簡易檢索 / 詳目顯示

研究生: Anteneh Wodaje Bayeh
Anteneh Wodaje Bayeh
論文名稱: 先進金屬氧化物電催化觸媒修飾石墨氈應用於高效釩液流電池電極之研究
Advanced Metal Oxide Electrocatalysts Modified Graphite Felt as High-Performance Electrode for Vanadium Redox Flow Batteries
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 施劭儒
Shao-Ju Shih
吳嘉文
Chia-Wen Wu
洪逸明
Yi-Ming Hong
廖英志
Ying-Chih Liao
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 183
中文關鍵詞: 釩液流電池氧化鉭奈米顆粒VO2+/VO2+氧化還原對氧空缺W18O49氧化鎢奈米線電極材料還原氧化石墨烯電催化劑氧化鈦鈮-還原氧化石墨烯奈米複合物
外文關鍵詞: Vanadium redox flow batteries, Ta2O5-nanoparticles, redox couple (VO2+/VO2+), oxygen vacancy, W18O49 nanowires, electrode material, reduced graphene oxide, electrocatalyst, TiNb2O7–rGO nanocomposite
相關次數: 點閱:385下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 釩液流電池(VRFB)為目前最有前景的電化學大型儲能系統之一,然而,高生產成本及較低的能量效率仍限制其可行性。因此,發展低成本且有效的電極及觸媒材料為首要條件,為了提高能量密度與作為大型儲能系統的整體性能,人們已經對VRFB的電極改質進行廣泛的研究。
    首先,為了增進VRFB中石墨氈(GF)電極對於VO2+/VO2+的電化學活性,我們在GF表面製備一種穩定、高活性且分布均勻的六方晶型的氧化鉭(Ta2O5),透過掃描式電子顯微鏡(SEM)可以看到Ta2O5均勻分布在GF表面,表面上分布著數量適當且牢固附著的Ta2O5奈米顆粒,能有效提供活性點及提升親水性而使得電解液更容易吸附於電極表面,進而顯著的增進電極的電化學活性。特別的是,從循環伏安法(CV)和交流阻抗譜(EIS)的結果顯示,相較於其他電極,當Ta2O5奈米顆粒與石墨氈重量百分比為0.75 wt%時具有最佳的VO2+/VO2+電化學活性與可逆性,另外,以80 mA cm−2充放電電流密度,單電池能量效率相較於未處理GF約能提升9 %。此外,以相同充放電電流密度循環測試50圈後,並沒有明顯的效率衰減,意味著Ta2O5奈米顆粒依舊牢固地附著在GF表面。
    第二,吾人以單一步驟水熱法合成簡單、便宜且導電性佳的W18O49奈米線(W18O49NWs)修飾GF表面用於催化VO2+/VO2+反應,CV及EIS顯示W18O49NWs加速了正極端VO2+/VO2+氧化還原反應的動力學。為了進一步提升W18O49NWs的電化學性能,在氫氣及氬氣的組成氣氛中,調控其比例後高溫燒結,形成富含氧空缺之氫氣處理W18O49NWs(H-W18O49NWs),作為VRFB單電池之電極。該材料表現出優異的性能,在80 mA cm−2的高電流密度下,分別與W18O49NWs和未處理GF相比,提升約9.1 %與12.5 %的能量效率。H-W18O49NWs擁有如此優越的電化學性能主要歸因於大量的氧空缺,其已被證明為VO2+/VO2+反應的活性點,此外,其均勻性及一維結構促進了電子傳遞的步驟,增加親水性,因此在活性物質的質傳過程中大大降低了極化現象產生,經過一百次充放電的長期穩定性實驗,可以確認其出色的耐久性,且幾乎沒有任何衰退。
    最後,我們選用簡單、便宜且有效的氧化鈦鈮-還原氧化石墨烯(TiNb2O7–rGO)奈米複合物於釩液流電池之電化學觸媒,吾人利用分散、混和其前驅物於溶液中並且冷凍乾燥接著退火燒結製備此樣品。TiNb2O7奈米顆粒均勻分散在片狀rGO間,同時TiNb2O7奈米顆粒也分開片狀rGO,此協同效應防止奈米顆粒團聚和片狀rGO的互相堆疊。從循環伏安法和交流阻抗分析得知,在所有製備的樣品中,TiNb2O7–rGO在正極及負極分別對應於VO2+/VO2+和V3+/V2+反應對有最佳的電化學催化活性,促進釩離子反應動力學。相較於原始GF,在80及120 mA cm−2的電流密度下,分別提升了約11.1%及12.34%的能量效率。此優越的電化學性能乃歸因於rGO的高導電性,以及TiNb2O7 和 rGO介面性質所產生的協同效應。此外,經過200圈充放電穩定性測試後,TiNb2O7–rGO幾乎沒有任何活性衰退,證明在長時間測試中TiNb2O7–rGO仍附著在GF表面,足以說明其卓越的電化學活性及穩定性。


    As one of the most promising electrochemical energy storage systems, vanadium redox flow battery (VRFB) has received increasing attention due to its attractive features for large-scale storage applications. However, high production cost and the relatively low energy efficiency still limit their feasibility. Therefore, developments of powerful electrocatalyst and electrode materials with low cost are critical for the design of VRFB. To improve the energy density and overall performance for large scale applications, extensive research has been carried out on the electrode modification methods for VRFB.
    First, to increase the electrocatalytic activity of graphite felt (GF) electrodes in vanadium redox flow batteries (VRFBs) toward the VO2+/VO2+ redox couple, we prepared stable, high catalytic activity, and uniformly distributed hexagonal Ta2O5 nanoparticles on the surface of GF by varying the Ta2O5 contents. Scanning electron microscopy (SEM) revealed the amount and distribution uniformity of the electrocatalyst on the surface of GF. It was found that the optimum amount and uniformly immobilized Ta2O5 nanoparticles on GF surface provided the active sites, enhanced hydrophilicity and electrolyte accessibility, thus remarkably improved electrochemical performance of GF. In particular, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results showed that the Ta2O5-GF nanocomposite electrode with weight percentage of Ta2O5 to GF of 0.75 wt% exhibited the best electrochemical activity and reversibility toward the VO2+/VO2+ redox reaction, when compared with the other electrodes. The corresponding energy efficiency was enhanced by ~ 9% at a current density of 80 mA cm−2, as compared with untreated GF. Furthermore, the charge–discharge stability test with 0.75 wt% Ta2O5-GF electrode at 80 mA cm−2 showed that after 50 cycles, there was no obvious attenuation of efficiencies signifying, the best stability of Ta2O5 nanoparticles which strongly adhered on the GF surface.
    Second, we synthesized simple, inexpensive, and conductive W18O49 nanowires (W18O49NWs) as electrocatalysts on the surface of GF through the one-step solvothermal process. Cyclic voltammetry and electrochemical impedance spectroscopy studies revealed that W18O49NWs exhibit electrocatalytic effects on a VO2+/VO2+ redox couple on the positive side, which enhance the electrochemical kinetics of the redox reactions. To further improve the electrochemical performance of the W18O49NWs, the sample was thermally annealed with a controlled amount of H2/Ar atmosphere to form oxygen-vacancy–rich hydrogen-treated W18O49NWs (H-W18O49NWs). When used as an electrode in a VRFB single cell, this material demonstrated outstanding performance with 9.1% and 12.5% higher energy efficiency than cells assembled with W18O49NWs and treated GF, respectively, at a high current density of 80 mA cm−2. The superior performance of the H-W18O49NW electrocatalyst-based electrode can be attributed to the presence of numerous oxygen vacancies, which were proven to act as active sites for the VO2+/VO2+ redox reaction. Moreover, the uniformly immobilized and 1D nature of the W18O49NWs facilitated the charge-transport process, enhanced hydrophilicity and electrolyte accessibility, and thus remarkably reduced electrochemical polarization during the mass transfer of active species. The long-term cycling performance confirmed the outstanding durability of the as-prepared H-W18O49NWs–based electrode with negligible activity decay after 100 cycles.
    Third, we use a simple, low-cost, and powerful titanium niobium oxide–reduced graphene oxide (TiNb2O7–rGO) nanocomposite electrocatalyst which was synthesized through dispersion and blending in aqueous solution followed by freeze-drying and annealing for all-vanadium redox flow battery (VRFB). The TiNb2O7 nanoparticles are uniformly anchored between the rGO sheets; simultaneously, the rGO sheets are separated using TiNb2O7 nanoparticles. The synergistic effects between them prevent the agglomeration of the nanoparticles and restacking of the rGO sheets. Cyclic voltammetry and electrochemical impedance spectroscopy results reveal that among all prepared samples, the TiNb2O7–rGO nanocomposite electrocatalyst exhibits the most favorable electrocatalytic activity toward VO2+/VO2+ and V3+/V2+ at the positive electrode and the negative electrode, respectively, to facilitate the electrochemical kinetics of the vanadium redox reactions. The corresponding energy efficiency is improved by ~11.1% and 12.34% at current densities of 80 and 120 mA cm−2, respectively, compared with pristine graphite felt. The superior performance of the TiNb2O7–rGO nanocomposite electrode may have been due to the synergistic effects related to the high electronic conductivity of rGO nanosheets and the interfacial properties created within TiNb2O7 and rGO. Furthermore, the charge-discharge stability test demonstrates the outstanding stability of the TiNb2O7–rGO electrodes. The TiNb2O7–rGO-based VRFB exhibits negligible activity decay after 200 cycles. The remarkable electrocatalytic activity and mechanical stability are achieved due to the TiNb2O7–rGO nanocomposite being strongly anchored on the graphite felt surface for a substantial time during repetitive cycling.

    中文摘要 iii Abstract vii Acknowledgment x Table of Contents xii List of Figures xv List of Schemes xxii List of Tables xxiii Chapter 1: Introduction 1 Chapter 2: Literature review 4 2.1. Main features of vanadium redox flow battery 4 2.2. Electrode materials for VRFB 8 2.2.1. Carbon materials modified GF/CF 10 2.2.2. Electrocatalyst 21 2.3. Terms and definitions 44 2.4. Typical applications for vanadium redox flow batteries 45 2.4.1. Load leveling and peak shaving application 45 2.4.2. Combination with renewable energies such as wind and solar power generation 46 2.4.3. Power quality control applications 47 Chapter 3: Motivation 48 Chapter 4: Experimental instruments 53 4.1. List of chemicals and instruments 53 4.2. Materials characterization 54 4.3. Electrochemical measurements 56 Chapter 5: Ta2O5-nanoparticle-modified graphite felt as a high-performance electrode for vanadium redox flow battery 60 5.1. Experimental methods 61 5.1.1. Preparation of Ta2O5 nanoparticles on the surface of GFs 61 5.2. Results and Discussion 63 5.2.1 Structural and morphology characterization of GF and Ta2O5-GFs electrodes 63 5.2.2 Electrochemical characterization of GF and Ta2O5-GFs 71 5.3.3 Single cell performance 77 Chapter 6: Hydrogen-Treated Defect-Rich W18O49 Nanowires Modified Graphite Felt as High-Performance Electrode for Vanadium Redox Flow Battery 81 6.1. Introduction 81 6.2. Experimental methods 82 6.2.1. The Synthesis of W18O49 and H-W18O49 nanowires on the surface of GF 82 6.3. Results and discussion 83 6.3.1. Morphological and structural characterization 83 6.3.2. Electrochemical characterization 92 6.3.3. VRFB single-cell performance 95 Chapter 7: Synergistic Effects of TiNb2O7-reduced Graphene Oxide Nanocomposite Electrocatalyst for High-performance All-vanadium Redox Flow Battery 102 7.1. Introduction 102 7.2. Experimental 104 7.2.1. Catalyst design and Synthesis 104 7.3. Results and Discussion 106 7.3.1. Physicochemical Characterization of TiNb2O7 and TiNb2O7–rGO 106 7.3.2. Electrochemical Characterization 113 7.3.3. VRFB Single Cell Performance 116 Chapter 8: Conclusions 124 8.1. Ta2O5-nanoparticle-modified graphite felt as a high-performance electrode for vanadium redox flow battery 124 8.2. Hydrogen-Treated Defect-Rich W18O49 Nanowires Modified Graphite Felt as High-Performance Electrode for Vanadium Redox Flow Battery 125 8.3. Synergistic Effects of TiNb2O7-reduced Graphene Oxide Nanocomposite Electrocatalyst for High-performance All-vanadium Redox Flow Battery 125 Chapter 9: Summary and outlook 127 9.1. Overall conclusions of the dissertation 127 9.2. Outlook 129 References 131

    [1] A.W. Bayeh, D.M. Kabtamu, Y.-C. Chang, G.-C. Chen, H.-Y. Chen, G.-Y. Lin, T.-R. Liu, T.H. Wondimu, K.-C. Wang, C.-H. Wang, Ta2O5-Nanoparticle-Modified Graphite Felt As a High-Performance Electrode for a Vanadium Redox Flow Battery, ACS Sustainable Chemistry & Engineering, 6 (2018) 3019-3028.
    [2] A. Ejigu, M. Edwards, D.A. Walsh, Synergistic Catalyst–Support Interactions in a Graphene–Mn3O4 Electrocatalyst for Vanadium Redox Flow Batteries, ACS Catalysis, 5 (2015) 7122-7130.
    [3] A.W. Bayeh, D.M. Kabtamu, Y.-C. Chang, G.-C. Chen, H.-Y. Chen, G.-Y. Lin, T.-R. Liu, T.H. Wondimu, K.-C. Wang, C.-H. Wang, Synergistic effects of a TiNb2O7-reduced graphene oxide nanocomposite electrocatalyst for high-performance all-vanadium redox flow batteries, Journal of Materials Chemistry A, (2018).
    [4] K. Lin, R. Gómez-Bombarelli, E.S. Beh, L. Tong, Q. Chen, A. Valle, A. Aspuru-Guzik, M.J. Aziz, R.G. Gordon, A redox-flow battery with an alloxazine-based organic electrolyte, Nature Energy, 1 (2016) 16102.
    [5] C. Yang, H. Wang, S. Lu, C. Wu, Y. Liu, Q. Tan, D. Liang, Y. Xiang, Titanium nitride as an electrocatalyst for V(II)/V(III) redox couples in all-vanadium redox flow batteries, Electrochimica Acta, 182 (2015) 834-840.
    [6] Q. Huang, Q. Wang, Next-Generation, High-Energy-Density Redox Flow Batteries, ChemPlusChem, 80 (2014) 312-322.
    [7] P. Leung, X. Li, C. Ponce de León, L. Berlouis, C.T.J. Low, F.C. Walsh, Progress in redox flow batteries, remaining challenges and their applications in energy storage, RSC Advances, 2 (2012) 10125-10156.
    [8] K.L. Hawthorne, O.E. Theses, D. Center, Iron-Ligand Electrokinetics Towards an All-Iron Hybrid Redox Flow Battery, Case Western Reserve University2014.
    [9] C. Yao, H. Zhang, T. Liu, X. Li, Z. Liu, Carbon Paper Coated with Supported Tungsten Trioxide as Novel Electrode for All-Vanadium Flow Battery, J. Power Sources, 218 (2012) 455.
    [10] G.L. Soloveichik, Flow Batteries: Current Status and Trends, Chemical Reviews, 115 (2015) 11533-11558.
    [11] B. Li, M. Gu, Z. Nie, X. Wei, C. Wang, V. Sprenkle, W. Wang, Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium flow battery, Nano Lett., 14 (2014) 158.
    [12] Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical Energy Storage for Green Grid, Chemical Reviews, 111 (2011) 3577-3613.
    [13] K.J. Kim, M.S. Park, Y.J. Kim, J.H. Kim, S. Dou, M. Skyllas-Kazacos, A Technology Review of Electrodes and Reaction Mechanisms in Redox Flow Batteries, J. Mater. Chem. A, 3 (2015) 16913.
    [14] J. Noack, N. Roznyatovskaya, T. Herr, P. Fischer, The Chemistry of Redox-Flow Batteries, Angewandte Chemie International Edition, 54 (2015) 9776-9809.
    [15] C. Choi, S. Kim, R. Kim, Y. Choi, S. Kim, H.-y. Jung, J.H. Yang, H.-T. Kim, A review of vanadium electrolytes for vanadium redox flow batteries, Renewable and Sustainable Energy Reviews, 69 (2017) 263-274.
    [16] Z.G. Yang, J.L. Zhang, M.C.W. Kintner-Meyer, X.C. Lu, D.W. Choi, J.P. Lemmon, J. Liu, Electrochemical Energy Storage for Green Grid, Chem. Rev., 111 (2011) 3577.
    [17] P. Alotto, M. Guarnieri, F. Moro, Redox flow batteries for the storage of renewable energy: A review, Renewable and Sustainable Energy Reviews, 29 (2014) 325-335.
    [18] M.H. Yap, K.L. Fow, G. Chen, Zheng (2017) Synthesis and applications of MOF-derived porous nanostructures. Green Energy & Environment, 2 (3). pp. 218-245. ISSN 2468-0257, (2017).
    [19] L. Wei, T.S. Zhao, L. Zeng, X.L. Zhou, Y.K. Zeng, Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries, Applied Energy, 180 (2016) 386-391.
    [20] S. Jeong, S. Kim, Y. Kwon, Performance enhancement in vanadium redox flow battery using platinum-based electrocatalyst synthesized by polyol process, Electrochimica Acta, 114 (2013) 439-447.
    [21] C. Gao, N. Wang, S. Peng, S. Liu, Y. Lei, X. Liang, S. Zeng, H. Zi, Influence of Fenton's reagent treatment on electrochemical properties of graphite felt for all vanadium redox flow battery, Electrochimica Acta, 88 (2013) 193-202.
    [22] M.S.-K. B. Sun, Modification of graphite electrode materials for vanadium redox flow battery application—II. acid treatment,Acta. 1992, 37 (17), 2499, electrochemica Acta, 37 (1992) 2459-2465.
    [23] M.S.-K. B. Sun, Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment,Acta. 1992, 37 (7), 1253-1260, Electrochemica Acta, 37 (1992) 1253-1260.
    [24] A.M. Pezeshki, J.T. Clement, G.M. Veith, T.A. Zawodzinski, M.M. Mench, High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation, Journal of Power Sources, 294 (2015) 333-338.
    [25] T. Liu, X. Li, C. Xu, H. Zhang, Activated Carbon Fiber Paper Based Electrodes with High Electrocatalytic Activity for Vanadium Flow Batteries with Improved Power Density, ACS Applied Materials & Interfaces, 9 (2017) 4626-4633.
    [26] K.J. Kim, M.S. Park, J.H. Kim, U. Hwang, N.J. Lee, G. Jeong, Y.J. Kim, Novel Catalytic Effects of Mn3O4 for All Vanadium Redox Flow Batteries, Chem. Commun., 48 (2012) 5455.
    [27] D.M. Kabtamu, J.-Y. Chen, Y.-C. Chang, C.-H. Wang, Electrocatalytic activity of Nb-doped hexagonal WO3 nanowire-modified graphite felt as a positive electrode for vanadium redox flow batteries, Journal of Materials Chemistry A, 4 (2016) 11472-11480.
    [28] X. Wu, H. Xu, L. Lu, H. Zhao, J. Fu, Y. Shen, P. Xu, Y. Dong, PbO2-modified graphite felt as the positive electrode for an all-vanadium redox flow battery, Journal of Power Sources, 250 (2014) 274-278.
    [29] D.M. Kabtamu, A.W. Bayeh, T.-C. Chiang, Y.-C. Chang, G.-Y. Lin, T.H. Wondimu, S.-K. Su, C.-H. Wang, TiNb2O7 nanoparticle-decorated graphite felt as a high-performance electrode for vanadium redox flow batteries, Applied Surface Science, 462 (2018) 73-80.
    [30] Y.-C. Chang, Y.-C. Shih, J.-Y. Chen, G.-Y. Lin, N.-Y. Hsu, Y.-S. Chou, C.-H. Wang, High efficiency of bamboo-like carbon nanotubes on functionalized graphite felt as electrode in vanadium redox flow battery, RSC Advances, 6 (2016) 102068-102075.
    [31] D.M. Kabtamu, J.-Y. Chen, Y.-C. Chang, C.-H. Wang, Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries, Journal of Power Sources, 341 (2017) 270-279.
    [32] M. Ulaganathan, V. Aravindan, Q. Yan, S. Madhavi, M. Skyllas-Kazacos, T.M. Lim, Recent Advancements in All-Vanadium Redox Flow Batteries, Advanced Materials Interfaces, 3 (2015) 1500309.
    [33] M. Skyllas-Kazacos, C. Menictas, T. Lim, 12 - Redox flow batteries for medium- to large-scale energy storage, in: Z. Melhem (Ed.) Electricity Transmission, Distribution and Storage Systems, Woodhead Publishing2013, pp. 398-441.
    [34] W. Wang, X. Wei, D. Choi, X. Lu, G. Yang, C. Sun, Electrochemical cells for medium- and large-scale energy storage: fundamentals, in: C. Menictas, M. Skyllas-Kazacos, T.M. Lim (Eds.) Advances in Batteries for Medium and Large-Scale Energy Storage, Woodhead Publishing2015, pp. 3-28.
    [35] P. Qian, H. Zhang, J. Chen, Y. Wen, Q. Luo, Z. Liu, D. You, B. Yi, A novel electrode-bipolar plate assembly for vanadium redox flow battery applications, Journal of Power Sources, 175 (2008) 613-620.
    [36] P. Zhao, H. Zhang, H. Zhou, B. Yi, Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes, Electrochimica Acta, 51 (2005) 1091-1098.
    [37] Y.-C. Tseng, Design, construction, and study of performance improvment in a vanadium redox flow battery, Thesis, The Pennsylvania State University The Graduate School College of Engineering, (2011).
    [38] M. Skyllas‐Kazacos, M. Rychcik, R.G. Robins, A.G. Fane, M.A. Green, New All‐Vanadium Redox Flow Cell, Journal of The Electrochemical Society, 133 (1986) 1057-1058.
    [39] M. Skyllas‐Kazacos, F. Grossmith, Efficient Vanadium Redox Flow Cell, Journal of The Electrochemical Society, 134 (1987) 2950-2953.
    [40] M. Rychcik, M. Skyllas-Kazacos, Evaluation of electrode materials for vanadium redox cell, Journal of Power Sources, 19 (1987) 45-54.
    [41] M. Kazacos, M. Cheng, M. Skyllas-Kazacos, Vanadium redox cell electrolyte optimization studies, Journal of Applied Electrochemistry, 20 (1990) 463-467.
    [42] R. Badrinarayanan, J. Zhao, K.J. Tseng, M. Skyllas-Kazacos, Extended dynamic model for ion diffusion in all-vanadium redox flow battery including the effects of temperature and bulk electrolyte transfer, Journal of Power Sources, 270 (2014) 576-586.
    [43] P.A. Boettcher, E. Agar, C.R. Dennison, E.C. Kumbur, Modeling of Ion Crossover in Vanadium Redox Flow Batteries: A Computationally-Efficient Lumped Parameter Approach for Extended Cycling, Journal of The Electrochemical Society, 163 (2016) A5244-A5252.
    [44] T. Liu, X. Li, H. Zhang, J. Chen, Progress on the electrode materials towards vanadium flow batteries (VFBs) with improved power density, Journal of Energy Chemistry, 27 (2018) 1292-1303.
    [45] Y. Shao, Y. Cheng, W. Duan, W. Wang, Y. Lin, Y. Wang, J. Liu, Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: A Selected Review, ACS Catal., 5 (2015) 7288.
    [46] H. Zhang, a.J.Z. Xianfeng Li, Redox flow batteries fundamentas and application, book, (2018).
    [47] C. Ding, H. Zhang, X. Li, T. Liu, F. Xing, Vanadium Flow Battery for Energy Storage: Prospects and Challenges, The Journal of Physical Chemistry Letters, 4 (2013) 1281-1294.
    [48] M. Rychcik, M. Skyllas-Kazacos, Characteristics of a new all-vanadium redox flow battery, Journal of Power Sources, 22 (1988) 59-67.
    [49] T. Davies, J. Tummino, High-Performance Vanadium Redox Flow Batteries with Graphite Felt Electrodes, Journal of carbon research 4(2018) 8.
    [50] S. Zhong, C. Padeste, M. Kazacos, M. Skyllas-Kazacos, Comparison of the physical, chemical and electrochemical properties of rayon- and polyacrylonitrile-based graphite felt electrodes, Journal of Power Sources, 45 (1993) 29-41.
    [51] M.Z. Jelyani, S. Rashid-Nadimi, S. Asghari, Treated carbon felt as electrode material in vanadium redox flow batteries: a study of the use of carbon nanotubes as electrocatalyst, Journal of Solid State Electrochemistry, 21 (2017) 69-79.
    [52] H.Q. Zhu, Y.M. Zhang, L. Yue, W.S. Li, G.L. Li, D. Shu, H.Y. Chen, Graphite–carbon nanotube composite electrodes for all vanadium redox flow battery, Journal of Power Sources, 184 (2008) 637-640.
    [53] M. Park, I.-Y. Jeon, J. Ryu, J.-B. Baek, J. Cho, Exploration of the Effective Location of Surface Oxygen Defects in Graphene-Based Electrocatalysts for All-Vanadium Redox-Flow Batteries, Advanced Energy Materials, 5 (2014) 1401550.
    [54] W. Li, J. Liu, C. Yan, Reduced graphene oxide with tunable C/O ratio and its activity towards vanadium redox pairs for an all vanadium redox flow battery, Carbon, 55 (2013) 313-320.
    [55] W. Li, J. Liu, C. Yan, Multi-walled carbon nanotubes used as an electrode reaction catalyst for VO2+/VO2+ for a vanadium redox flow battery, Carbon, 49 (2011) 3463-3470.
    [56] W. Li, J. Liu, C. Yan, The electrochemical catalytic activity of single-walled carbon nanotubes towards VO2+/VO2+ and V3+/V2+ redox pairs for an all vanadium redox flow battery, Electrochimica Acta, 79 (2012) 102-108.
    [57] C.W. Tan, K.H. Tan, Y.T. Ong, A.R. Mohamed, S.H.S. Zein, S.H. Tan, Energy and environmental applications of carbon nanotubes, Environmental Chemistry Letters, 10 (2012) 265-273.
    [58] G. Wei, C. Jia, J. Liu, C. Yan, Carbon felt supported carbon nanotubes catalysts composite electrode for vanadium redox flow battery application, Journal of Power Sources, 220 (2012) 185-192.
    [59] P. Han, H. Wang, Z. Liu, X. Chen, W. Ma, J. Yao, Y. Zhu, G. Cui, Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/VO2+ and V2+/V3+ redox couples for a vanadium redox flow battery, Carbon, 49 (2011) 693-700.
    [60] Z. González, C. Botas, C. Blanco, R. Santamaría, M. Granda, P. Álvarez, R. Menéndez, Graphite oxide-based graphene materials as positive electrodes in vanadium redox flow batteries, Journal of Power Sources, 241 (2013) 349-354.
    [61] P. Han, Y. Yue, Z. Liu, W. Xu, L. Zhang, H. Xu, S. Dong, G. Cui, Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2+ redox couples for vanadium redox flow batteries, Energy & Environmental Science, 4 (2011) 4710-4717.
    [62] W. Li, J. Liu, C. Yan, Graphite-Graphite Oxide Composite Electrode for Vanadium flow battery, Electrochim. Acta, 56 (2011) 5290.
    [63] B.E. Conway, Electrochemical supercapacitors–scientific fundamentals and technological applications, Book (1999).
    [64] J. Jin, X. Fu, Q. Liu, Y. Liu, Z. Wei, K. Niu, J. Zhang, Identifying the Active Site in Nitrogen-Doped Graphene for the VO2+/VO2+ Redox Reaction, ACS Nano, 7 (2013) 4764-4773.
    [65] S. Park, H. Kim, Fabrication of nitrogen-doped graphite felts as positive electrodes using polypyrrole as a coating agent in vanadium redox flow batteries, Journal of Materials Chemistry A, 3 (2015) 12276-12283.
    [66] S. Wang, X. Zhao, T. Cochell, A. Manthiram, Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries, The Journal of Physical Chemistry Letters, 3 (2012) 2164-2167.
    [67] W. Zhang, J. Xi, Z. Li, H. Zhou, L. Liu, Z. Wu, X. Qiu, Electrochemical activation of graphite felt electrode for VO2+/VO2+ redox couple application, Electrochimica Acta, 89 (2013) 429-435.
    [68] M.S.-K. B. Sun, Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment, Electrochemica Acta, 37 (1992) 1253-1260.
    [69] M.S.-K. B. Sun, Modification of graphite electrode materials for vanadium redox flow battery application—II. acid treatment, electrochemica Acta, 37 (1992) 2459-2465.
    [70] B. Sun, M. Skyllas-Kazakos, Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution, Electrochimica Acta, 36 (1991) 513-517.
    [71] H. Zhou, J. Xi, Z. Li, Z. Zhang, L. Yu, L. Liu, X. Qiu, L. Chen, CeO2 decorated graphite felt as a high-performance electrode for vanadium redox flow batteries, RSC Advances, 4 (2014) 61912-61918.
    [72] Y. Shen, H. Xu, P. Xu, X. Wu, Y. Dong, L. Lu, Electrochemical catalytic activity of tungsten trioxide- modified graphite felt toward VO2+/VO2+ redox reaction, Electrochimica Acta, 132 (2014) 37-41.
    [73] Z. He, L. Dai, S. Liu, L. Wang, C. Li, Mn3O4 anchored on carbon nanotubes as an electrode reaction catalyst of V(IV)/V(V) couple for vanadium redox flow batteries, Electrochimica Acta, 176 (2015) 1434-1440.
    [74] B. Li, M. Gu, Z. Nie, Y. Shao, Q. Luo, X. Wei, X. Li, J. Xiao, C. Wang, V. Sprenkle, W. Wang, Bismuth Nanoparticle Decorating Graphite Felt as a High-Performance Electrode for an All-Vanadium Redox Flow Battery, Nano Lett., 13 (2013) 1330.
    [75] B. Sun, M. Skyllas-Kazacos, Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment, Electrochimica Acta, 37 (1992) 1253-1260.
    [76] B. Sun, M. Skyllas-Kazacos, Chemical modification of graphite electrode materials for vanadium redox flow battery application—part II. Acid treatments, Electrochimica Acta, 37 (1992) 2459-2465.
    [77] X. Wu, H. Xu, P. Xu, Y. Shen, L. Lu, J. Shi, J. Fu, H. Zhao, Microwave-treated graphite felt as the positive electrode for all-vanadium redox flow battery, Journal of Power Sources, 263 (2014) 104-109.
    [78] L. Yue, W. Li, F. Sun, L. Zhao, L. Xing, Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery, Carbon, 48 (2010) 3079-3090.
    [79] K.J. Kim, S.-W. Lee, T. Yim, J.-G. Kim, J.W. Choi, J.H. Kim, M.-S. Park, Y.-J. Kim, A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries, Scientific Reports, 4 (2014) 6906.
    [80] L. Yue, W. Li, F. Sun, L. Zhao, L. Xing, Highly Hydroxylated Carbon Fibres as Electrode Materials of All-Vanadium Redox Flow Battery, Carbon, 48 (2010) 3079.
    [81] K.J. Kim, Y.J. Kim, J.H. Kim, M.S. Park, The Effects of Surface Modification on Carbon Felt Electrodes For Use in Vanadium Redox Flow Batteries, Mater. Chem. Phys., 131 (2011) 547.
    [82] T.S. Yue Men, Carbon Felts Electrode Treated in Different Weak Acid Solutions through Electrochemical Oxidation Method for All Vanadium Redox Flow Battery, Journal of Electrochem Science 7 (2012) 3482 - 3488.
    [83] Y.-C. Chang, J.-Y. Chen, D.M. Kabtamu, G.-Y. Lin, N.-Y. Hsu, Y.-S. Chou, H.-J. Wei, C.-H. Wang, High efficiency of CO2-activated graphite felt as electrode for vanadium redox flow battery application, Journal of Power Sources, 364 (2017) 1-8.
    [84] Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, J. Liu, Z. Yang, Y. Lin, Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries, Journal of Power Sources, 195 (2010) 4375-4379.
    [85] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction, Science, 323 (2009) 760.
    [86] Y. Shao, Y. Cheng, W. Duan, W. Wang, Y. Lin, Y. Wang, J. Liu, Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: A Selected Review, ACS Catalysis, 5 (2015) 7288-7298.
    [87] Y. Huang, Q. Deng, X. Wu, S. Wang, N, O Co-doped carbon felt for high-performance all-vanadium redox flow battery, International Journal of Hydrogen Energy, 42 (2017) 7177-7185.
    [88] H.R. Jiang, W. Shyy, L. Zeng, R.H. Zhang, T.S. Zhao, Highly efficient and ultra-stable boron-doped graphite felt electrodes for vanadium redox flow batteries, Journal of Materials Chemistry A, 6 (2018) 13244-13253.
    [89] J. Su, Y. Zhao, J. Xi, Phosphorus-doped carbon nitride as powerful electrocatalyst for high-power vanadium flow battery, Electrochimica Acta, 286 (2018) 22-28.
    [90] J. Ryu, M. Park, J. Cho, Catalytic Effects of B/N-co-Doped Porous Carbon Incorporated with Ketjenblack Nanoparticles for All-Vanadium Redox Flow Batteries, Journal of The Electrochemical Society, 163 (2016) A5144-A5149.
    [91] V. Pasala, J.N. Ramavath, C. He, V.K. Ramani, K. Ramanujam, N- and P-co-doped Graphite Felt Electrode for Improving Positive Electrode Chemistry of the Vanadium Redox Flow Battery, ChemistrySelect, 3 (2018) 8678-8687.
    [92] W.H. Wang, X.D. Wang, Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery, Electrochimica Acta, 52 (2007) 6755-6762.
    [93] C. Flox, J. Rubio-Garcia, R. Nafria, R. Zamani, M. Skoumal, T. Andreu, J. Arbiol, A. Cabot, J.R. Morante, Active nano-CuPt3 electrocatalyst supported on graphene for enhancing reactions at the cathode in all-vanadium redox flow batteries, Carbon, 50 (2012) 2372-2374.
    [94] Z. González, A. Sánchez, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery, Electrochemistry Communications, 13 (2011) 1379-1382.
    [95] D.J. Suárez, Z. González, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, Graphite Felt Modified with Bismuth Nanoparticles as Negative Electrode in a Vanadium Redox Flow Battery, ChemSusChem, 7 (2014) 914-918.
    [96] S.H.M.R. Maria Skyllas-Kazacos, Bankstown; Robert Robins,, All-vanadium redox battery with additives, US patent PCT/AU88/00472 (1998).
    [97] A.D. Blasi, C. Busacca, O.D. Blasi, N. Briguglio, V. Antonucci, Synthesis and Characterization of Electrospun Nickel-Carbon Nanofibers as Electrodes for Vanadium Redox Flow Battery, Journal of The Electrochemical Society, 165 (2018) A1478-A1485.
    [98] K.J. Kim, M.-S. Park, J.-H. Kim, U. Hwang, N.J. Lee, G. Jeong, Y.-J. Kim, Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries, Chemical Communications, 48 (2012) 5455-5457.
    [99] N. Yun, J.J. Park, O.O. Park, K.B. Lee, J.H. Yang, Electrocatalytic effect of NiO nanoparticles evenly distributed on a graphite felt electrode for vanadium redox flow batteries, Electrochimica Acta, 278 (2018) 226-235.
    [100] H. Zhou, Y. Shen, J. Xi, X. Qiu, L. Chen, ZrO2-Nanoparticle-Modified Graphite Felt: Bifunctional Effects on Vanadium Flow Batteries, ACS Applied Materials & Interfaces, 8 (2016) 15369-15378.
    [101] M. Skyllas-Kazacos, M.H. Chakrabarti, S.A. Hajimolana, F.S. Mjalli, M. Saleem, Progress in Flow Battery Research and Development, Journal of The Electrochemical Society, 158 (2011) R55-R79.
    [102] L. Wei, T.S. Zhao, L. Zeng, Y.K. Zeng, H.R. Jiang, Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries, Journal of Power Sources, 341 (2017) 318-326.
    [103] P.C. Ghimire, R. Schweiss, G.G. Scherer, N. Wai, T.M. Lim, A. Bhattarai, T.D. Nguyen, Q. Yan, Titanium carbide-decorated graphite felt as high performance negative electrode in vanadium redox flow batteries, J. Mater. Chem. A, 6 (2018) 6625-6632.
    [104] W. Lee, C. Jo, S. Youk, H.Y. Shin, J. Lee, Y. Chung, Y. Kwon, Mesoporous tungsten oxynitride as electrocatalyst for promoting redox reactions of vanadium redox couple and performance of vanadium redox flow battery, Appl. Surf. Sci., 429 (2018) 187-195.
    [105] J. Vázquez-Galván, C. Flox, C. Fàbrega, E. Ventosa, A. Parra, T. Andreu, J.R. Morante, Hydrogen-Treated Rutile TiO2 Shell in Graphite-Core Structure as a Negative Electrode for High-Performance Vanadium Redox Flow Batteries, ChemSusChem, 10 (2017) 2089-2098.
    [106] M. Jing, X. Zhang, X. Fan, L. Zhao, J. Liu, C. Yan, CeO2 embedded electrospun carbon nanofibers as the advanced electrode with high effective surface area for vanadium flow battery, Electrochimica Acta, 215 (2016) 57-65.
    [107] T.-M. Tseng, R.-H. Huang, C.-Y. Huang, C.-C. Liu, K.-L. Hsueh, F.-S. Shieu, Carbon Felt Coated with Titanium Dioxide/Carbon Black Composite as Negative Electrode for Vanadium Redox Flow Battery, Journal of The Electrochemical Society, 161 (2014) A1132-A1138.
    [108] J.-Z. Chen, W.-Y. Liao, W.-Y. Hsieh, C.-C. Hsu, Y.-S. Chen, All-vanadium redox flow batteries with graphite felt electrodes treated by atmospheric pressure plasma jets, Journal of Power Sources, 274 (2015) 894-898.
    [109] G. Wei, X. Fan, J. Liu, C. Yan, Investigation of the electrospun carbon web as the catalyst layer for vanadium redox flow battery, Journal of Power Sources, 270 (2014) 634-645.
    [110] M.V. Holland-Cunz, F. Cording, J. Friedl, U. Stimming, Redox flow batteries—Concepts and chemistries for cost-effective energy storage, Frontiers in Energy, 12 (2018) 198-224.
    [111] Á. Cunha, J. Martins, N. Rodrigues, F.P. Brito, Vanadium redox flow batteries: a technology review, International Journal of Energy Research, 39 (2014) 889-918.
    [112] J.-T. Han, Y.-H. Huang, J.B. Goodenough, New Anode Framework for Rechargeable Lithium Batteries, Chemistry of Materials, 23 (2011) 2027-2029.
    [113] C. Lin, S. Yu, H. Zhao, S. Wu, G. Wang, L. Yu, Y. Li, Z.-Z. Zhu, J. Li, S. Lin, Defective Ti2Nb10O27.1: an advanced anode material for lithium-ion batteries, Scientific Reports, 5 (2015) 17836.
    [114] X. Wu, J. Miao, W. Han, Y.-S. Hu, D. Chen, J.-S. Lee, J. Kim, L. Chen, Investigation on Ti2Nb10O29 anode material for lithium-ion batteries, Electrochemistry Communications, 25 (2012) 39-42.
    [115] B. Sun, M. Skyllas-Kazacos, Modification of Graphite Electrode Materials for Vanadium flow battery Application—I. Thermal Treatment, Electrochim. Acta, 37 (1992) 1253.
    [116] B. Sun, M. Skyllas-Kazacos, Modification of Graphite Electrode Materials for Vanadium flow battery Application—Part II. Acid Treatments, Electrochim. Acta, 37 (1992) 2459.
    [117] A. Parasuraman, T.M. Lim, C. Menictas, M. Skyllas-Kazacos, Review of material research and development for vanadium redox flow battery applications, Electrochimica Acta, 101 (2013) 27-40.
    [118] M. Jing, X. Zhang, X. Fan, L. Zhao, J. Liu, C. Yan, CeO2 embedded electrospun carbon nanofibers as the advanced electrode with high effective surface area for vanadium flow battery, Electrochimica Acta, 215 (2016) 57-65.
    [119] X. Wu, H. Xu, L. Lu, H. Zhao, J. Fu, Y. Shen, P. Xu, Y. Dong, PbO2-modified graphite felt as the positive electrode for an all-vanadium redox flow battery, Journal of Power Sources, 250 (2014) 274-278.
    [120] C. Yao, H. Zhang, T. Liu, X. Li, Z. Liu, Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery, Journal of Power Sources, 218 (2012) 455-461.
    [121] W. Wang, Q. Luo, B. Li, X. Wei, L. Li, Z. Yang, Recent progress in redox flow battery research and development, Adv. Funct. Mater., 23 (2013) 970-986.
    [122] B. Li, M. Gu, Z. Nie, Y. Shao, Q. Luo, X. Wei, X. Li, J. Xiao, C. Wang, V. Sprenkle, W. Wang, Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery, Nano Lett, 13 (2013) 1330-1335.
    [123] X. Yu, Y. Wei, Z. Li, J. Liu, One-step synthesis of the single crystal Ta2O5 nanowires with superior hydrogen production activity, Materials Letters, 191 (2017) 150-153.
    [124] M.M. Momeni, M. Mirhosseini, M. Chavoshi, Growth and characterization of Ta2O5 nanorod and WTa2O5 nanowire films on the tantalum substrates by a facile one-step hydrothermal method, Ceramics International, 42 (2016) 9133-9138.
    [125] C. Zhou, L. Shang, H. Yu, T. Bian, L.-Z. Wu, C.-H. Tung, T. Zhang, Mesoporous plasmonic Au-loaded Ta2O5 nanocomposites for efficient visible light photocatalysis, Catalysis Today, 225 (2014) 158-163.
    [126] A.A. Ismail, M. Faisal, F.A. Harraz, A. Al-Hajry, A.G. Al-Sehemi, Synthesis of mesoporous sulfur-doped Ta2O5 nanocomposites and their photocatalytic activities, Journal of Colloid and Interface Science, 471 (2016) 145-154.
    [127] C. Tao, L. Xu, J. Guan, Well-dispersed mesoporous Ta2O5 submicrospheres: Enhanced photocatalytic activity by tuning heating rate at calcination, Chemical Engineering Journal, 229 (2013) 371-377.
    [128] S. Chandrabose Raghu, M. Ulaganathan, T.M. Lim, M. Skyllas Kazacos, Electrochemical behaviour of titanium/iridium(IV) oxide: Tantalum pentoxide and graphite for application in vanadium redox flow battery, Journal of Power Sources, 238 (2013) 103-108.
    [129] G. Zhu, T. Lin, H. Cui, W. Zhao, H. Zhang, F. Huang, Gray Ta2O5 Nanowires with Greatly Enhanced Photocatalytic Performance, ACS Appl Mater Interfaces, 8 (2016) 122-127.
    [130] A. Di Blasi, O. Di Blasi, N. Briguglio, A.S. Aricò, D. Sebastián, M.J. Lázaro, G. Monforte, V. Antonucci, Investigation of several graphite-based electrodes for vanadium redox flow cell, J. Power Sources, 227 (2013) 15-23.
    [131] L. Estevez, D. Reed, Z. Nie, A.M. Schwarz, M.I. Nandasiri, J.P. Kizewski, W. Wang, E. Thomsen, J. Liu, J.G. Zhang, V. Sprenkle, B. Li, Tunable Oxygen Functional Groups as Electrocatalysts on Graphite Felt Surfaces for All-Vanadium Flow Batteries, ChemSusChem, 9 (2016) 1455-1461.
    [132] C. Gao, N. Wang, S. Peng, S. Liu, Y. Lei, X. Liang, S. Zeng, H. Zi, Influence of Fenton's reagent treatment on electrochemical properties of graphite felt for all vanadium redox flow battery, Electrochim. Acta, 88 (2013) 193-202.
    [133] S. Fu, C. Zhu, J. Song, M.H. Engelhard, D. Du, Y. Lin, Three-dimensional Nitrogen-Doped Reduced Graphene Oxide/Carbon Nanotube Composite Catalysts for Vanadium Flow Batteries, Electroanalysis, (2017).
    [134] C. Flox, M. Skoumal, J. Rubio-Garcia, T. Andreu, J.R. Morante, Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries, Applied Energy, 109 (2013) 344-351.
    [135] H.T. Thu Pham, C. Jo, J. Lee, Y. Kwon, MoO2 nanocrystals interconnected on mesocellular carbon foam as a powerful catalyst for vanadium redox flow battery, RSC Advances, 6 (2016) 17574-17582.
    [136] T. Das, C. Mahata, S. Mallik, S. Varma, G. Sutradhar, P.K. Bose, C.K. Maiti, Interface Properties of Mixed (TiO2)1−x(Y2O3)x and (Ta2O5)1−x(Y2O3)x (0≤x≤1) Gate Dielectrics on Sulfur-Passivated GaAs, Journal of The Electrochemical Society, 159 (2012) H323-H328.
    [137] M. Textor, L. Ruiz, R. Hofer, A. Rossi, K. Feldman, G. Hähner, N.D. Spencer, Structural Chemistry of Self-Assembled Monolayers of Octadecylphosphoric Acid on Tantalum Oxide Surfaces, Langmuir, 16 (2000) 3257-3271.
    [138] D.M. Kabtamu, Y.-C. Chang, G.-Y. Lin, A.W. Bayeh, J.-Y. Chen, T.H. Wondimu, C.-H. Wang, Three-dimensional annealed WO3 nanowire/graphene foam as an electrocatalytic material for all vanadium redox flow batteries, Sustainable Energy & Fuels, (2017).
    [139] M.-A. Goulet, M. Skyllas-Kazacos, E. Kjeang, The importance of wetting in carbon paper electrodes for vanadium redox reactions, Carbon, 101 (2016) 390-398.
    [140] M.S.-K. B. Sun, Modification of graphite electrode materials for vanadium redox flow battery application, Electrochim. Acta, 37 (1992) 1253-1260.
    [141] R.S. Devan, C.-L. Lin, S.-Y. Gao, C.-L. Cheng, Y. Liou, Y.-R. Ma, Enhancement of green-light photoluminescence of Ta2O5 nanoblock stacks, Phys. Chem. Chem. Phys., 13 (2011) 13441-13446.
    [142] K.J. Kim, M.-S. Park, Y.-J. Kim, J.H. Kim, S.X. Dou, M. Skyllas-Kazacos, A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries, J. Mater. Chem. A, 3 (2015) 16913-16933.
    [143] L. Wu, Y. Shen, L. Yu, J. Xi, X. Qiu, Boosting vanadium flow battery performance by Nitrogen-doped carbon nanospheres electrocatalyst, Nano Energy, 28 (2016) 19-28.
    [144] S. Wang, X. Zhao, T. Cochell, A. Manthiram, Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium flow battery, J. Phys. Chem. Lett., 3 (2012) 2164.
    [145] T. Liu, X. Li, C. Xu, H. Zhang, Activated Carbon Fiber Paper Based Electrodes with High Electrocatalytic Activity for Vanadium Flow Batteries with Improved Power Density, ACS Appl Mater Interfaces, 9 (2017) 4626-4633.
    [146] Y. Zhou, L. Liu, Y. Shen, L. Wu, L. Yu, F. Liang, J. Xi, Carbon dots promoted vanadium flow batteries for all-climate energy storage, Chemical Communications, 53 (2017) 7565-7568.
    [147] C. Yao, H. Zhang, T. Liu, X. Li, Z. Liu, Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery, Journal of Power Sources, 218 (2012) 455-461.
    [148] K.J. Kim, M.-S. Park, Y.-J. Kim, J.H. Kim, S.X. Dou, M. Skyllas-Kazacos, A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries, Journal of Materials Chemistry A, 3 (2015) 16913-16933.
    [149] C. Ponce de León, A. Frías-Ferrer, J. González-García, D.A. Szánto, F.C. Walsh, Redox flow cells for energy conversion, J. Power Sources, 160 (2006) 716-732.
    [150] C. Lin, S. Yu, H. Zhao, S. Wu, G. Wang, L. Yu, Y. Li, Z.-Z. Zhu, J. Li, S. Lin, Defective Ti2Nb10O27.1: an advanced anode material for lithium-ion batteries, 5 (2015) 17836.
    [151] S.T. Oyama, Preparation and catalytic properties of transition metal carbides and nitrides, Catalysis Today, 15 (1992) 179-200.
    [152] X. Zhong, Y. Sun, X. Chen, G. Zhuang, X. Li, J.-G. Wang, Mo Doping Induced More Active Sites in Urchin-Like W18O49 Nanostructure with Remarkably Enhanced Performance for Hydrogen Evolution Reaction, Advanced Functional Materials, 26 (2016) 5778-5786.
    [153] W. Zhang, C. Lin, S. Cong, J. Hou, B. Liu, F. Geng, J. Jin, M. Wu, Z. Zhao, W18O49 nanowire composites as novel barrier layers for Li-S batteries based on high loading of commercial micro-sized sulfur, RSC Advances, 6 (2016) 15234-15239.
    [154] G. Hai, J. Huang, L. Cao, Y. Jie, J. Li, X. Wang, G. Zhang, Influence of oxygen deficiency on the synthesis of tungsten oxide and the photocatalytic activity for the removal of organic dye, Journal of Alloys and Compounds, 690 (2017) 239-248.
    [155] L. Jincheng, M. Olivier, D. Walid, L. Xianjie, F. Mats, A. Jorg, Gram-Scale Synthesis of Ultrathin Tungsten Oxide Nanowires and their Aspect Ratio-Dependent Photocatalytic Activity, Advanced Functional Materials, 24 (2014) 6029-6037.
    [156] T.H. Wondimu, G.-C. Chen, D.M. Kabtamu, H.-Y. Chen, A.W. Bayeh, H.-C. Huang, C.H. Wang, Highly efficient and durable phosphine reduced iron-doped tungsten oxide/reduced graphene oxide nanocomposites for the hydrogen evolution reaction, International Journal of Hydrogen Energy, 43 (2018) 6481-6490.
    [157] L. Xiao, S. Zhang, J. Huang, Effective removal of organic dyes by tungstate oxide nanourchins, Powder Technology, 258 (2014) 297-303.
    [158] Y. Tian, S. Cong, W. Su, H. Chen, Q. Li, F. Geng, Z. Zhao, Synergy of W18O49 and Polyaniline for Smart Supercapacitor Electrode Integrated with Energy Level Indicating Functionality, Nano Letters, 14 (2014) 2150-2156.
    [159] J. Guo, Y. Shi, H. Zhou, X. Wang, T. Ma, A novel composite of W18O49 nanorods on reduced graphene oxide sheets based on in situ synthesis and catalytic performance for oxygen reduction reaction, RSC Advances, 7 (2017) 2051-2057.
    [160] S. Cong, Y. Yuan, Z. Chen, J. Hou, M. Yang, Y. Su, Y. Zhang, L. Li, Q. Li, F. Geng, Z. Zhao, Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies, Nature Communications, 6 (2015) 7800.
    [161] A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C.L. Bianchi, R. Psaro, V. Dal Santo, Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO2 Nanoparticles, Journal of the American Chemical Society, 134 (2012) 7600-7603.
    [162] Y. Qin, W. Xie, Y. Liu, Z. Ye, Thermal-oxidative growth of aligned W18O49 nanowire arrays for high performance gas sensor, Sensors and Actuators B: Chemical, 223 (2016) 487-495.
    [163] X. Chang, S. Sun, L. Dong, X. Hu, Y. Yin, Tungsten oxide nanowires grown on graphene oxide sheets as high-performance electrochromic material, Electrochimica Acta, 129 (2014) 40-46.
    [164] G. Li, S. Zhang, C. Guo, S. Liu, Absorption and electrochromic modulation of near-infrared light: realized by tungsten suboxide, Nanoscale, 8 (2016) 9861-9868.
    [165] S. Sun, X. Chang, T. Liu, Y. Lu, Y. Wang, Solvothermal synthesis of tungsten oxide mesocrystals and their electrochromic performance, Mater. Lett., 105 (2013) 54-57.
    [166] T.F. Chala, C.-M. Wu, M.-H. Chou, Z.-L. Guo, Melt Electrospun Reduced Tungsten Oxide /Polylactic Acid Fiber Membranes as a Photothermal Material for Light-Driven Interfacial Water Evaporation, ACS Applied Materials & Interfaces, 10 (2018) 28955-28962.
    [167] X. He, Y. Yin, J. Guo, H. Yuan, Y. Peng, Y. Zhou, D. Zhao, K. Hai, W. Zhou, D. Tang, Memristive properties of hexagonal WO(3) nanowires induced by oxygen vacancy migration, Nanoscale Research Letters, 8 (2013) 50-50.
    [168] T.H. Wondimu, G.-C. Chen, H.-Y. Chen, D.M. Kabtamu, A.W. Bayeh, K.-C. Wang, H.-C. Huang, C.-H. Wang, High catalytic activity of oxygen-vacancy-rich tungsten oxide nanowires supported by nitrogen-doped reduced graphene oxide for the hydrogen evolution reaction, Journal of Materials Chemistry A, (2018).
    [169] S. Jeon, K. Yong, Synthesis and characterization of tungsten oxide nanorods from chemical vapor deposition-grown tungsten film by low-temperature thermal annealing, Journal of Materials Research, 23 (2011) 1320-1326.
    [170] Y. Zhao, Q. Tang, P. Yang, B. He, Robust electrocatalysts from metal doped W18O49 nanofibers for hydrogen evolution, Chemical Communications, 53 (2017) 4323-4326.
    [171] Z.-F. Huang, J. Song, L. Pan, F. Lv, Q. Wang, J.-J. Zou, X. Zhang, L. Wang, Mesoporous W18O49 hollow spheres as highly active photocatalysts, Chemical Communications, 50 (2014) 10959-10962.
    [172] X. Li, S. Yang, J. Sun, P. He, X. Xu, G. Ding, Tungsten oxide nanowire-reduced graphene oxide aerogel for high-efficiency visible light photocatalysis, Carbon, 78 (2014) 38-48.
    [173] J. Song, Z.-F. Huang, L. Pan, J.-J. Zou, X. Zhang, L. Wang, Oxygen-Deficient Tungsten Oxide as Versatile and Efficient Hydrogenation Catalyst, ACS Catalysis, 5 (2015) 6594-6599.
    [174] M. Saleem, M.F. Al-Kuhaili, S.M.A. Durrani, A.H.Y. Hendi, I.A. Bakhtiari, S. Ali, Influence of hydrogen annealing on the optoelectronic properties of WO3 thin films, International Journal of Hydrogen Energy, 40 (2015) 12343-12351.
    [175] M. Park, Y.-J. Jung, J. Kim, H.I. Lee, J. Cho, Synergistic effect of carbon nanofiber/nanotube composite catalyst on carbon felt electrode for high-performance all-vanadium redox flow battery, Nano Lett., 13 (2013) 4833-4839.
    [176] D.M. Kabtamu, Y.-C. Chang, G.-Y. Lin, A.W. Bayeh, J.-Y. Chen, T.H. Wondimu, C.-H. Wang, Three-dimensional annealed WO3 nanowire/graphene foam as an electrocatalytic material for all vanadium redox flow batteries, Sustainable Energy & Fuels, 1 (2017) 2091-2100.
    [177] T. Wu, K. Huang, S. Liu, S. Zhuang, D. Fang, S. Li, D. Lu, A. Su, Hydrothermal Ammoniated Treatment of PAN-Graphite Felt for Vanadium flow battery, J. Solid State Electrochem., 16 (2012) 579.
    [178] B. Li, M. Gu, Z. Nie, Y. Shao, Q. Luo, X. Wei, X. Li, J. Xiao, C. Wang, V. Sprenkle, W. Wang, Bismuth Nanoparticle Decorating Graphite Felt as a High-Performance Electrode for an All-Vanadium flow battery, Nano Lett., 13 (2013) 1330.
    [179] S. Zhong, M. Skyllas-Kazacos, Electrochemical behaviour of vanadium(V)/vanadium(IV) redox couple at graphite electrodes, Journal of Power Sources, 39 (1992) 1-9.
    [180] Y. Sun, W. Wang, J. Qin, D. Zhao, B. Mao, Y. Xiao, M. Cao, Oxygen vacancy-rich mesoporous W18O49 nanobelts with ultrahigh initial Coulombic efficiency toward high-performance lithium storage, Electrochimica Acta, 187 (2016) 329-339.
    [181] T. Chala, C.-M. Wu, M.-H. Chou, M. Gebeyehu, K.-B. Cheng, Highly Efficient Near Infrared Photothermal Conversion Properties of Reduced Tungsten Oxide/Polyurethane Nanocomposites, Nanomaterials, 7 (2017) 191.
    [182] K. Tang, X. Mu, P.A. van Aken, Y. Yu, J. Maier, “Nano-Pearl-String” TiNb2O7 as Anodes for Rechargeable Lithium Batteries, Advanced Energy Materials, 3 (2013) 49-53.
    [183] G. Ceder, Y.M. Chiang, D.R. Sadoway, M.K. Aydinol, Y.I. Jang, B. Huang, Nature, 392 (1998) 694.
    [184] S. Li, X. Cao, C.N. Schmidt, Q. Xu, E. Uchaker, Y. Pei, G. Cao, TiNb2O7/graphene composites as high-rate anode materials for lithium/sodium ion batteries, Journal of Materials Chemistry A, 4 (2016) 4242-4251.
    [185] R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage, Nat Mater, 14 (2015) 271-279.
    [186] T.L. Changyuan Hu , Fei Chen & Rongbin Zhang, A brief review of graphene–metal oxide composites synthesis and applications in photocatalysis, Journal of the Chinese Advanced Materials Society, 1 (2013) 21-39.
    [187] N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.-W. Liu, C.H. Voon, Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence, Procedia Engineering, 184 (2017) 469-477.
    [188] X. Lu, Z. Jian, Z. Fang, L. Gu, Y.-S. Hu, W. Chen, Z. Wang, L. Chen, Atomic-scale investigation on lithium storage mechanism in TiNb2O7, Energy & Environmental Science, 4 (2011) 2638-2644.
    [189] A.G. Ashish, P. Arunkumar, B. Babu, P. Manikandan, S. Sarang, M.M. Shaijumon, TiNb2O7/Graphene hybrid material as high performance anode for lithium-ion batteries, Electrochimica Acta, 176 (2015) 285-292.
    [190] L. Fei, Y. Xu, X. Wu, Y. Li, P. Xie, S. Deng, S. Smirnov, H. Luo, SBA-15 confined synthesis of TiNb2O7 nanoparticles for lithium-ion batteries, Nanoscale, 5 (2013) 11102-11107.
    [191] R.M. Pittman, A.T. Bell, Raman studies of the structure of niobium oxide/titanium oxide (Nb2O5.TiO2), The Journal of Physical Chemistry, 97 (1993) 12178-12185.
    [192] S. Lu, T. Zhu, Z. Li, Y. Pang, L. Shi, S. Ding, G. Gao, Ordered mesoporous carbon supported Ni3V2O8 composites for lithium-ion batteries with long-term and high-rate performance, Journal of Materials Chemistry A, 6 (2018) 7005-7013.
    [193] Z. Li, Y. Xiang, S. Lu, B. Dong, S. Ding, G. Gao, Hierarchical hybrid ZnFe2O4 nanoparticles/reduced graphene oxide composite with long-term and high-rate performance for lithium ion batteries, Journal of Alloys and Compounds, 737 (2018) 58-66.
    [194] G. Gao, S. Lu, B. Dong, W. Yan, W. Wang, T. Zhao, C.-Y. Lao, K. Xi, R.V. Kumar, S. Ding, Construction of sandwich-type hybrid structures by anchoring mesoporous ZnMn2O4 nanofoams on reduced graphene oxide with highly enhanced capability, Journal of Materials Chemistry A, 4 (2016) 10419-10424.
    [195] G. Gao, Y. Xiang, S. Lu, B. Dong, S. Chen, L. Shi, Y. Wang, H. Wu, Z. Li, A. Abdelkader, K. Xi, S. Ding, CTAB-assisted growth of self-supported Zn2GeO4 nanosheet network on a conductive foam as a binder-free electrode for long-life lithium-ion batteries, Nanoscale, 10 (2018) 921-929.
    [196] X.-Y. Zhang, H.-P. Li, X.-L. Cui, Y. Lin, Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting, Journal of Materials Chemistry, 20 (2010) 2801-2806.
    [197] M. Qamar, M. Abdalwadoud, M.I. Ahmed, A.M. Azad, B. Merzougui, S. Bukola, Z.H. Yamani, M.N. Siddiqui, Single-Pot Synthesis of ⟨001⟩-Faceted N-Doped Nb2O5/Reduced Graphene Oxide Nanocomposite for Efficient Photoelectrochemical Water Splitting, ACS Applied Materials & Interfaces, 7 (2015) 17954-17962.
    [198] Y. Zhang, W. Zhou, H. Yu, T. Feng, Y. Pu, H. Liu, W. Xiao, L. Tian, Self-templated Synthesis of Nickel Silicate Hydroxide/Reduced Graphene Oxide Composite Hollow Microspheres as Highly Stable Supercapacitor Electrode Material, Nanoscale Research Letters, 12 (2017) 325.
    [199] X. Chang, L. Dong, Y. Yin, S. Sun, A novel composite photocatalyst based on in situ growth of ultrathin tungsten oxide nanowires on graphene oxide sheets, RSC Advances, 3 (2013) 15005-15013.
    [200] S. Lu, Y. Gao, Z. Li, B. Dong, T. Gao, S. Ding, Y. Bai, G. Gao, Hierarchical hybrid sandwiched structure of ultrathin graphene nanosheets enwrapped MnO nanooctahedra with excellent lithium storage capability, Journal of Alloys and Compounds, 749 (2018) 424-432.
    [201] S. Humaira, K.C. Kemp, C. Vimlesh, S.K. Kwang, Graphene–SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight, Nanotechnology, 23 (2012) 355705.
    [202] P. Huang, C. Cao, Y. Sun, S. Yang, F. Wei, W. Song, One-pot synthesis of sandwich-like reduced graphene oxide@CoNiAl layered double hydroxide with excellent pseudocapacitive properties, Journal of Materials Chemistry A, 3 (2015) 10858-10863.
    [203] G. Srinivas, J.W. Burress, J. Ford, T. Yildirim, Porous graphene oxide frameworks: Synthesis and gas sorption properties, Journal of Materials Chemistry, 21 (2011) 11323-11329.
    [204] G. Gao, L. Shi, S. Lu, T. Gao, Z. Li, Y. Gao, S. Ding, Ethylene glycol-mediated rapid synthesis of carbon-coated ZnFe2O4 nanoflakes with long-term and high-rate performance for lithium-ion batteries, Dalton Transactions, 47 (2018) 3521-3529.
    [205] G. Gao, S. Lu, Y. Xiang, B. Dong, W. Yan, S. Ding, Free-standing ultrathin CoMn2O4 nanosheets anchored on reduced graphene oxide for high-performance supercapacitors, Dalton Transactions, 44 (2015) 18737-18742.
    [206] S. Xiao, L. Yu, L. Wu, L. Liu, X. Qiu, J. Xi, Broad temperature adaptability of vanadium redox flow battery—Part 1: Electrolyte research, Electrochimica Acta, 187 (2016) 525-534.
    [207] M. Ran, W. Sun, Y. Liu, W. Chu, C. Jiang, Functionalization of multi-walled carbon nanotubes using water-assisted chemical vapor deposition, Journal of Solid State Chemistry, 197 (2013) 517-522.
    [208] M. Park, J. Ryu, Y. Kim, J. Cho, Corn Protein-Derived Nitrogen-Doped Carbon Materials with Oxygen-Rich Functional Groups: A Highly Efficient Electrocatalyst for All-Vanadium Redox Flow Batteries, Energy Environ. Sci., 7 (2014) 3727.
    [209] Y. Xiang, H. Wu, K.H.L. Zhang, M. Coto, T. Zhao, S. Chen, B. Dong, S. Lu, A. Abdelkader, Y. Guo, Y. Zhang, S. Ding, K. Xi, G. Gao, Quick one-pot synthesis of amorphous carbon-coated cobalt-ferrite twin elliptical frustums for enhanced lithium storage capability, Journal of Materials Chemistry A, 5 (2017) 8062-8069.
    [210] Y. Ji, J.L. Li, S.F.Y. Li, Synergistic effect of the bifunctional polydopamine-Mn3O4 composite electrocatalyst for vanadium redox flow batteries, Journal of Materials Chemistry A, 5 (2017) 15154-15166.
    [211] L. Jian, H. Bo, D. Camden, L.T. Leo, A π‐Conjugation Extended Viologen as a Two‐Electron Storage Anolyte for Total Organic Aqueous Redox Flow Batteries, Angewandte Chemie International Edition, 57 (2018) 231-235.
    [212] R.-H. Huang, C.-H. Sun, T.-m. Tseng, W.-k. Chao, K.-L. Hsueh, F.-S. Shieu, Investigation of Active Electrodes Modified with Platinum/Multiwalled Carbon Nanotube for Vanadium Redox Flow Battery, Journal of The Electrochemical Society, 159 (2012) A1579-A1586.

    無法下載圖示 全文公開日期 2024/01/07 (校內網路)
    全文公開日期 2029/01/07 (校外網路)
    全文公開日期 2029/01/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE