簡易檢索 / 詳目顯示

研究生: 黃健翔
Jian-Xiang Huang
論文名稱: 多功能石墨烯太陽蒸發薄膜用於同時產水與發電應用
Multifunctional graphene solar evaporation membrane for simultaneous steam and power generation
指導教授: 賴君義
Juin- Yih Lai
口試委員: 洪維松
Wei-Song Hong
胡蒨傑
Chien-Chieh Hu
王志逢
Chih-Feng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 96
中文關鍵詞: 石墨烯薄膜太陽光蒸餾發電壓電效應
外文關鍵詞: graphene membrane, solar water evaporation, electricity generation, piezoelectricity
相關次數: 點閱:327下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人口與科技的成長,全球對於水與能源需求大幅的增加。為了解決此問題,目前已經開發了許多技術如RO和MED。然而,這些技術會消耗大量能源,並且會直接或間接依賴化石燃料,因而引起其他環境問題,如全球暖化和空氣污染。利用太陽能進行水處理已被廣泛認為在不犧牲環境和資源的前提下,克服水資源與能源短缺的可持續解決方案之一,因為太陽與海洋是取之不盡的綠色能源。然而,目前太陽能蒸餾以獲得飲用水資源為主,而鮮少有能源獲取方面的應用,這大大的限制了太陽能蒸餾的發展空間。
    為此,本研究開發多功能石墨烯-PVDF薄膜,利用太陽蒸發與海浪達到同時產電與產水的目的。我們利用石墨烯誘導PVDF晶相從原本的α phase自組裝成具有壓電性的β phase,再藉由海水波浪驅動β-PVDF將機械能轉換成電能。借重石墨烯-PVDF堆疊的界面水通道,將海水傳輸至液氣蒸發界面,再透過石墨烯進行光熱轉換獲得熱能來蒸發海水以獲得飲用水。
    本研究先利用SEM、DM、XRD、FTIR、WCA等儀器鑑定石墨烯-PVDF薄膜物理性質,再利用EIS對石墨烯-PVDF薄膜進行一系列的電性測試,最後進行薄膜的效能測試。測試結果指出該薄膜在1倍太陽光下可獲得1.27kg m-2水蒸發量,且蒸餾後的純水中鈉、鎂及鈣離子濃度均低於世界衛生組織(WHO)的飲用水標準。同時在1Hz震盪所產生的水波下薄膜可輸出約2.8伏特之穩定電壓且換算成能量密度可達18.9Wm-2。總體而言,這項工作對於未來開發同時產水與產電的薄膜結構設計提出全新的見解。


    With the growth of population and technology, the global demand for water and energy have increased significantly. Because the sun and the ocean are green and inexhaustible energy sources.
    In this study, a multi-functional graphene-PVDF membrane was developed to utilize solar evaporation and ocean waves to achieve simultaneous water and electricity production. We use graphene to induce PVDF to self-assemble into a piezoelectric β phase, and use wave to drive β-PVDF to convert mechanical energy into electrical energy. In addition, the graphene-PVDF stacked interface water channel, the seawater is transported to the liquid-gas evaporation interface, and then the graphene is used to convert the light to heat to obtain heat energy to evaporate the seawater to obtain drinking water.
    The results indicate that the membrane can obtain 1.27 kg m-2 water evaporation under 1 sun, and its ion concentration is lower than the drinking water standard of the World Health Organization (WHO). At the same time, the membrane can output under the water wave generated by 1Hz oscillation stable voltage of about 2.8 volts and converted into energy density of up to 18.9Wm-2. This work provides new insights into the future development of membrane structure designs that simultaneously produces water and energy.

    目錄...V 圖目錄...VIII 表目錄...XII 第一章 緒論...1 1-1前言...1 1-1-1水資源概況...1 1-1-2 海水淡化處理...2 1-1-2-1 相變法...4 1-1-2-2 薄膜法...4 1-1-3 太陽能海水淡化概述...6 1-1-3-1 太陽能薄膜蒸餾及界面太陽能蒸氣系統...6 1-2光熱轉換材料....8 1-2-1 電漿局部加熱....8 1-2-2半導體的非輻射弛豫...9 1-2-3分子的熱振動....9 1-3石墨烯.....11 1-4智能高分子材料.....12 1-5文獻回顧....14 1-6研究動機....23 第二章 實驗材料與方法...24 2-1 實驗藥品....24 2-2 實驗儀器....25 2-3-1 太陽蒸發薄膜製備....26 2-4 材料鑑定與薄膜性質檢測....27 2-4-1場發式掃描電子顯微鏡(FE-SEM)...27 2-4-2 3D數位光學顯微鏡(DM)...28 2-4-3高功率X光繞射儀(XRD)...28 2-4-4水接觸角(WCA)...29 2-4-5衰減全反射式傅立葉紅外光譜儀(ATR-FTIR)...29 2-4-6紅外線熱顯像儀(IR)...30 2-4-7離子層析儀(IC)...30 2-4-8電化學阻抗析儀(EIS)...31 2-5 薄膜效能檢測...31 2-5-1薄膜表面溫度實驗...31 2-5-2太陽光蒸發實驗...32 2-5-3 薄膜壓電性質拉伸測試...33 2-5-4海浪集能實驗...34 2-5-5電熱蒸發實驗...36 2-5-6熱電效應實驗...36 第三章 結果與討論...38 3-1 薄膜表面性質鑑定...38 3-1-1 SEM表面型態分析...38 3-1-2 DM粗糙度分析...40 3-1-3 薄膜接觸角與表面官能基ATR-FTIR分析...42 3-1-4 XRD結晶結構分析...44 3-2 太陽光蒸餾效能鑑定...46 3-2-1 薄膜表面溫度分析...46 3-2-2 薄膜蒸發率分析...48 3-2-3 蒸餾水離子含量與薄膜效率計算分析...49 3-3 薄膜電性能鑑定...52 3-3-1 EIS電性質分析...52 3-3-2 MTS壓電性質分析...55 3-3-3 海浪模擬實驗與功率計算分析...57 3-3-4薄膜電熱溫度與蒸發率分析...60 3-3-5 熱電效應分析...61 3-4 石墨烯太陽蒸發薄膜機制...63 第四章 結論...64 參考文獻...66

    [1] M. Al-Shammiri, M. Safar, Multi-effect distillation plants: state of the art, Desalination, 126 (1999) 45-59.
    [2] O.A. Hamed, M.A. Al-Sofi, M. Imam, G.M. Mustafa, K.B. Mardouf, H. Al-Washmi, Thermal performance of multi-stage flash distillation plants in Saudi Arabia, Desalination, 128 (2000) 281-292.
    [3] Y.M. El-Sayed, Thermoeconomics of some options of large mechanical vapor-compression units, Desalination, 125 (1999) 251-257.
    [4] W. Rice, D.S. Chau, Freeze desalination using hydraulic refrigerant compressors, Desalination, 109 (1997) 157-164.
    [5] L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today's challenges, Water research, 43 (2009) 2317-2348.
    [6] H. Strathmann, Electrodialysis, a mature technology with a multitude of new applications, Desalination, 264 (2010) 268-288.
    [7] G.W. Intelligence, Desalination Markets 2010: Global Forecast and Analysis, UK, London, (2010).
    [8] R. Semiat, Energy issues in desalination processes, Environmental science & technology, 42 (2008) 8193-8201.
    [9] D.F. Zhao, J.L. Xue, S. Li, H. Sun, Q.D. Zhang, Theoretical analyses of thermal and economical aspects of multi-effect distillation desalination dealing with high-salinity wastewater, Desalination, 273 (2011) 292-298.
    [10] H. Baig, M.A. Antar, S.M. Zubair, Performance evaluation of a once-through multi-stage flash distillation system: Impact of brine heater fouling, Energy Conversion and Management, 52 (2011) 1414-1425.
    [11] H. Ettouney, Design of single-effect mechanical vapor compression, Desalination, 190 (2006) 1-15.
    [12] R. Fujioka, L.P. Wang, G. Dodbiba, T. Fujita, Application of progressive freeze-concentration for desalination, Desalination, 319 (2013) 33-37.
    [13] D.L. Shaffer, N.Y. Yip, J. Gilron, M. Elimelech, Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy, Journal of Membrane Science, 415 (2012) 1-8.
    [14] A.H. Galama, M. Saakes, H. Bruning, H.H.M. Rijnaarts, J.W. Post, Seawater predesalination with electrodialysis, Desalination, 342 (2014) 61-69.
    [15] A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes, Renewable and Sustainable Energy Reviews, 24 (2013) 343-356.
    [16] A. Belmiloudi, Heat Transfer: Theoretical Analysis, Experimental Investigations and Industrial Systems, BoD–Books on Demand, 2011.
    [17] W. Shang, T. Deng, Solar steam generation: steam by thermal concentration, Nature Energy, 1 (2016) 1-2.
    [18] Z.T. Li, C.B. Wang, J.B. Su, S. Ling, W. Wang, M. An, Fast-Growing Field of Interfacial Solar Steam Generation: Evolutional Materials, Engineered Architectures, and Synergistic Applications, Solar Rrl, 3 (2019).
    [19] G. Liu, J. Xu, K. Wang, Solar water evaporation by black photothermal sheets, Nano Energy, 41 (2017) 269-284.
    [20] M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production, Energy & Environmental Science, 12 (2019) 841-864.
    [21] L. Zhu, M. Gao, C.K.N. Peh, G.W. Ho, Recent progress in solar-driven interfacial water evaporation: advanced designs and applications, Nano Energy, 57 (2019) 507-518.
    [22] G. Liu, T. Chen, J. Xu, G. Li, K. Wang, Solar evaporation for simultaneous steam and power generation, Journal of Materials Chemistry A, 8 (2020) 513-531.
    [23] R. Long, Y. Li, L. Song, Y. Xiong, Coupling solar energy into reactions: materials design for surface plasmon‐mediated catalysis, Small, 11 (2015) 3873-3889.
    [24] M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology, Nature nanotechnology, 10 (2015) 25-34.
    [25] L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, J. Zhu, Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation, Science advances, 2 (2016) e1501227.
    [26] L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination, Nature Photonics, 10 (2016) 393-398.
    [27] A. Lalisse, G. Tessier, J. Plain, G. Baffou, Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion, The Journal of Physical Chemistry C, 119 (2015) 25518-25528.
    [28] P. Fan, H. Wu, M. Zhong, H. Zhang, B. Bai, G. Jin, Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion, Nanoscale, 8 (2016) 14617-14624.
    [29] A.D. Rakić, A.B. Djurišić, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices, Applied optics, 37 (1998) 5271-5283.
    [30] C.M. Hessel, V.P. Pattani, M. Rasch, M.G. Panthani, B. Koo, J.W. Tunnell, B.A. Korgel, Copper selenide nanocrystals for photothermal therapy, Nano letters, 11 (2011) 2560-2566.
    [31] H. Liu, X. Zhang, Z. Hong, Z. Pu, Q. Yao, J. Shi, G. Yang, B. Mi, B. Yang, X. Liu, A bioinspired capillary-driven pump for solar vapor generation, Nano Energy, 42 (2017) 115-121.
    [32] Z. Hua, B. Li, L. Li, X. Yin, K. Chen, W. Wang, Designing a novel photothermal material of hierarchical microstructured copper phosphate for solar evaporation enhancement, The Journal of Physical Chemistry C, 121 (2017) 60-69.
    [33] X. Huang, W. Zhang, G. Guan, G. Song, R. Zou, J. Hu, Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics, Accounts of Chemical Research, 50 (2017) 2529-2538.
    [34] C. Song, T. Li, W. Guo, Y. Gao, C. Yang, Q. Zhang, D. An, W. Huang, M. Yan, C. Guo, Hydrophobic Cu 12 Sb 4 S 13-deposited photothermal film for interfacial water evaporation and thermal antibacterial activity, New Journal of Chemistry, 42 (2018) 3175-3179.
    [35] Y. Zeng, J. Yao, B.A. Horri, K. Wang, Y. Wu, D. Li, H. Wang, Solar evaporation enhancement using floating light-absorbing magnetic particles, Energy & Environmental Science, 4 (2011) 4074-4078.
    [36] R. Chen, Z. Wu, T. Zhang, T. Yu, M. Ye, Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating, RSC advances, 7 (2017) 19849-19855.
    [37] J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting, Nano letters, 6 (2006) 24-28.
    [38] M. Ye, J. Jia, Z. Wu, C. Qian, R. Chen, P.G. O'Brien, W. Sun, Y. Dong, G.A. Ozin, Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation, Advanced Energy Materials, 7 (2017) 1601811.
    [39] J.R. Vélez-Cordero, J. Hernandez-Cordero, Heat generation and conduction in PDMS-carbon nanoparticle membranes irradiated with optical fibers, International Journal of Thermal Sciences, 96 (2015) 12-22.
    [40] P. Zhang, J. Li, L. Lv, Y. Zhao, L. Qu, Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water, ACS nano, 11 (2017) 5087-5093.
    [41] Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, M. Chen, Multifunctional porous graphene for high‐efficiency steam generation by heat localization, Advanced Materials, 27 (2015) 4302-4307.
    [42] Y. Wang, L. Zhang, P. Wang, Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation, ACS Sustainable Chemistry & Engineering, 4 (2016) 1223-1230.
    [43] C. Chen, Y. Li, J. Song, Z. Yang, Y. Kuang, E. Hitz, C. Jia, A. Gong, F. Jiang, J. Zhu, Highly flexible and efficient solar steam generation device, Advanced Materials, 29 (2017) 1701756.
    [44] Y. Li, T. Gao, Z. Yang, C. Chen, W. Luo, J. Song, E. Hitz, C. Jia, Y. Zhou, B. Liu, 3D‐printed, all‐in‐one evaporator for high‐efficiency solar steam generation under 1 sun illumination, Advanced materials, 29 (2017) 1700981.
    [45] K.-K. Liu, Q. Jiang, S. Tadepalli, R. Raliya, P. Biswas, R.R. Naik, S. Singamaneni, Wood–graphene oxide composite for highly efficient solar steam generation and desalination, ACS applied materials & interfaces, 9 (2017) 7675-7681.
    [46] Q. Jiang, L. Tian, K.K. Liu, S. Tadepalli, R. Raliya, P. Biswas, R.R. Naik, S. Singamaneni, Bilayered biofoam for highly efficient solar steam generation, Advanced Materials, 28 (2016) 9400-9407.
    [47] Y. Wang, C. Wang, X. Song, S.K. Megarajan, H. Jiang, A facile nanocomposite strategy to fabricate a rGO–MWCNT photothermal layer for efficient water evaporation, Journal of Materials Chemistry A, 6 (2018) 963-971.
    [48] T. Gao, Y. Li, C. Chen, Z. Yang, Y. Kuang, C. Jia, J. Song, E.M. Hitz, B. Liu, H. Huang, Architecting a floatable, durable, and scalable steam generator: hydrophobic/hydrophilic bifunctional structure for solar evaporation enhancement, Small Methods, 3 (2019) 1800176.
    [49] Y. Liu, J. Chen, D. Guo, M. Cao, L. Jiang, Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air–water interface, ACS applied materials & interfaces, 7 (2015) 13645-13652.
    [50] Z.J. Liu, H.M. Song, D.X. Ji, C.Y. Li, A. Cheney, Y.H. Liu, N. Zhang, X. Zeng, B.R. Chen, J. Gao, Y.S. Li, X. Liu, D. Aga, S.H. Jiang, Z.F. Yu, Q.Q. Gan, Extremely Cost-Effective and Efficient Solar Vapor Generation under Nonconcentrated Illumination Using Thermally Isolated Black Paper, Global Challenges, 1 (2017).
    [51] P.D. Dongare, A. Alabastri, S. Pedersen, K.R. Zodrow, N.J. Hogan, O. Neumann, J.J. Wu, T.X. Wang, A. Deshmukh, M. Elimelech, Q.L. Li, P. Nordlander, N.J. Halas, Nanophotonics-enabled solar membrane distillation for off-grid water purification, Proceedings of the National Academy of Sciences of the United States of America, 114 (2017) 6936-6941.
    [52] X.F. Lin, J.Y. Chen, Z.K. Yuan, M.J. Yang, G.J. Chen, D.S. Yu, M.Q. Zhang, W. Hong, X.D. Chen, Integrative solar absorbers for highly efficient solar steam generation, Journal of Materials Chemistry A, 6 (2018) 4642-4648.
    [53] D.F. Guo, X.C. Yang, Highly efficient solar steam generation of low cost TiN/bio-carbon foam, Science China-Materials, 62 (2019) 711-718.
    [54] N. Xu, X.Z. Hu, W.C. Xu, X.Q. Li, L. Zhou, S.N. Zhu, J. Zhu, Mushrooms as Efficient Solar Steam-Generation Devices, Advanced Materials, 29 (2017).
    [55] G.B. Xue, K. Liu, Q. Chen, P.H. Yang, J. Li, T.P. Ding, J.J. Duan, B. Qi, J. Zhou, Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation, Acs Applied Materials & Interfaces, 9 (2017) 15052-15057.
    [56] C. Jia, Y.J. Li, Z. Yang, G. Chen, Y.G. Yao, F. Jiang, Y.D. Kuang, G. Pastel, H. Xie, B. Yang, S. Das, L.B. Hu, Rich Mesostructures Derived from Natural Woods for Solar Steam Generation, Joule, 1 (2017) 588-599.
    [57] J.W. Jiang, J.S. Wang, B.W. Li, Young's modulus of graphene: A molecular dynamics study, Physical Review B, 80 (2009).
    [58] Z.H. Ni, H.M. Wang, J. Kasim, H.M. Fan, T. Yu, Y.H. Wu, Y.P. Feng, Z.X. Shen, Graphene thickness determination using reflection and contrast spectroscopy, Nano Letters, 7 (2007) 2758-2763.
    [59] S.E. Zhu, S.J. Yuan, G. Janssen, Optical transmittance of multilayer graphene, Epl, 108 (2014).
    [60] S.A. Peng, Z. Jin, P. Ma, D.Y. Zhang, J.Y. Shi, J.B. Niu, X.Y. Wang, S.Q. Wang, M. Li, X.Y. Liu, T.C. Ye, Y.H. Zhang, Z.Y. Chen, G.H. Yu, The sheet resistance of graphene under contact and its effect on the derived specific contact resistivity, Carbon, 82 (2015) 500-505.
    [61] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications, 146 (2008) 351-355.
    [62] A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Letters, 8 (2008) 902-907.
    [63] G. Cui, Z.X. Bi, R.Y. Zhang, J.G. Liu, X. Yu, Z.L. Li, A comprehensive review on graphene-based anti-corrosive coatings, Chemical Engineering Journal, 373 (2019) 104-121.
    [64] D. Berman, A. Erdemir, A.V. Sumant, Graphene: a new emerging lubricant, Materials Today, 17 (2014) 31-42.
    [65] T. Nelson, B. Zhang, O.V. Prezhdo, Detection of Nucleic Acids with Graphene Nanopores: Ab Initio Characterization of a Novel Sequencing Device, Nano Letters, 10 (2010) 3237-3242.
    [66] M. Di Giulio, R. Zappacosta, S. Di Lodovico, E. Di Campli, G. Siani, A. Fontana, L. Cellini, Antimicrobial and Antibiofilm Efficacy of Graphene Oxide against Chronic Wound Microorganisms, Antimicrobial Agents and Chemotherapy, 62 (2018).
    [67] W.S. Koh, C.H. Gan, W.K. Phua, Y.A. Akimov, P. Bai, The Potential of Graphene as an ITO Replacement in Organic Solar Cells: An Optical Perspective, Ieee Journal of Selected Topics in Quantum Electronics, 20 (2014).
    [68] L. Sun, W.M. Huang, Z. Ding, Y. Zhao, C.C. Wang, H. Purnawali, C. Tang, Stimulus-responsive shape memory materials: A review, Materials & Design, 33 (2012) 577-640.
    [69] M.L. Tebaldi, C.M.R. Oda, L.O.F. Monteiro, A.L.B. de Barros, C.J. Santos, D.C.F. Soares, Biomedical nanoparticle carriers with combined thermal and magnetic response: Current preclinical investigations, Journal of Magnetism and Magnetic Materials, 461 (2018) 116-127.
    [70] M. Pita, S. Minko, E. Katz, Enzyme-based logic systems and their applications for novel multi-signal-responsive materials, Journal of Materials Science-Materials in Medicine, 20 (2009) 457-462.
    [71] L.A. Lyon, Z.Y. Meng, N. Singh, C.D. Sorrell, A.S. John, Thermoresponsive microgel-based materials, Chemical Society Reviews, 38 (2009) 865-874.
    [72] C. Wang, N.T. Flynn, R. Langer, Controlled structure and properties of thermoresponsive nanoparticle-hydrogel composites, Advanced Materials, 16 (2004) 1074-+.
    [73] S.Z. Moghaddam, E. Thormann, Surface forces and friction tuned by thermo-responsive polymer films, Current Opinion in Colloid & Interface Science, 47 (2020) 27-45.
    [74] B. Mutharani, P. Ranganathan, S.M. Chen, T.W. Chen, M.A. Ali, A.H. Mahmoud, Sonochemical synthesis of novel thermo-responsive polymer and tungsten dioxide composite for the temperature-controlled reversible "on-off" electrochemical detection of beta-Blocker metoprolol, Ultrasonics Sonochemistry, 64 (2020).
    [75] A. Mohan, L. Rout, A.M. Thomas, S. Nagappan, S. Parambadath, S.S. Park, C.S. Ha, Silver nanoparticles impregnated pH-responsive nanohybrid system for the catalytic reduction of dyes, Microporous and Mesoporous Materials, 303 (2020).
    [76] Y.J. Qin, X.Q. Shan, Y. Han, H. Jin, Y. Gao, Study of pH-Responsive and Polyethylene Glycol-Modified Doxorubicin-Loaded Mesoporous Silica Nanoparticles for Drug Delivery, Journal of Nanoscience and Nanotechnology, 20 (2020) 5997-6006.
    [77] Y.C. Tao, K. Cai, S.W. Liu, Y. Zhang, Z.G. Chi, J.R. Xu, Pseudo target release behavior of simvastatin through pH-responsive polymer based on dynamic imine bonds: Promotes rapid proliferation of osteoblasts, Materials Science & Engineering C-Materials for Biological Applications, 113 (2020).
    [78] X. Liang, S.M. Guo, M. Chen, C.Y. Li, Q. Wang, C. Zou, C.H. Zhang, L.Y. Zhang, S.J. Guo, H. Yang, A temperature and electric field-responsive flexible smart film with full broadband optical modulation, Materials Horizons, 4 (2017) 878-884.
    [79] P. Zhao, J.H. Xia, M.Q. Cao, H.P. Xu, Wavelength-Controlled Light-Responsive Polymer Vesicle Based on Se-S Dynamic Chemistry, Acs Macro Letters, 9 (2020) 163-168.
    [80] Y.W. Zhou, R.R. Chen, H.T. Yang, C.Y. Bao, J.Y. Fan, C.X. Wang, Q.N. Lin, L.Y. Zhu, Light-responsive polymersomes with a charge-switch for targeted drug delivery, Journal of Materials Chemistry B, 8 (2020) 727-735.
    [81] C.L. Brown, S.L. Craig, Molecular engineering of mechanophore activity for stress-responsive polymeric materials, Chemical Science, 6 (2015) 2158-2165.
    [82] A.L. Black, J.M. Lenhardt, S.L. Craig, From molecular mechanochemistry to stress-responsive materials, Journal of Materials Chemistry, 21 (2011) 1655-1663.
    [83] Z.S. Kean, Z.B. Niu, G.B. Hewage, A.L. Rheingold, S.L. Craig, Stress-Responsive Polymers Containing Cyclobutane Core Mechanophores: Reactivity and Mechanistic Insights, Journal of the American Chemical Society, 135 (2013) 13598-13604.
    [84] I. Safarik, K. Horska, K. Pospiskova, Z. Maderova, M. Safarikova, Microwave Assisted Synthesis of Magnetically Responsive Composite Materials, Ieee Transactions on Magnetics, 49 (2013) 213-218.
    [85] S. Lam, E. Blanco, S.K. Smoukov, K.P. Velikov, O.D. Velev, Magnetically Responsive Pickering Foams, Journal of the American Chemical Society, 133 (2011) 13856-13859.
    [86] K.M. Herbert, S. Schrettl, S.J. Rowan, C. Weder, 50th Anniversary Perspective: Solid-State Multistimuli, Multiresponsive Polymeric Materials, Macromolecules, 50 (2017) 8845-8870.
    [87] Z. Liu, W. Wang, R. Xie, X.J. Ju, L.Y. Chu, Stimuli-responsive smart gating membranes, Chemical Society Reviews, 45 (2016) 460-474.
    [88] X.Q. Wang, G. Ou, N. Wang, H. We, Graphene-based Recyclable Photo-Absorbers for High-Efficiency Seawater Desalination, Acs Applied Materials & Interfaces, 8 (2016) 9194-9199.
    [89] G. Ni, N. Miljkovic, H. Ghasemi, X.P. Huang, S.V. Boriskina, C.T. Lin, J.J. Wang, Y.F. Xu, M.M. Rahman, T.J. Zhang, G. Chen, Volumetric solar heating of nanofluids for direct vapor generation, Nano Energy, 17 (2015) 290-301.
    [90] X.Z. Wang, Y.R. He, X. Liu, L. Shi, J.Q. Zhu, Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation, Solar Energy, 157 (2017) 35-46.
    [91] O. Neumann, A.S. Urban, J. Day, S. Lal, P. Nordlander, N.J. Halas, Solar Vapor Generation Enabled by Nanoparticles, Acs Nano, 7 (2013) 42-49.
    [92] J.L. Monteith, EVAPORATION AND SURFACE-TEMPERATURE, Quarterly Journal of the Royal Meteorological Society, 107 (1981) 1-27.
    [93] J.L. Li, M.H. Du, G.X. Lv, L. Zhou, X.Q. Li, L. Bertoluzzi, C.H. Liu, S.N. Zhu, J. Zhu, Interfacial Solar Steam Generation Enables Fast-Responsive, Energy-Efficient, and Low-Cost Off-Grid Sterilization, Advanced Materials, 30 (2018).
    [94] G. Cheng, X.Z. Wang, X. Liu, Y.R. He, B.V. Balakin, Enhanced interfacial solar steam generation with composite reduced graphene oxide membrane, Solar Energy, 194 (2019) 415-430.
    [95] X.Y. Huang, Y.H. Yu, O.L. de Llergo, S.M. Marquez, Z.D. Cheng, Facile polypyrrole thin film coating on polypropylene membrane for efficient solar-driven interfacial water evaporation, Rsc Advances, 7 (2017) 9495-9499.
    [96] Q.M. Chen, Z.Q. Pei, Y.S. Xu, Z. Li, Y. Yang, Y. Wei, Y. Ji, A durable monolithic polymer foam for efficient solar steam generation, Chemical Science, 9 (2018) 623-628.
    [97] Y. Liu, J.W. Lou, M.T. Ni, C.Y. Song, J.B. Wu, N.P. Dasgupta, P. Tao, W. Shang, T. Deng, Bioinspired Bifunctional Membrane for Efficient Clean Water Generation, Acs Applied Materials & Interfaces, 8 (2016) 772-779.
    [98] C.X. Liu, J.F. Huang, C.E. Hsiung, Y. Tian, J.J. Wang, Y. Han, A. Fratalocchi, High-Performance Large-Scale Solar Steam Generation with Nanolayers of Reusable Biomimetic Nanoparticles, Advanced Sustainable Systems, 1 (2017).
    [99] J.Q. Zhao, Y.W. Yang, C.H. Yang, Y.P. Tian, Y. Han, J. Liu, X.T. Yin, W.X. Que, A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination, Journal of Materials Chemistry A, 6 (2018) 16196-16204.
    [100] Y.M. Liu, S.T. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H.Z. Duan, W. Shang, P. Tao, C.Y. Song, T. Deng, A Bioinspired, Reusable, Paper-Based System for High-Performance Large-Scale Evaporation, Advanced Materials, 27 (2015) 2768-+.
    [101] Z.T. Hua, B. Li, L.L. Li, X.Y. Yin, K.Z. Chen, W. Wang, Designing a Novel Photothermal Material of Hierarchical Microstructured Copper Phosphate for Solar Evaporation Enhancement, Journal of Physical Chemistry C, 121 (2017) 60-69.
    [102] M.Y. Shang, N. Li, S.D. Zhang, T.T. Zhao, C. Zhang, C. Liu, H.F. Li, Z.Y. Wang, Full-Spectrum Solar-to-Heat Conversion Membrane with Interfacial Plasmonic Heating Ability for High-Efficiency Desalination of Seawater, Acs Applied Energy Materials, 1 (2018) 56-61.
    [103] L.L. Zhang, J. Xing, X.L. Wen, J.W. Chai, S.J. Wang, Q.H. Xiong, Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination, Nanoscale, 9 (2017) 12843-12849.
    [104] G.L. Zhu, J.J. Xu, W.L. Zhao, F.Q. Huang, Constructing Black Titania with Unique Nanocage Structure for Solar Desalination, ACS Applied Materials & Interfaces, 8 (2016) 31716-31721.
    [105] M.M. Ye, J. Jia, Z.J. Wu, C.X. Qian, R. Chen, P.G. O'Brien, W. Sun, Y.C. Dong, G.A. Ozin, Synthesis of Black TiOx Nanoparticles by Mg Reduction of TiO2 Nanocrystals and their Application for Solar Water Evaporation, Advanced Energy Materials, 7 (2017).
    [106] J.D. Yao, G.W. Yang, An efficient solar-enabled 2D layered alloy material evaporator for seawater desalination, Journal of Materials Chemistry A, 6 (2018) 3869-3876.
    [107] Y.C. Wang, L.B. Zhang, P. Wang, Self-Floating Carbon Nanotube Membrane on Macroporous Silica Substrate for Highly Efficient Solar-Driven Interfacial Water Evaporation, Acs Sustainable Chemistry & Engineering, 4 (2016) 1223-1230.
    [108] Y.C. Liu, X.Q. Wang, H. Wu, High-performance wastewater treatment based on reusable functional photo-absorbers, Chemical Engineering Journal, 309 (2017) 787-794.
    [109] K.K. Liu, Q. Jiang, S. Tadepallifit, R. Raliya, P. Biswas, R.R. Naik, S. Singamaneni, Wood Graphene Oxide Composite for Highly Efficient Solar Steam Generation and Desalination, Acs Applied Materials & Interfaces, 9 (2017) 7675-7681.
    [110] H. Liu, C.J. Chen, G. Chen, Y.D. Kuang, X.P. Zhao, J.W. Song, C. Jia, X. Xu, E. Hitz, H. Xie, S. Wang, F. Jiang, T. Li, Y.J. Li, A. Gong, R.G. Yang, S. Das, L.B. Hu, High-Performance Solar Steam Device with Layered Channels: Artificial Tree with a Reversed Design, Advanced Energy Materials, 8 (2018).
    [111] Y.M. Liu, J.W. Chen, D.W. Guo, M.Y. Cao, L. Jiang, Floatable, Self-Cleaning, and Carbon-Black-Based Superhydrophobic Gauze for the Solar Evaporation Enhancement at the Air-Water Interface, Acs Applied Materials & Interfaces, 7 (2015) 13645-13652.
    [112] J.W. Lou, Y. Liu, Z.Y. Wang, D.W. Zhao, C.Y. Song, J.B. Wu, N. Dasgupta, W. Zhang, D. Zhang, P. Tao, W. Shang, T. Deng, Bioinspired Multifunctional Paper-Based rGO Composites for Solar-Driven Clean Water Generation, Acs Applied Materials & Interfaces, 8 (2016) 14628-14636.
    [113] F. Jiang, H. Liu, Y. Li, Y.D. Kuang, X. Xu, C.J. Chen, H. Huang, C. Jia, X.P. Zhao, E. Hitz, Y.B. Zhou, R.G. Yang, L.F. Cui, L.B. Hu, Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation, Acs Applied Materials & Interfaces, 10 (2018) 1104-1112.
    [114] A. Pal, G. Natu, K. Ahmad, A. Chattopadhyay, Phosphorus induced crystallinity in carbon dots for solar light assisted seawater desalination, Journal of Materials Chemistry A, 6 (2018) 4111-4118.
    [115] Z. Yin, H.M. Wang, M.Q. Jian, Y.S. Li, K.L. Xia, M.C. Zhang, C.Y. Wang, Q. Wang, M. Ma, Q.S. Zheng, Y.Y. Zhang, Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation, Acs Applied Materials & Interfaces, 9 (2017) 28596-28603.
    [116] Y. Zeng, J.F. Yao, B.A. Horri, K. Wang, Y.Z. Wu, D. Li, H.T. Wang, Solar evaporation enhancement using floating light-absorbing magnetic particles, Energy & Environmental Science, 4 (2011) 4074-4078.
    [117] Y. Zeng, K. Wang, J.F. Yao, H.T. Wang, Hollow carbon beads for significant water evaporation enhancement, Chemical Engineering Science, 116 (2014) 704-709.
    [118] Y. Ito, Y. Tanabe, J.H. Han, T. Fujita, K. Tanigaki, M.W. Chen, Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization, Advanced Materials, 27 (2015) 4302-4307.
    [119] G.J. Li, W.C. Law, K.C. Chan, Floating, highly efficient, and scalable graphene membranes for seawater desalination using solar energy, Green Chemistry, 20 (2018) 3689-3695.
    [120] H. Ghasemi, G. Ni, A.M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, G. Chen, Solar steam generation by heat localization, Nature Communications, 5 (2014).
    [121] Y.J. Li, T.T. Gao, Z. Yang, C.J. Chen, W. Luo, J.W. Song, E. Hitz, C. Jia, Y.B. Zhou, B.Y. Liu, B. Yang, L.B. Hu, 3D-Printed, All-in-One Evaporator for High-Efficiency Solar Steam Generation under 1 Sun Illumination, Advanced Materials, 29 (2017).
    [122] H.Y. Ren, M. Tang, B.L. Guan, K.X. Wang, J.W. Yang, F.F. Wang, M.Z. Wang, J.Y. Shan, Z.L. Chen, D. Wei, H.L. Peng, Z.F. Liu, Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion, Advanced Materials, 29 (2017).
    [123] M.M. Zhu, J.L. Yu, C.L. Ma, C.Y. Zhang, D.X. Wu, H.T. Zhu, Carbonized daikon for high efficient solar steam generation, Solar Energy Materials and Solar Cells, 191 (2019) 83-90.
    [124] J. Fang, J. Liu, J.J. Gu, Q.L. Liu, W. Zhang, H.L. Su, D. Zhang, Hierarchical Porous Carbonized Lotus Seedpods for Highly Efficient Solar Steam Generation, Chemistry of Materials, 30 (2018) 6217-6221.
    [125] J. Liu, Q.L. Liu, D.L. Ma, Y. Yuan, J.H. Yao, W. Zhang, H.L. Su, Y.S. Su, J.J. Gu, D. Zhang, Simultaneously achieving thermal insulation and rapid water transport in sugarcane stems for efficient solar steam generation, Journal of Materials Chemistry A, 7 (2019) 9034-9039.
    [126] M.M. Gao, C.K. Peh, H.T. Phan, L.L. Zhu, G.W. Ho, Solar Absorber Gel: Localized Macro-Nano Heat Channeling for Efficient Plasmonic Au Nanoflowers Photothermic Vaporization and Triboelectric Generation, Advanced Energy Materials, 8 (2018).
    [127] L.L. Zhu, M.M. Gao, C.K.N. Peh, X.Q. Wang, G.W. Ho, Self-Contained Monolithic Carbon Sponges for Solar-Driven Interfacial Water Evaporation Distillation and Electricity Generation, Advanced Energy Materials, 8 (2018).
    [128] Q.C. Shen, Z.Y. Ning, B.W. Fu, S. Ma, Z.Y. Wang, L. Shu, L.F. Zhang, X.Y. Wang, J.L. Xu, P. Tao, C.Y. Song, J.B. Wu, T. Deng, W. Shang, An open thermo-electrochemical cell enabled by interfacial evaporation, Journal of Materials Chemistry A, 7 (2019) 6514-6521.
    [129] P.H. Yang, K. Liu, Q. Chen, J. Li, J.J. Duan, G.B. Xue, Z.S. Xu, W.K. Xie, J. Zhou, Solar-driven simultaneous steam production and electricity generation from salinity, Energy & Environmental Science, 10 (2017) 1923-1927.
    [130] L.F. Cui, P.P. Zhang, Y.K. Xiao, Y. Liang, H.X. Liang, Z.H. Cheng, L.T. Qu, High Rate Production of Clean Water Based on the Combined Photo-Electro-Thermal Effect of Graphene Architecture, Advanced Materials, 30 (2018).
    [131] X.Q. Li, X.Z. Min, J.L. Li, N. Xu, P.C. Zhu, B. Bin Zhu, S.N. Zhu, J. Zhu, Storage and Recycling of Interfacial Solar Steam Enthalpy, Joule, 2 (2018) 2477-2484.
    [132] M. Peng, H.B. Li, L.J. Wu, Q. Zheng, Y. Chen, W.F. Gu, Porous poly(vinylidene fluoride) membrane with highly hydrophobic surface, Journal of Applied Polymer Science, 98 (2005) 1358-1363.
    [133] S. Wu, Calculation of interfacial tension in polymer systems, in: Journal of Polymer Science Part C: Polymer Symposia, Wiley Online Library, 1971, pp. 19-30.
    [134] B. Andonovic, A. Grozdanov, P. Paunovic, A.T. Dimitrov, X-ray diffraction analysis on layers in graphene samples obtained by electrolysis in molten salts: a new perspective, Micro & Nano Letters, 10 (2015) 683-685.
    [135] Y.W. Yang, H.Y. Zhao, Z.Y. Yin, J.Q. Zhao, X.T. Yin, N. Li, D.D. Yin, Y.N. Li, B. Lei, Y.P. Du, W.X. Que, A general salt-resistant hydrophilic/hydrophobic nanoporous double layer design for efficient and stable solar water evaporation distillation, Materials Horizons, 5 (2018) 1143-1150.
    [136] W. Chen, A.Y. Fadeev, M.C. Hsieh, D. Oner, J. Youngblood, T.J. McCarthy, Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples, Langmuir, 15 (1999) 3395-3399.
    [137] L. Shi, Y. Shi, S.F. Zhuo, C.L. Zhang, Y. Aldrees, S. Aleid, P. Wang, Multi-functional 3D honeycomb ceramic plate for clean water production by heterogeneous photo-Fenton reaction and solar-driven water evaporation, Nano Energy, 60 (2019) 222-230.
    [138] R.N. Wenzel, SURFACE ROUGHNESS AND CONTACT ANGLE, Journal of Physical and Colloid Chemistry, 53 (1949) 1466-1467.
    [139] Calcium and Magnesium in Drinking-Water: Public Health Significance, in, WHO, 2009.
    [140] Safe Drinking Water From Desalinaion, in, WHO, http://www. who.int/water_sanitation_health/publications/desalination_ guidance/en/ 2011.
    [141] Guidelines for Drinking-Water Quality, in, WHO, http://who.int/ water_sanitation_health/publications/dwq-guidelines-4/en/ 2011.
    [142] W.G. Li, Z. Li, K. Bertelsmann, D.E. Fan, Portable Low-Pressure Solar Steaming-Collection Unisystem with Polypyrrole Origamis, Advanced Materials, 31 (2019).
    [143] M.D. Koretsky, Engineering and chemical thermodynamics, John Wiley & Sons, 2012.
    [144] F.N. Xia, V. Perebeinos, Y.M. Lin, Y.Q. Wu, P. Avouris, The origins and limits of metal-graphene junction resistance, Nature Nanotechnology, 6 (2011) 179-184.

    無法下載圖示 全文公開日期 2025/08/13 (校內網路)
    全文公開日期 2025/08/13 (校外網路)
    全文公開日期 2025/08/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE