簡易檢索 / 詳目顯示

研究生: 施又甄
Yu-chen Shih
論文名稱: 釩液流電池電極材料之改質研究
Study of Electrode Modification for All Vanadium Redox Flow Battery
指導教授: 王丞浩
Chen-hao Wang
口試委員: 許寧逸
Ning-yih Hsu
蘇威年
Wei-nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 130
中文關鍵詞: 氮摻雜石墨電極功能化碳氈電極釩液流電池儲能系統表面改質
外文關鍵詞: nitrogen doped carbon felt electrode
相關次數: 點閱:393下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 釩液流電池大多數選用高比面積、高導電和多孔結構的碳材料作為電極,然而石墨氈材料面臨電化學活性不足及可逆性較差等問題,因此需要對石墨氈表面作處理以提升電極材料之能源轉換效率。本研究以兩種活化法分成二個部份來做處理:(1)酸處理氧官能化活化法、(2)微波輔助處理氮摻雜熱處理活化法,以提升電極材料電化學活性和增加釩液流電池的電池性能。
    第一部份為將石墨氈在硫酸及硝酸體積比3:1的溶液,以水熱法之最佳參數加熱至140oC持溫50分鐘,接著在氧氣氣氛下燒結,得到酸處理氧官能化石墨氈。第二部份則是將石墨氈在三聚氰胺及硝酸濃度比0.049 M的溶液下,分別測量微波加熱以120、140及160oC熱處理溫度後,得到之微波輔助處理氮摻雜石墨氈電化學活性。兩部分處理過的石墨氈皆出現了明顯的氧化還原峰,而全電池充放電曲線圖中可以發現,酸處理氧官能化的電極庫倫效率94.8%、伏特效率81.7%與能量效率77.1%,及經140oC處理之微波輔助處理氮摻雜電極庫倫效率94.9%、伏特效率85.1%與能量效率80.8%,皆高於未處理石墨氈之庫倫效率89.8%、伏特效率76.1 %與能量效率68.3 %,全電池整體效率皆獲得改善。


    High surface area, high conductivity and porous structure graphite felt materials are common choice of all vanadium redox flow battery. However, graphite felt materials have serious problems of their insufficient electrochemical activity and low electrochemical reversible ability. In order to overcome those problems, this study uses (1) acid treatment activation method and (2) microwave-assisted hydrothermal method as activation methods to solve these problems.
    In the first part, the graphite felt was immersed in acid solution which was mixed with 60 mL of sulfur acid and 20 mL of nitric acid, and subsequently it was transferred into a Teflon-lined autoclave reactor and was heated at 140oC. Afterwards, the graphite felt was heated at 450oC in oxygen atmosphere. In the second part, the graphite felt was immersed in 0.049 M melamine of nitric acid solution, and it was treated by microwave-assisted hydrothermal method at various temperatures of 120oC, 140oC and 160oC.
    By using the acid treatment and the microwave-assisted treatment, the graphite felt electrodes show the enhanced electrochemical activity and the highly reversible redox reaction. By using acid-treatment, the coulomb efficiency, the voltage efficiency and the energy efficiency of the graphite felt can reach 94.8%, 81.7% and 77.1%, respectively. By using the microwave-assisted treatment, the graphite felt can also reach high coulomb efficiency, voltage efficiency and energy efficiency of 94.9%, 89.8% and 85.1%, respectively.

    第一章 緒論 1 1-1 前言 1 1-2 釩液流電池簡介 4 第二章 實驗原理與文獻探討 10 2-1 官能化電極之原理與發展 10 2-2 電極效率之提升 11 2-2-1 酸及熱前處理之碳基電極 11 2-2-2 奈米金屬顆粒披附之碳基電極 14 2-2-3 奈米碳管複合之碳基電極 16 2-2-4 氮摻雜之碳基電極 18 2-2-5 微波處理碳基電極 25 2-3 國內學者研究 26 2-4 官能化對電極效能的影響 29 2-5 研究動機 31 2-6 研究目的 32 第三章 研究方法 33 3-1 實驗規劃 33 3-2 實驗材料及藥品 35 3-3 實驗儀器與設備 36 3-4 電極製備 37 3-4-1 酸處理氧官能化之電極 37 3-4-2 微波輔助處理氮摻雜之電極 40 3-5 電解液製備及全電池測試 42 3-6 電極穩定度測試 43 3-7 實驗儀器 44 3-7-1 管狀高溫爐系統(Thermal CVD System) 44 3-7-2 微波消化爐(Microwave Synthesis System) 45 3-8 分析儀器原理 46 3-8-1 場發射掃描式電子顯微鏡(Scanning electron microscope, SEM) 46 3-8-2 比表面積與孔洞分析儀(Surface Area and Porosity Analyzer) 47 3-8-3 穿透式電子顯微鏡(Transmission Electron Microscope) 48 3-8-4 電化學分析儀 49 3-8-5 拉曼光譜分析儀(Raman Spectrum) 51 3-8-6 X光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 52 3-8-7 X光繞射分析儀(X ray diffraction Spectrometer, XRD) 53 3-8-8 傅立葉轉換紅外線光譜儀(FTIR Spectrometer) 55 3-8-9 接觸角儀(Contact Angle System) 58 第四章 結果與討論 59 4-1 酸處理氧官能化之電極 59 4-1-1 酸處理氧官能化電極之循環伏安法分析 60 4-1-2 SEM 分析 70 4-1-3 接觸角分析 72 4-1-4 拉曼光譜分析 73 4-1-5 XPS分析 75 4-1-6 全電池分析 77 4-1-7 穩定性分析 79 4-2 微波輔助處理氮摻雜之電極 82 4-2-1 微波輔助處理氮摻雜電極之循環伏安法分析 84 4-2-2 SEM分析及比表面積檢測 87 4-2-3 表面元素分析測試(Mapping) 88 4-2-4 電子能量損失分析儀(Electron Energy Loss Spectroscope, EELS)分析 90 4-2-5 XPS分析 91 4-2-6 拉曼光譜分析 93 4-2-7 單電池分析 94 4-2-8 穩定性測試 96 第五章 結論 98 第六章 未來展望 102 第七章 參考文獻 103 

    [1] N.Y. Amponsah, M. Troldborg, B. Kington, I. Aalders, R.L. Hough, Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations. Renewable and Sustainable Energy Reviews, 39 (2014) 461-475.
    [2] E.D. Stoutenburg, N. Jenkins, M.Z. Jacobson, Power output variations of co-located offshore wind turbines and wave energy converters in California. Renewable Energy, 35 (2010) 2781-2791.
    [3] Q. Zheng, F. Xing, X. Li, T. Liu, Q. Lai, G. Ning, H. Zhang, Investigation on the performance evaluation method of flow batteries. J. Power Sources, 266 (2014) 145-149.
    [4] N.A.a.S.A.W. DC, Flow Cell Development and Demonstration. NASA TM-97067, (1979).
    [5] E. Sum, M. Rychcik, M. Skyllas-kazacos, Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J. Power Sources, 16 (1985) 85-95.
    [6] E. Sum, M. Skyllas-Kazacos, A study of the V(II)/V(III) redox couple for redox flow cell applications. J. Power Sources, 15 (1985) 179-190.
    [7] D.R. Lide, Handbook of Chemistry and Physics. CRC Press, Bora Raton, (2007).
    [8] B. Sun, M. Skyllas-Kazacos, Chemical modification of graphite electrode materials for vanadium redox flow battery application—part II. Acid treatments. Electrochim. Acta, 37 (1992) 2459-2465.
    [9] C. Jizhong, X. Ziqiang, L. Bei, Research on the characteristics of the vanadium redox-flow battery in power systems applications. J. Power Sources, 241 (2013) 396-399.
    [10] C. Fabjan, J. Garche, B. Harrer, L. Jorissen, C. Kolbeck, F. Philippi, G. Tomazic, F. Wagner, The vanadium redox-battery: an efficient storage unit for photovoltaic systems. Electrochim. Acta, 47 (2001) 825-831.
    [11] M. Gattrell, J. Qian, C. Stewart, P. Graham, B. MacDougall, The electrochemical reduction of VO2+ in acidic solution at high overpotentials. Electrochim. Acta, 51 (2005) 395-407.
    [12] A. Parasuraman, T.M. Lim, C. Menictas, M. Skyllas-Kazacos, Review of material research and development for vanadium redox flow battery applications. Electrochim. Acta, 101 (2013) 27-40.
    [13] M. Vijayakumar, S.D. Burton, C. Huang, L. Li, Z. Yang, G.L. Graff, J. Liu, J. Hu, S.-K. Maria, Nuclear magnetic resonance studies on vanadium(IV) electrolyte solutions for vanadium redox flow battery. J. Power Sources, 195 (2010) 7709-7717.
    [14] F. Rahman, M. Skyllas-Kazacos, Solubility of vanadyl sulfate in concentrated sulfuric acid solutions. J. Power Sources, 72 (1998) 105-110.
    [15] G. Oriji, Y. Katayama, T. Miura, Investigation on V(IV)/V(V) species in a vanadium redox flow battery. Electrochim. Acta, 49 (2004) 3091-3095.
    [16] H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: A critical review. Progress in Natural Science, 19 (2009) 291-312.
    [17] C. Ding, H. Zhang, X. Li, T. Liu, F. Xing, Vanadium Flow Battery for Energy Storage: Prospects and Challenges. The Journal of Physical Chemistry Letters, 4 (2013) 1281-1294.
    [18] M. Kazacos, M. Cheng, M. Skyllas-Kazacos, Vanadium redox cell electrolyte optimization studies. J. Appl. Electrochem., 20 (1990) 463-467.
    [19] B. Dunn, H. Kamath, J.-M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices. Science, 334 (2011) 928-935.
    [20] Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem Rev, 111 (2011) 3577-3613.
    [21] M.H. Chakrabarti, R.A.W. Dryfe, E.P.L. Roberts, Evaluation of electrolytes for redox flow battery applications. Electrochim. Acta, 52 (2007) 2189-2195.
    [22] S. Zhong, M. Skyllas-Kazacos, Electrochemical behaviour of vanadium(V)/vanadium(IV) redox couple at graphite electrodes. J. Power Sources, 39 (1992) 1-9.
    [23] N. Kausar, R. Howe, M. Skyllas-Kazacos, Raman spectroscopy studies of concentrated vanadium redox battery positive electrolytes. J. Appl. Electrochem., 31 (2001) 1327-1332.
    [24] H. Zhou, H. Zhang, P. Zhao, B. Yi, A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery. Electrochim. Acta, 51 (2006) 6304-6312.
    [25] W.H. Wang, X.D. Wang, Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery. Electrochim. Acta, 52 (2007) 6755-6762.
    [26] M. Skyllas-Kazacos, Novel vanadium chloride/polyhalide redox flow battery. J. Power Sources, 124 (2003) 299-302.
    [27] H.Q. Zhu, Y.M. Zhang, L. Yue, W.S. Li, G.L. Li, D. Shu, H.Y. Chen, Graphite–carbon nanotube composite electrodes for all vanadium redox flow battery. J. Power Sources, 184 (2008) 637-640.
    [28] G.J.W. Radford, J. Cox, R.G.A. Wills, F.C. Walsh, Electrochemical characterisation of activated carbon particles used in redox flow battery electrodes. J. Power Sources, 185 (2008) 1499-1504.
    [29] S. Zhong, C. Padeste, M. Kazacos, M. Skyllas-Kazacos, Comparison of the physical, chemical and electrochemical properties of rayon- and polyacrylonitrile-based graphite felt electrodes. J. Power Sources, 45 (1993) 29-41.
    [30] W. Li, J. Liu, C. Yan, Graphite–graphite oxide composite electrode for vanadium redox flow battery. Electrochim. Acta, 56 (2011) 5290-5294.
    [31] Z. Gonzalez, A. Sanchez, C. Blanco, M. Granda, R. Menendez, R. Santamaria, Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery. Electrochem. Commun., 13 (2011) 1379-1382.
    [32] W.Y. Li, J.G. Liu, C.W. Yan, Multi-walled carbon nanotubes used as an electrode reaction catalyst for VO2+/VO2+ for a vanadium redox flow battery. Carbon, 49 (2011) 3463-3470.
    [33] W.Y. Li, J.G. Liu, C.W. Yan, Modified multiwalled carbon nanotubes as an electrode reaction catalyst for an all vanadium redox flow battery. J. Solid State Electrochem., 17 (2013) 1369-1376.
    [34] B. Sun, M. Skyllas-Kazacos, Modification of graphite electrode materials for vanadium redox flow battery application. I. Thermal treatment. Electrochim. Acta, 37 (1992) 1253-1260.
    [35] A. Di Blasi, O. Di Blasi, N. Briguglio, A.S. Arico, D. Sebastian, M.J. Lazaro, G. Monforte, V. Antonucci, Investigation of several graphite-based electrodes for vanadium redox flow cell. J. Power Sources,227 (2012) 15-23.
    [36] L. Yue, W. Li, F. Sun, L. Zhao, L. Xing, Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery. Carbon, 48 (2010) 3079-3090.
    [37] W. Zhang, J. Xi, Z. Li, H. Zhou, L. Liu, Z. Wu, X. Qiu, Electrochemical activation of graphite felt electrode for VO2+/VO2+ redox couple application. Electrochim. Acta, 89 (2013) 429-435.
    [38] X.-G. Li, K.-L. Huang, N. Tan, S.-Q. Liu, L.-Q. Chen, Electrochemical modification of graphite felt electrode for vanadium redox flow battery. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 21 (2006) 1114-1120.
    [39] C. Yao, H. Zhang, T. Liu, X. Li, Z. Liu, Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery. J. Power Sources, 218 (2012) 455-461.
    [40] B. Sun, M. Skyllas-Kazakos, Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution. Electrochim. Acta, 36 (1991) 513-517.
    [41] H. Lee, H. Kim, Development of nitrogen-doped carbons using the hydrothermal method as electrode materials for vanadium redox flow batteries. (2013) 1-5.
    [42] Z. Gonzalez, S. Vizireanu, G. Dinescu, C. Blanco, R. Santamaria, Carbon nanowalls thin films as nanostructured electrode materials in vanadium redox flow batteries. Nano Energy, 1 (2012) 833-839.
    [43] X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, H. Dai, N-Doping of Graphene Through Electrothermal Reactions with Ammonia. Science, 324 (2009) 768-771.
    [44] A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application. ACS Nano, 4 (2010) 6337-6342.
    [45] Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing. ACS Nano, 4 (2010) 1790-1798.
    [46] V. Nallathambi, J.-W. Lee, S.P. Kumaraguru, G. Wu, B.N. Popov, Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM Proton Exchange Membrane fuel cells. J. Power Sources, 183 (2008) 34-42.
    [47] S. Maldonado, K.J. Stevenson, Influence of Nitrogen Doping on Oxygen Reduction Electrocatalysis at Carbon Nanofiber Electrodes. J. Photochem. Photobiol., B, 109 (2005) 4707-4716.
    [48] Y. Shao, J. Sui, G. Yin, Y. Gao, Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Applied Catalysis B: Environmental, 79 (2008) 89-99.
    [49] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science, 323 (2009) 760-764.
    [50] R.A. Sidik, A.B. Anderson, N.P. Subramanian, S.P. Kumaraguru, B.N. Popov, O2 Reduction on Graphite and Nitrogen-Doped Graphite:  Experiment and Theory. J. Phys. Chem. B, 110 (2006) 1787-1793.
    [51] G. Wu, D. Li, C. Dai, D. Wang, N. Li, Well-Dispersed High-Loading Pt Nanoparticles Supported by Shell−Core Nanostructured Carbon for Methanol Electrooxidation. Langmuir, 24 (2008) 3566-3575.
    [52] J.-i. Ozaki, S.-i. Tanifuji, A. Furuichi, K. Yabutsuka, Enhancement of oxygen reduction activity of nanoshell carbons by introducing nitrogen atoms from metal phthalocyanines. Electrochim. Acta, 55 (2010) 1864-1871.
    [53] C. Medard, M. Lefevre, J.P. Dodelet, F. Jaouen, G. Lindbergh, Oxygen reduction by Fe-based catalysts in PEM fuel cell conditions: Activity and selectivity of the catalysts obtained with two Fe precursors and various carbon supports. Electrochim. Acta, 51 (2006) 3202-3213.
    [54] C.-H. Wang, S.-T. Chang, H.-C. Hsu, H.-Y. Du, J.C.-S. Wu, L.-C. Chen, K.-H. Chen, Oxygen reducing activity of methanol-tolerant catalysts by high-temperature pyrolysis. Diamond Relat. Mater., 20 (2011) 322-329.
    [55] C.-H. Wang, H.-C. Hsu, S.-T. Chang, H.-Y. Du, C.-P. Chen, J.C.-S. Wu, H.-C. Shih, L.-C. Chen, K.-H. Chen, Platinum nanoparticles embedded in pyrolyzed nitrogen-containing cobalt complexes for high methanol-tolerant oxygen reduction activity. J. Mater. Chem., 20 (2010) 7551-7557.
    [56] F. Jaouen, S. Marcotte, J.-P. Dodelet, G. Lindbergh, Oxygen Reduction Catalysts for Polymer Electrolyte Fuel Cells from the Pyrolysis of Iron Acetate Adsorbed on Various Carbon Supports. J. Phys. Chem. B, 107 (2003) 1376-1386.
    [57] D. Villers, X. Jacques-Bedard, J.-P. Dodelet, Fe-based catalysts for oxygen reduction in PEM fuel cells pretreatment of the carbon support. J. Electrochem. Soc., 151 (2004) A1507-A1515.
    [58] Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, J. Liu, Z. Yang, Y. Lin, Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries. J. Power Sources, 195 (2010) 4375-4379.
    [59] L.G. Cançado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett., 11 (2011) 3190-3196.
    [60] H. Lee, H. Kim, Development of nitrogen-doped carbons using the hydrothermal method as electrode materials for vanadium redox flow batteries. J. Appl. Electrochem., 43 (2013) 553-557.
    [61] L. Shi, S. Liu, Z. He, J. Shen, Nitrogen-Doped Graphene:Effects of nitrogen species on the properties of the vanadium redox flow battery. Electrochim. Acta, 138 (2014) 93-100.
    [62] H. Xiong, M.A. Motchelaho, M. Moyo, L.L. Jewell, N.J. Coville, Fischer–Tropsch synthesis: Iron-based catalysts supported on nitrogen-doped carbon nanotubes synthesized by post-doping. Applied Catalysis A: General, 482 (2014) 377-386.
    [63] H. Xiong, M.A. Motchelaho, M. Moyo, L.L. Jewell, N.J. Coville, Fischer–Tropsch synthesis: Iron-based catalysts supported on nitrogen-doped carbon nanotubes synthesized by post-doping. Applied Catalysis A: General, 482 (2014) 377-386.
    [64] Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat Commun, 4 (2013).
    [65] Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, X.-H. Xia, Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis. ACS Nano, 5 (2011) 4350-4358.
    [66] X. Wu, H. Xu, P. Xu, Y. Shen, L. Lu, J. Shi, J. Fu, H. Zhao, Microwave-treated graphite felt as the positive electrode for all-vanadium redox flow battery. J. Power Sources, 263 (2014) 104-109.
    [67] J.A. Menendez, A. Arenillas, B. Fidalgo, Y. Fernandez, L. Zubizarreta, E.G. Calvo, J.M. Bermudez, Microwave heating processes involving carbon materials. Fuel Processing Technology, 91 (2010) 1-8.
    [68] X. He, Y. Geng, J. Qiu, M. Zheng, X. Zhang, H. Shui, Influence of KOH/Coke Mass Ratio on Properties of Activated Carbons Made by Microwave-Assisted Activation for Electric Double-Layer Capacitors. Energy & Fuels, 24 (2010) 3603-3609.
    [69] W. Li, L.-b. Zhang, J.-h. Peng, N. Li, X.-y. Zhu, Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation. Industrial Crops and Products, 27 (2008) 341-347.
    [70] F.K. Yuen, B.H. Hameed, Recent developments in the preparation and regeneration of activated carbons by microwaves. Advances in Colloid and Interface Science, 149 (2009) 19-27.
    [71] M.-H.L. Liu, KuanuYi, Electrode structure of Vanadium Redox Flow Battery, US Patent 13/185919. (2011).
    [72] H.-M. Tsai, S.-Y. Yang, C.-C.M. Ma, X. Xie, Preparation and Electrochemical Properties of Graphene-Modified Electrodes for All-Vanadium Redox Flow Batteries. Electroanalysis, 23 (2011) 2139-2143.
    [73] H.-M. Tsai, S.-J. Yang, C.-C.M. Ma, X. Xie, Preparation and electrochemical activities of iridium-decorated graphene as the electrode for all-vanadium redox flow batteries. Electrochim. Acta, 77 (2012) 232-236.
    [74] T.-C. Chang, J.-P. Zhang, Y.-K. Fuh, Electrical, mechanical and morphological properties of compressed carbon felt electrodes in vanadium redox flow battery. J. Power Sources, 245 (2014) 66-75.
    [75] J.-Z. Chen, W.-Y. Liao, W.-Y. Hsieh, C.-C. Hsu, Y.-S. Chen, All-vanadium redox flow batteries with graphite felt electrodes treated by atmospheric pressure plasma jets. J. Power Sources, 274 (2015) 894-898.
    [76] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of Gases in Multimolecular Layers. JACS, 60 (1938) 309-319.
    [77] M.C. Tobin, [23] Raman spectroscopy, in: S.N.T. C. H. W. Hirs (Ed.) Methods Enzymol., Academic Press, 1972, pp. 473-497.
    [78] Y. Wen, Y. Xu, J. Cheng, G. Cao, Y. Yang, Investigation on the stability of electrolyte in vanadium flow batteries. Electrochim. Acta, 96 (2013) 268-273.
    [79] X. Teng, C. Sun, J. Dai, H. Liu, J. Su, F. Li, Solution casting Nafion/polytetrafluoroethylene membrane for vanadium redox flow battery application. Electrochim. Acta, 88 (2013) 725-734.
    [80] H. Kaneko, K. Nozaki, Y. Wada, T. Aoki, A. Negishi, M. Kamimoto, Vanadium redox reactions and carbon electrodes for vanadium redox flow battery. Electrochim. Acta, 36 (1991) 1191-1196.

    無法下載圖示 全文公開日期 2020/02/09 (校內網路)
    全文公開日期 2025/02/09 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE