, 90, 491-505.
    [36] M. Layani, A. Kamyshny, S. Magdassi, Transparent conductors composed of nanomaterials, Nanoscale, 2014, 6, 5581-5591.
    [37] G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi, P.S. Lee, Highly stable transparent conductive silver grid/PEDOT: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors, Advanced Energy Materials, 2016, 6, 1501882.
    [38] R.D. Rauh, Electrochromic windows: an overview, Electrochimica Acta, 1999, 44, 3165-3176.
    [39] D.R. Rosseinsky, R.J. Mortimer, Electrochromic systems and the prospects for devices, Advanced Materials, 2001, 13, 783-793.
    [40] R.J. Mortimer, Switching colors with electricity: Electrochromic materials can be used in glare reduction, energy conservation and chameleonic fabrics, American Scientist, 2013, 101, 38-46.
    [41] A. Baba, S. Tian, F. Stefani, C. Xia, Z. Wang, R.C. Advincula, D. Johannsmann, W. Knoll, Electropolymerization and doping/dedoping properties of polyaniline thin films as studied by electrochemical-surface plasmon spectroscopy and by the quartz crystal microbalance, Journal of Electroanalytical Chemistry, 2004, 562, 95-103.
    [42] S. Green, J. Backholm, P. Georén, C.-G. Granqvist, G. Niklasson, Electrochromism in nickel oxide and tungsten oxide thin films: Ion intercalation from different electrolytes, Solar Energy Materials and Solar Cells, 2009, 93, 2050-2055.
    [43] C.-W. Hu, K.-M. Lee, J.-H. Huang, C.-Y. Hsu, T.-H. Kuo, D.-J. Yang, K.-C. Ho, Incorporation of a stable radical 2, 2, 6, 6-tetramethyl-1-piperidinyloxy (TEMPO) in an electrochromic device, Solar Energy Materials and Solar Cells, 2009, 93, 2102-2107.
    [44] J.H. Bechtel, H.J. Byker, Automatic rearview mirror system for automotive vehicles, Google Patents, 1990.
    [45] H.J. Byker, Single-compartment, self-erasing, solution-phase electrochromic devices, solutions for use therein, and uses thereof, Google Patents, 1990.
    [46] C.-F. Lin, C.-Y. Hsu, H.-C. Lo, C.-L. Lin, L.-C. Chen, K.-C. Ho, A complementary electrochromic system based on a Prussian blue thin film and a heptyl viologen solution, Solar Energy Materials and Solar Cells, 2011, 95, 3074-3080.
    [47] Y. Watanabe, K. Imaizumi, K. Nakamura, N. Kobayashi, Effect of counter electrode reaction on coloration properties of phthalate-based electrochromic cell, Solar Energy Materials and Solar Cells, 2012, 99, 88-94.
    [48] M.S. Ahmad, A.K. Pandey, N. Abd Rahim, Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review, Renewable Sustainable Energy Reviews, 2017, 77, 89-108.
    [49] S. So, I. Hwang, P. Schmuki, Hierarchical DSSC structures based on “single walled” TiO 2 nanotube arrays reach a back-side illumination solar light conversion efficiency of 8%, Energy Environmental Science, 2015, 8, 849-854.
    [50] K.A. John, J. Naduvath, S.K. Remillard, S. Shaji, P.A. DeYoung, Z.T. Kellner, S. Mallick, M. Thankamoniamma, G.S. Okram, R.R. Philip, A simple method to fabricate metal doped TiO2 nanotubes, Chemical Physics, 2019, 523, 198-204.
    [51] J. Halme, P. Vahermaa, K. Miettunen, P. Lund, Device physics of dye solar cells, Advanced Materials, 2010, 22, E210-E234.
    [52] N. Tsvetkov, L. Larina, J. Ku Kang, O. Shevaleevskiy, Sol-gel processed TiO2 nanotube photoelectrodes for dye-sensitized solar cells with enhanced photovoltaic performance, Nanomaterials, 2020, 10, 296.
    [53] X. Hou, K. Aitola, P.D. Lund, TiO2 nanotubes for dye‐sensitized solar cells—A review, Energy Science & Engineering, 2020.
    [54] M. Grätzel, Photoelectrochemical cells, Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific2011, pp. 26-32.
    [55] M.A. Green, Photovoltaic principles, Physica E: Low-dimensional Systems Nanostructures, 2002, 14, 11-17.
    [56] D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon p‐n junction photocell for converting solar radiation into electrical power, Journal of Applied Physics, 1954, 25, 676-677.
    [57] K. Kalyanasundaram, M. Grätzel, Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coordination Chemistry Reviews, 1998, 177, 347-414.
    [58] B. O'regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films, Nature, 1991, 353, 737-740.
    [59] B.E. Hardin, H.J. Snaith, M.D. McGehee, The renaissance of dye-sensitized solar cells, Nature Photonics, 2012, 6, 162-169.
    [60] K. Xie, M. Guo, X. Liu, H. Huang, Enhanced efficiencies in thin and semi-transparent dye-sensitized solar cells under low photon flux conditions using TiO2 nanotube photonic crystal, Journal of Power Sources, 2015, 293, 170-177.
    [61] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes, Chemical Communications, 2015, 51, 15894-15897.
    [62] M. Grätzel, Solar energy conversion by dye-sensitized photovoltaic cells, Inorganic Chemistry, 2005, 44, 6841-6851.
    [63] A.S. Shikoh, Z. Ahmad, F. Touati, R. Shakoor, S.A. Al-Muhtaseb, Optimization of ITO glass/TiO2 based DSSC photo-anodes through electrophoretic deposition and sintering techniques, Ceramics International, 2017, 43, 10540-10545.
    [64] J. Gong, J. Liang, K. Sumathy, Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials, Renewable Sustainable Energy Reviews, 2012, 16, 5848-5860.
    [65] L. Kavan, J.-H. Yum, M. Graetzel, Graphene-based cathodes for liquid-junction dye sensitized solar cells: Electrocatalytic and mass transport effects, Electrochimica Acta, 2014, 128, 349-359.
    [66] G.P. Smestad, M. Gratzel, Demonstrating electron transfer and nanotechnology: a natural dye-sensitized nanocrystalline energy converter, Journal of chemical education, 1998, 75, 752.
    [67] M.L. Parisi, S. Maranghi, R. Basosi, The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach, Renewable and Sustainable Energy Reviews, 2014, 39, 124-138.
    [68] M.G. Kang, N.-G. Park, K.S. Ryu, S.H. Chang, K.-J. Kim, Flexible metallic substrates for TiO2 film of dye-sensitized solar cells, Chemistry Letters, 2005, 34, 804-805.
    [69] H.-G. Yun, Y. Jun, J. Kim, B.-S. Bae, M.G. Kang, Effect of increased surface area of stainless steel substrates on the efficiency of dye-sensitized solar cells, Applied physics letters, 2008, 93, 365.
    [70] M. Toivola, F. Ahlskog, P. Lund, Industrial sheet metals for nanocrystalline dye-sensitized solar cell structures, Solar Energy Materials and Solar Cells, 2006, 90, 2881-2893.
    [71] T.Y. Tsai, C.M. Chen, S.J. Cherng, S.Y. Suen, An efficient titanium‐based photoanode for dye‐sensitized solar cell under back‐side illumination, Progress in Photovoltaics: Research Applications, 2013, 21, 226-231.
    [72] S. Ito, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Péchy, M.K. Nazeeruddin, M. Grätzel, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO 2 photoanode, Chemical communications, 2006, 4004-4006.
    [73] H.G. Yun, B.S. Bae, M.G. Kang, A Simple and Highly Efficient Method for Surface Treatment of Ti Substrates for Use in Dye‐Sensitized Solar Cells, Advanced Energy Materials, 2011, 1, 337-342.
    [74] J. An, W. Guo, T. Ma, Enhanced Photoconversion Efficiency of All‐Flexible Dye‐Sensitized Solar Cells Based on a Ti Substrate with TiO2 Nanoforest Underlayer, Small, 2012, 8, 3427-3431.
    [75] Y. Rui, Y. Wang, Q. Zhang, Q. Chi, M. Zhang, H. Wang, Y. Li, C. Hou, In-situ construction of three-dimensional titania network on Ti foil toward enhanced performance of flexible dye-sensitized solar cells, Applied Surface Science, 2016, 380, 210-217.
    [76] N.-S. Peighambardoust, S. Khameneh-Asl, H. Azimi, Improved performance of anodic titanium oxide nanotube arrays synthesized by sonoelectrochemical anodization method for dye-sensitized solar cells, Applied Physics A, 2017, 123, 345.
    [77] A. Khan, Y.-T. Huang, T. Miyasaka, M. Ikegami, S.-P. Feng, W.-D. Li, Solution-processed transparent nickel-mesh counter electrode with in-situ electrodeposited platinum nanoparticles for full-plastic bifacial dye-sensitized solar cells, ACS Applied Materials Interfaces, 2017, 9, 8083-8091.
    [78] Y. Jun, J. Kim, M.G. Kang, A study of stainless steel-based dye-sensitized solar cells and modules, Solar Energy Materials and Solar Cells, 2007, 91, 779-784.
    [79] M.G. Kang, N.-G. Park, K.S. Ryu, S.H. Chang, K.-J. Kim, A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate, Solar Energy Materials and Solar Cells, 2006, 90, 574-581.
    [80] Y.-T. Huang, S.-P. Feng, C.-M. Chen, Nickel substrate covered with a Sn-based protection bi-layer as a photoanode substrate for dye-sensitized solar cells, Electrochimica Acta, 2013, 99, 230-237.
    [81] K. Fan, T. Peng, B. Chai, J. Chen, K. Dai, Fabrication and photoelectrochemical properties of TiO2 films on Ti substrate for flexible dye-sensitized solar cells, Electrochimica Acta, 2010, 55, 5239-5244.
    [82] W. Tan, X. Yin, X. Zhou, J. Zhang, X. Xiao, Y. Lin, Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells, Electrochimica Acta, 2009, 54, 4467-4472.
    [83] D. Kim, P. Roy, K. Lee, P. Schmuki, Dye-sensitized solar cells using anodic TiO2 mesosponge: improved efficiency by TiCl4 treatment, Electrochemistry communications, 2010, 12, 574-578.
    [84] C.-H. Huang, Y.-W. Chen, C.-M. Chen, Chromatic Titanium Photoanode for Dye-Sensitized Solar Cells under Rear Illumination, ACS Applied Materials & Interfaces, 2018, 10, 2658-2666.
    [85] S. Ito, S.M. Zakeeruddin, P. Comte, P. Liska, D. Kuang, M. Grätzel, Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte, Nature Photonics, 2008, 2, 693-698.
    [86] J. Bisquert, The two sides of solar energy, Nature Photonics, 2008, 2, 648-649.
    [87] R. Hezel, Novel applications of bifacial solar cells, Progress in Photovoltaics: Research Applications, 2003, 11, 549-556.
    [88] J. Wu, Y. Li, Q. Tang, G. Yue, J. Lin, M. Huang, L. Meng, Bifacial dye-sensitized solar cells: A strategy to enhance overall efficiency based on transparent polyaniline electrode, Scientific Reports, 2014, 4, 1-7.
    [89] Q. Tai, X.-Z. Zhao, Pt-free transparent counter electrodes for cost-effective bifacial dye-sensitized solar cells, Journal of Materials Chemistry A, 2014, 2, 13207-13218.
    [90] S.A. Hashemi, S. Ramakrishna, A.G. Aberle, Recent progress in flexible–wearable solar cells for self-powered electronic devices, Energy Environmental Science, 2020, 13, 685-743.
    [91] L. Zhao, J. Duan, L. Liu, J. Wang, Y. Duan, L. Vaillant-Roca, X. Yang, Q. Tang, Boosting power conversion efficiency by hybrid triboelectric nanogenerator/silicon tandem solar cell toward rain energy harvesting, Nano Energy, 2021, 82, 105773.
    [92] D. Yang, Y. Ni, H. Su, Y. Shi, Q. Liu, X. Chen, D. He, Hybrid energy system based on solar cell and self-healing/self-cleaning triboelectric nanogenerator, Nano Energy, 2021, 79, 105394.
    [93] D.-L. Wen, P. Huang, H.-Y. Qian, Y.-Y. Ba, Z.-Y. Ren, C. Tu, T.-X. Gong, W. Huang, X.-S. Zhang, Hybrid nanogenerator-based self-powered double-authentication microsystem for smart identification, Nano Energy, 2021, 86, 106100.
    [94] H. Wang, Z. Fan, T. Zhao, J. Dong, S. Wang, Y. Wang, X. Xiao, C. Liu, X. Pan, Y. Zhao, M. Xu, Sandwich-like triboelectric nanogenerators integrated self-powered buoy for navigation safety, Nano Energy, 2021, 84, 105920.
    [95] W. Shang, G. Gu, W. Zhang, H. Luo, T. Wang, B. Zhang, J. Guo, P. Cui, F. Yang, G. Cheng, Z. Du, Rotational pulsed triboelectric nanogenerators integrated with synchronously triggered mechanical switches for high efficiency self-powered systems, Nano Energy, 2021, 82, 105725.
    [96] D. Saranin, S. Pescetelli, A. Pazniak, D. Rossi, A. Liedl, A. Yakusheva, L. Luchnikov, D. Podgorny, P. Gostischev, S. Didenko, A. Tameev, D. Lizzit, M. Angelucci, R. Cimino, R. Larciprete, A. Agresti, A. Di Carlo, Transition metal carbides (MXenes) for efficient NiO-based inverted perovskite solar cells, Nano Energy, 2021, 82, 105771.
    [97] T. Ozturk, E. Akman, A.E. Shalan, S. Akin, Composition engineering of operationally stable CsPbI2Br perovskite solar cells with a record efficiency over 17%, Nano Energy, 2021, 87, 106157.
    [98] S. Manoharan, P. Pazhamalai, V.K. Mariappan, K. Murugesan, S. Subramanian, K. Krishnamoorthy, S.-J. Kim, Proton conducting solid electrolyte-piezoelectric PVDF hybrids: Novel bifunctional separator for self-charging supercapacitor power cell, Nano Energy, 2021, 83, 105753.
    [99] T. Gokulnath, J. Choi, H.-Y. Park, K. Sung, Y. Do, H. Park, J. Kim, S.S. Reddy, J. Kim, M. Song, J. Yoon, S.-H. Jin, A wide-bandgap π-conjugated polymer for high-performance ternary organic solar cells with an efficiency of 17.40%, Nano Energy, 2021, 89, 106323.
    [100] Z.L. Wang, Self-Powered Nanosensors and Nanosystems, Advanced Materials, 2012, 24, 280-285.
    [101] H. Guo, X. Pu, J. Chen, Y. Meng, M.-H. Yeh, G. Liu, Q. Tang, B. Chen, D. Liu, S. Qi, A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids, Science Robotics, 2018, 3.
    [102] D.R. Needell, M.E. Phelan, J.T. Hartlove, H.A. Atwater, Solar power windows: Connecting scientific advances to market signals, Energy, 2021, 219, 119567.
    [103] F. Yi, X. Wang, S. Niu, S. Li, Y. Yin, K. Dai, G. Zhang, L. Lin, Z. Wen, H. Guo, A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring, Science Advances, 2016, 2, e1501624.
    [104] Z. Wen, M.-H. Yeh, H. Guo, J. Wang, Y. Zi, W. Xu, J. Deng, L. Zhu, X. Wang, C. Hu, Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors, Science Advances, 2016, 2, e1600097.
    [105] Z. Li, J. Chen, H. Guo, X. Fan, Z. Wen, M.H. Yeh, C. Yu, X. Cao, Z.L. Wang, Triboelectrification‐enabled self‐powered detection and removal of heavy metal ions in wastewater, Advanced Materials, 2016, 28, 2983-2991.
    [106] H. Guo, M.-H. Yeh, Y.-C. Lai, Y. Zi, C. Wu, Z. Wen, C. Hu, Z.L. Wang, All-in-one shape-adaptive self-charging power package for wearable electronics, ACS Nano, 2016, 10, 10580-10588.
    [107] T. Inoue, A. Fujishima, K. Honda, Photoelectrochromic characteristics of photoelectrochemical imaging system with a semiconductor/solution (metallic ion) junction, Journal of The Electrochemical Society, 1980, 127, 1582.
    [108] D.W. DeBerry, A. Viehbeck, Photoelectrochromic Behavior of Prussian Blue‐Modified TiO2 Electrodes, Journal of The Electrochemical Society, 1983, 130, 249.
    [109] O. Inganäs, I. Lundström, A photoelectrochromic memory and display device based on conducting polymers, Journal of the Electrochemical Society, 1984, 131, 1129.
    [110] I. Bedja, S. Hotchandani, P.V. Kamat, Photoelectrochemistry of quantized WO3 colloids: electron storage, electrochromic, and photoelectrochromic effects, The Journal of Physical Chemistry, 2002, 97, 11064-11070.
    [111] P. Monk, J. Duffy, M. Ingram, Electrochromic display devices of tungstic oxide containing vanadium oxide or cadmium sulphide as a light-sensitive layer, Electrochimica Acta, 1993, 38, 2759-2764.
    [112] I. Bedja, S. Hotchandani, R. Carpentier, K. Vinodgopal, P.V. Kamat, Electrochromic and photoelectrochemical behavior of thin WO3 films prepared from quantized colloidal particles, Thin Solid Films, 1994, 247, 195-200.
    [113] F. Pichot, S. Ferrere, R.J. Pitts, B.A. Gregg, Flexible solid‐state photoelectrochromic windows, Journal of the Electrochemical Society, 1999, 146, 4324.
    [114] S. Kuwabata, K. Mitsui, H. Yoneyama, Photoelectrochromic properties of methylene blue in conducting polyaniline matrixes, Journal of the Electrochemical Society, 1992, 139, 1824.
    [115] S. Yanagida, Y. Yu, K. Manseki, Iodine/iodide-free dye-sensitized solar cells, Accounts of Chemical Research, 2009, 42, 1827-1838.
    [116] X. Yu, Y. Li, N. Zhu, Q. Yang, K. Kalantar-zadeh, A polyaniline nanofibre electrode and its application in a self-powered photoelectrochromic cell, Nanotechnology, 2006, 18, 015201.
    [117] N.R. de Tacconi, J. Carmona, K. Rajeshwar, Reversibility of photoelectrochromism at the TiO2/methylene blue interface, Journal of the Electrochemical Society, 1997, 144, 2486.
    [118] A. Hauch, A. Georg, U.O. Krašovec, B. Orel, Comparison of photoelectrochromic devices with different layer configurations, Journal of the Electrochemical Society, 2002, 149, H159.
    [119] U.O. Krašovec, A. Georg, A. Georg, V. Wittwer, J. Luther, M. Topič, Performance of a solid-state photoelectrochromic device, Solar Energy Materials and Solar Cells, 2004, 84, 369-380.
    [120] A. Georg, U.O. Krašovec, Photoelectrochromic window with Pt catalyst, Thin Solid Films, 2006, 502, 246-251.
    [121] A. Georg, A. Georg, W. Graf, V. Wittwer, Switchable windows with tungsten oxide, Vacuum, 2008, 82, 730-735.
    [122] J. Liao, K. Ho, A photoelectrochromic device using a PEDOT thin film, Journal of New Materials for Electrochemical Systems, 2005, 8, 37-47.
    [123] L. Ma, Y. Li, X. Yu, N. Zhu, Q. Yang, C.-H.J.J.o.S.S.E. Noh, Electrochemical preparation of PMeT/TiO 2 nanocomposite electrochromic electrodes with enhanced long-term stability, 2008, 12, 1503-1509.
    [124] F. Carlucci, A Review of Smart and Responsive Building Technologies and their Classifications, Future Cities and Environment, 2021, 7, 10.
    [125] A. Cannavale, F. Martellotta, F. Fiorito, U. Ayr, The Challenge for Building Integration of Highly Transparent Photovoltaics and Photoelectrochromic Devices, Energies, 2020, 13, 1929.
    [126] C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B.A. Gregg, Photoelectrochromic windows and displays, Nature, 1996, 383, 608-610.
    [127] A. Hauch, A. Georg, S. Baumgärtner, U.O. Krašovec, B. Orel, New photoelectrochromic device, Electrochimica Acta, 2001, 46, 2131-2136.
    [128] J.-J. Wu, M.-D. Hsieh, W.-P. Liao, W.-T. Wu, J.-S. Chen, Fast-switching photovoltachromic cells with tunable transmittance, ACS Nano, 2009, 3, 2297-2303.
    [129] A. Dokouzis, K. Theodosiou, G. Leftheriotis, Assessment of the long-term performance of partly covered photoelectrochromic devices under insolation and in storage, Solar Energy Materials and Solar Cells, 2018, 182, 281-293.
    [130] G. Boschloo, A. Hagfeldt, Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells, Accounts of Chemical Research, 2009, 42, 1819-1826.
    [131] X. Wu, J. Zheng, C. Xu, Highly optical performance photoelectrochromic device based on Br−/Br3− electrolyte, Electrochimica Acta, 2016, 191, 902-907.
    [132] X. Wu, J. Zheng, G. Luo, D. Zhu, C. Xu, Photoelectrochromic devices based on cobalt complex electrolytes, RSC Advances, 2016, 6, 81680-81684.
    [133] C.-Y. Hsu, K.-M. Lee, J.-H. Huang, K.J. Thomas, J.T. Lin, K.-C. Ho, A novel photoelectrochromic device with dual application based on poly (3, 4-alkylenedioxythiophene) thin film and an organic dye, Journal of Power Sources, 2008, 185, 1505-1508.
    [134] S. Yang, J. Zheng, M. Li, C. Xu, A novel photoelectrochromic device based on poly(3,4-(2,2-dimethylpropylenedioxy)thiophene) thin film and dye-sensitized solar cell, Solar Energy Materials and Solar Cells, 2012, 97, 186-190.
    [135] G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells, Nano Letters, 2006, 6, 215-218.
    [136] T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Pechy, Highly efficient dye-sensitized solar cells based on carbon black counter electrodes, Journal of the Electrochemical Society, 2006, 153, A2255.
    [137] K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J.-i. Nakamura, K. Murata, High-performance carbon counter electrode for dye-sensitized solar cells, Solar Energy Materials and Solar Cells, 2003, 79, 459-469.
    [138] J. Chen, K. Li, Y. Luo, X. Guo, D. Li, M. Deng, S. Huang, Q. Meng, A flexible carbon counter electrode for dye-sensitized solar cells, Carbon, 2009, 47, 2704-2708.
    [139] K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells, Chemistry Letters, 2003, 32, 28-29.
    [140] J. Han, H. Kim, D.Y. Kim, S.M. Jo, S.-Y. Jang, Water-soluble polyelectrolyte-grafted multiwalled carbon nanotube thin films for efficient counter electrode of dye-sensitized solar cells, ACS Nano, 2010, 4, 3503-3509.
    [141] J.D. Roy-Mayhew, D.J. Bozym, C. Punckt, I.A. Aksay, Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells, ACS Nano, 2010, 4, 6203-6211.
    [142] N.-R. Chiou, C. Lu, J. Guan, L.J. Lee, A.J. Epstein, Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties, Nature Nanotechnology, 2007, 2, 354-357.
    [143] J.M. D’Arcy, H.D. Tran, V.C. Tung, A.K. Tucker-Schwartz, R.P. Wong, Y. Yang, R.B. Kaner, Versatile solution for growing thin films of conducting polymers, Proceedings of the National Academy of Sciences, 2010, 107, 19673-19678.
    [144] B.H. Lee, S.H. Park, H. Back, K. Lee, Novel Film‐Casting Method for High‐Performance Flexible Polymer Electrodes, Advanced Functional Materials, 2011, 21, 487-493.
    [145] Q. Tai, B. Chen, F. Guo, S. Xu, H. Hu, B. Sebo, X.-Z. Zhao, In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells, ACS Nano, 2011, 5, 3795-3799.
    [146] K. Lee, S. Cho, M. Kim, J. Kim, J. Ryu, K.-Y. Shin, J. Jang, Highly porous nanostructured polyaniline/carbon nanodots as efficient counter electrodes for Pt-free dye-sensitized solar cells, Journal of Materials Chemistry A, 2015, 3, 19018-19026.
    [147] B. He, X. Zhang, H. Zhang, J. Li, Q. Meng, Q. Tang, Transparent molybdenum sulfide decorated polyaniline complex counter electrodes for efficient bifacial dye-sensitized solar cells, Solar Energy, 2017, 147, 470-478.
    [148] 鄭朝元鄭朝元, 設計具高光著色效率之新穎混合式光驅動電致色變元件並實設計具高光著色效率之新穎混合式光驅動電致色變元件並實現光學互補特性現光學互補特性之研究之研究, 化學工程系化學工程系, 國立臺灣科技大學國立臺灣科技大學, 台北市台北市, 2020, pp. 130.
    [149] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N.
    Vlachopoulos, M. Grätzel, Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, Journal of the American Chemical Society, 1993, 115, 6382-6390.
    [150] K. Zhang, Z. Cui, G. Xing, Y. Feng, S. Meng, Improved performance of dye-sensitized solar cells based on modified kaolin/PVDF-HFP composite gel electrolytes, RSC Advances, 2016, 6, 100079-100089.
    [151] G. Boschloo, L. Häggman, A. Hagfeldt, Quantification of the effect of 4-tert-butylpyridine addition to I-/I3-redox electrolytes in dye-sensitized nanostructured TiO2 solar cells, The Journal of Physical Chemistry B, 2006, 110, 13144-13150.
    [152] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Electrolytes in dye-sensitized solar cells, Chemical Reviews, 2015, 115, 2136-2173.
    [153] S. Wang, M. Sina, P. Parikh, T. Uekert, B. Shahbazian, A. Devaraj, Y.S. Meng, Role of 4-tert-butylpyridine as a hole transport layer morphological controller in perovskite solar cells, Nano Letters, 2016, 16, 5594-5600.
    [154] K. Kannankutty, C.-C. Chen, V.S. Nguyen, Y.-C. Lin, H.-H. Chou, C.-Y. Yeh, T.-C. Wei, tert-Butylpyridine Coordination with [Cu (dmp) 2] 2+/+ Redox Couple and Its Connection to the Stability of the Dye-Sensitized Solar Cell, ACS Applied Materials Interfaces, 2020, 12, 5812-5819.
    [155] J. Zou, Q. Yan, C. Li, Y. Lu, Z. Tong, Y. Xie, Light-absorbing pyridine derivative as a new electrolyte additive for developing efficient porphyrin dye-sensitized solar cells, ACS Applied Materials Interfaces, 2020, 12, 57017-57024.
    [156] N.M. Saidi, N. Farhana, S. Ramesh, K. Ramesh, Influence of different concentrations of 4-tert-butyl-pyridine in a gel polymer electrolyte towards improved performance of Dye-Sensitized Solar Cells (DSSC), Solar Energy, 2021, 216, 111-119.
    [157] A.J. Bard, L.R. Faulkner, Fundamentals and applications, Electrochemical Methods, 2001, 2, 580-632.
    [158] J. Colomer-Farrarons, P. Miribel-Català, A.I. Rodríguez-Villarreal, J. Samitier, Portable Bio-Devices: Design of electrochemical instruments from miniaturized to implantable devices, 2011.
    [159] A. Lasia, Modeling of experimental data, Electrochemical Impedance Spectroscopy and its Applications, Springer2014, pp. 301-321.
    [160] S. Wang, J. Tian, Recent advances in counter electrodes of quantum dot-sensitized solar cells, RSC Advances, 2016, 6, 90082-90099.
    [161] B.J. Venton, Ultraviolet-Visible (UV-Vis) Spectroscopy, JoVE Science Education Database. Analytical Chemistry. , 2021.
    [162] Y. Jusman, S.C. Ng, N.A. Abu Osman, Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX, The Scientific World Journal, 2014, 2014.
    [163] S. Mosca, C. Conti, N. Stone, P. Matousek, Spatially offset Raman spectroscopy, Nature Reviews Methods Primers, 2021, 1, 1-16.
    [164] 林正嵐林正嵐, 普魯士藍薄膜電極電化學析鍍與氧化還原行為之研究普魯士藍薄膜電極電化學析鍍與氧化還原行為之研究, 化學工程學研究所化學工程學研究所, 國立臺灣大學國立臺灣大學, 台北市台北市, 2002, pp. 125.
    [165] C.H. Yoon, R. Vittal, J. Lee, W.-S. Chae, K.-J. Kim, Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode, Electrochimica Acta, 2008, 53, 2890-2896.
    [166] R. Islam, R. Chan-Yu-King, J.-F. Brun, C. Gors, A. Addad, M. Depriester, A. Hadj-Sahraoui, F. Roussel, Transport and thermoelectric properties of polyaniline/reduced graphene oxide nanocomposites, Nanotechnology, 2014, 25, 475705.
    [167] M.-j. Li, C.-m. Liu, Y.-b. Xie, H.-b. Cao, H. Zhao, Y. Zhang, The evolution of surface charge on graphene oxide during the reduction and its application in electroanalysis, Carbon, 2014, 66, 302-311.
    [168] S.Y. Huang, G. Schlichthörl, A.J. Nozik, M. Grätzel, A.J. Frank, Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells, The Journal of Physical Chemistry B, 1997, 101, 2576-2582.
    [169] Y.-F. Lin, C.-T. Li, K.-C. Ho, A template-free synthesis of the hierarchical hydroxymethyl PEDOT tube-coral array and its application in dye-sensitized solar cells, Journal of Materials Chemistry A, 2016, 4, 384-394.
    [170] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, Journal of the American Chemical Society, 1993, 115, 6382-6390.
    [171] A. Dokouzis, F. Bella, K. Theodosiou, C. Gerbaldi, G. Leftheriotis, Photoelectrochromic devices with cobalt redox electrolytes, Materials Today Energy, 2020, 15, 100365.
    [172] I.T. Choi, M.J. Ju, S.H. Kang, M.S. Kang, B.S. You, J.Y. Hong, Y.K. Eom, S.H. Song, H.K. Kim, Structural effect of carbazole-based coadsorbents on the photovoltaic performance of organic dye-sensitized solar cells, Journal of Materials Chemistry A, 2013, 1, 9114-9121.
    [173] C. Longo, A. Nogueira, M.-A. De Paoli, H. Cachet, Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy, The Journal of Physical Chemistry B, 2002, 106, 5925-5930.
    [174] Q. Wang, J.-E. Moser, M. Grätzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells, The Journal of Physical Chemistry B, 2005, 109, 14945-14953.
    [175] T. Liu, K. Yu, L. Gao, H. Chen, N. Wang, L. Hao, T. Li, H. He, Z. Guo, A graphene quantum dot decorated SrRuO 3 mesoporous film as an efficient counter electrode for high-performance dye-sensitized solar cells, Journal of Materials Chemistry A, 2017, 5, 17848-17855.
    [176] T.M. Koh, K. Nonomura, N. Mathews, A. Hagfeldt, M. Grätzel, S.G. Mhaisalkar, A.C. Grimsdale, Influence of 4-tert-butylpyridine in DSCs with CoII/III redox mediator, The Journal of Physical Chemistry C, 2013, 117, 15515-15522.
    [177] N.M. Saidi, N.K. Farhana, S. Ramesh, K. Ramesh, Influence of different concentrations of 4-tert-butyl-pyridine in a gel polymer electrolyte towards improved performance of Dye-Sensitized Solar Cells (DSSC), Solar Energy, 2021, 216, 111-119.
    [178] J.-Y. Kim, J.Y. Kim, D.-K. Lee, B. Kim, H. Kim, M.J. Ko, Importance of 4-tert-butylpyridine in electrolyte for dye-sensitized solar cells employing SnO2 electrode, The Journal of Physical Chemistry C, 2012, 116, 22759-22766.
    [179] A.L. Johnson, E. Muetterties, J. Stohr, F. Sette, Chemisorption geometry of pyridine on platinum (111) by NEXAFS, The Journal of Physical Chemistry, 1985, 89, 4071-4075.
    [180] Y. Diamant, S. Chen, O. Melamed, A. Zaban, Core− shell nanoporous electrode for dye sensitized solar cells: the effect of the SrTiO3 shell on the electronic properties of the TiO2 core, The Journal of Physical Chemistry B, 2004, 107, 1977-1981.
    [181] A. Gupta, K. Sahu, M. Dhonde, V.V.S. Murty, Novel synergistic combination of Cu/S co-doped TiO2 nanoparticles incorporated as photoanode in dye sensitized solar cell, Solar Energy, 2020, 203, 296-303.
    [182] J. Zhang, J. Yang, G. Leftheriotis, H. Huang, Y. Xia, C. Liang, Y. Gan, W. Zhang, Integrated photo-chargeable electrochromic energy-storage devices, Electrochimica Acta, 2020, 345, 136235.

    無法下載圖示 全文公開日期 2026/08/31 (校內網路)
    全文公開日期 2026/08/31 (校外網路)
    全文公開日期 2026/08/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE