簡易檢索 / 詳目顯示

研究生: 楊景龍
Jing-Long Yang
論文名稱: 先進發電機及電能儲存裝置之動態模型建立
Dynamic Modeling of Advanced Electric Energy Generators and Electric Energy Storage Devices
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 陳柏全
Bo-Chiuan Chen
洪翊軒
Yi-Shuan Hung
林紀穎
Chi-Ying Lin
蘇裕軒
Yu-Hsuan Su
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 100
中文關鍵詞: 動態模型自由活塞引擎發電機均質進氣壓燃超級電容等效電路卡爾曼濾波器
外文關鍵詞: Dynamic modeling, Free-piston engine generator, Homogeneous charge compression ignition, Ultracapacitor, Equivalent circuit, Extended Kalman filter
相關次數: 點閱:367下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出兩種先進能源系統之動態模型建立方法,其中包含: (i)自由活塞發電機之物理模型。此模型共包含17個狀態,其中包括活塞動態、發電機電流、歧管與汽缸之流體動態及熱動態模型。系統亦採用電子閥門與缸內直噴裝置使系統最佳化及降低汙染物排放。模擬結果顯示可透過切換進排氣時機、負載及燃油質量,使系統由SI模式切換至HCCI模式。(ii)含熱效應之超級電容等效電路模型。文獻中顯示超級電容之充放電特性受到端電壓、溫度及操作頻率之影響,因此本論文提出一個包含熱效應及電壓效應之超級電容模型。此模型以超級電容在不同操作電壓及溫度之交流阻抗為基礎,鑑別出電容模型之參數。建立超級電容之動態模型後,擴展型卡爾曼濾波器則使用於對超級電容系統之充電狀態及溫度之估測。實驗結果得知由卡爾曼濾波器對充電狀態及溫度進行估測,可消除超級電容動態模型之誤差及量測雜訊並提供更精確的預測。


    For the purpose of model-based analysis and control design, this thesis proposes two dynamic model of advanced electric energy system. (i): SI/HCCI free-piston engine generators (FPEGs). The physics-based model contains 17 states, which includes piston dynamics, alternator current, runners and cylinder gas filling dynamics and thermal dynamics. Homogeneous charge compression ignition (HCCI) combustion is employed for better efficiency and reduced emissions, whereas spark ignition (SI) combustion can be used quick start for the FPEG and higher power demand. Equipped with electric mechanical valves (EMVs) and direct injection, the free-piston engine generator is deemed to achieve optimized and clean combustion. Key features in this dynamic model include the runners and cylinder filling dynamics and cycle-to-cycle coupling between the piston motion and combustion process. Simulation results demonstrate that during a transition from SI to HCCI mode the scavenging process needs to be properly maintained so as to achieve trapped mass balance between the opposite cylinders and thus regulation of the compression ratio. (ii): Ultracapacitor (UC) model including thermal behavior. The performance and life expectancy of ultracapacitors depend heavily on the operating voltage and temperature. At this part, simultaneous estimation of state-of-charge (SOC) and temperature is achieved by applying extended Kalman filter (EKF) algorithm with only the terminal measurement of voltage and current. For the application of EKF algorithm, a nonlinear model which consists of a voltage-and-thermal-dependent equivalent circuit model and a thermal model is first developed. The parameters in the equivalent circuit model are identified by applying least squares method with weightings at different frequencies so as to achieve satisfactory prediction over the whole applicable frequency ranges. Experimental results demonstrate that the EKF-based estimator is crucial in providing accurate and consistent prediction of SOC and temperature in existence of modeling errors and measurement noises, especially during dynamic charge/discharge cycles at low temperature. The accurate estimation of SOC and temperature enables optimum energy and thermal management of ultracapacitors.

    ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . II ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . IV TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . VI LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . IX LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . XIII 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Internal combustion engine vehicle (ICEV) . . . . . . . . . . 2 1.1.2 Hybrid electric vehicle (HEV) . . . . . . . . . . . . . . . . 2 1.1.3 All electric vehicle (AEV) . . . . . . . . . . . . . . . . . . 4 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Dynamic modeling of a SI/HCCI free-piston engine generator with electric mechanical valves . . . . . . . . . . . . . . . . . . . 8 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 Free-piston engine generator system configuration . . . . . . 10 2.1.2 Homogeneous charge compression ignition combustion . . . . . . 12 2.2 Model description . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Cylinder geometry and piston dynamics . . . . . . . . . . . . . 13 2.4 Linear alternator . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Valve lift profiles . . . . . . . . . . . . . . . . . . . . . . 16 2.6 Gas filling dynamics . . . . . . . . . . . . . . . . . . . . . . 17 2.6.1 Intake runner dynamics . . . . . . . . . . . . . . . . . . . . 18 2.6.2 Exhaust runner dynamics . . . . . . . . . . . . . . . . . . . 18 2.6.3 Cylinder dynamics . . . . . . . . . . . . . . . . . . . . . . 18 2.7 Combustion model . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7.1 Ignition model for isooctane . . . . . . . . . . . . . . . . . 20 2.7.2 Combustion heat release . . . . . . . . . . . . . . . . . . . 21 2.7.3 Heat transfer model . . . . . . . . . . . . . . . . . . . . . 21 2.8 FPEG Simulation Result . . . . . . . . . . . . . . . . . . . . . 22 2.8.1 Direct transition from SI mode to HCCI mode . . . . . . . . . 25 2.8.2 Transition to HCCI mode through a transitional lean SI mode . 29 2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . .. . . . . 35 3 Dynamic modeling of the electrical and thermal behavior of ul- tracapacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.1 Design and working principle of ultracapacitor . . . . . . . . 38 3.1.2 Impedance-based modeling approach . . . . . . . . . . . . . . 39 3.2 Experimental setup . . . . . . . . . . . . . . . . .. . . . . . 43 3.3 Modeling of Ultracapacitor equivalent circuit . . . . . . . . . 44 3.3.1 Equivalent circuit model . . . . . . . . . . . . . . . . . . . 44 3.3.2 Thermal model . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.3 Identification of parameters in the equivalent circuit model . 47 3.3.4 Identification of parameters in the thermal model . . . . . . 48 3.4 Ultracapacitor simulation and experimental results . . . . . . . 51 3.4.1 Charge/discharge test with different current rates close to adiabatic condition . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4.2 Charge/discharge test with different frequencies under natural heat dissipation condition . . . . . . . . . . . . . . . . . . . . . 53 3.4.3 Cold start condition . . . . . . . . . . . . . . . . . . . . . 55 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 EKF-based estimation of SOC and temperature in ultracapacitor . . . 58 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2 Extended model . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3 Extended Kalman filter scheme . . . . . . . . . . . . . . . . . . 62 4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . 65 4.4.1 Charge/discharge test with different current rates close to adiabatic condition . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.4.2 Charge/discharge current of a Toyota Prius in NYCC driving cycle under natural heat dissipation condition . . . . . . . . . . . 69 4.4.3 Charge/discharge test at -38 oC . . . . . . . . . . . . . . . . 72 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . 76 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    [1] A. G. Pandolfo and A. F. Hollenkamp, “Carbon properties and their role in
    supercapacitors,” Journal of Power Sources,, vol. 157, pp. 11–27, 2006.
    [2] E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy Theory, Experi-
    ment, and Applications. Wiley-Interscience, 2005.
    [3] M. Dale, S. Krumdieck, and P. Bodger, “Global energy modeling - a biophysical approach (gemba) part 1:an overview of biophysical economics,” Ecological Economics, vol. 73, pp. 152–157, 2012.
    [4] BP, Statistical review of world energy, 2011.
    [5] S. F. Tie and C. W. Tan, “A review of energy sources and energy management
    system in electric vehicles,” Renewable and Sustainable Energy Reviews, vol. 20, pp. 82–102, 2013.
    [6] J. Fredriksson and I. Denbratt, “Simulation of a Two-Stroke Free Piston
    Engine,” SAE Paper 2004-01-1871.
    [7] M. Brusstar, C. G. Jr., K. Jaffri, P. McCarthy, and M. Pomerleau, “Design,
    development and testing of multi-cylinder hydraulic free-piston engines,” SAE
    Paper 2005-01-1167.
    [8] J. Schiffer, D. Linzen, and D. U. Sauer, “Heat generation in double layer
    capacitors,” Journal of Power Sources,, vol. 160, pp. 765–772, 2006.
    [9] D. H. Lee, U. S. Kim, C. B. Shin, B. H. Lee, B. W. Kim, and Y. H. Kim,
    “Modeling of the thermal behaviour of an ultracapacitor for a 42-v automotive
    electrical system,” Journal of Power Sources,, vol. 175, pp. 664–668, 2008.
    [10] A. Burke, “Ultracapacitors: why, how, and where is the technology,” Journal of Power Sources,, vol. 91, pp. 37–50, 2000.
    [11] W. G. Pell and B. E. Conway, “Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes,” Journal of Power Sources,, vol. 136, pp. 334–345, 2004.
    [12] B. Frenzel, P. Kurzweil, and H. Ronnebeck, “Electromobility concept for
    racing cars based on lithium-ion batteries and supercapacitors,” Journal of
    Power Sources,, vol. 196, pp. 5364–5376, 2011.
    [13] D. Rotenberg, A. Vahidi, and I. Kolmanovsky, “Ultracapacitor assisted powertrains: Modeling, control, sizing, and the impact on fuel economy,” IEEE
    Transactions on control systems technology,, vol. 19, 2011.
    [14] D. Iannuzzi and P. Tricoli, “Speed-based state-of -charge tracking control for metro trains with onboard supercapacitors,” IEEE Transactions on power electronics,, vol. 27, 2012.
    [15] O. Bohlen, J. Kowal, and D. U. Sauer, “Aging behaviour of electrochemical
    double layer capacitors part 2. lifetime simulation model for dynamic applications,” Journal of Power Sources,, vol. 173, pp. 626–632, 2007.
    [16] C. J. Chiang, J. L. Yang, S. Y. Lan, T. W. Shei, W. S. Chiang, and B. L.
    Chen, “Dynamic modeling of SI/HCCI free-piston engine generators,” IEEE
    conference on industrial electronics and aplications, pp. 1615–1620, 2011.
    [17] ——, “Dynamic modeling of a SI/HCCI free-piston engine generator with
    electric mechanical valves,” Applied Energy, vol. 102, pp. 336–346, 2013.
    [18] C. J. Chiang, J. L. Yang, and W. C. Cheng, “Temperature and state-of-charge estimation in ultracapacitors based on extended Kalman filter,” Accepted by Journal of Power Sources, 2013.
    [19] ——, “Dynamic modeling of the electrical and temperature behavior of ultracapacitors,” summited to the 10th IEEE International Conference on Control and Automation, 2013.
    [20] ——, “EKF-based estimation of SOC and temperature in ultracapacitor,”
    summited to the 10th IEEE International Conference on Control and Au-
    tomation, 2013.
    [21] R. Mikalsen and A. Roskilly, “A review of free-piston engine history and
    applications,” Applied Thermal Engineering, vol. 27, pp. 2339–2352, October
    2007.
    [22] ——, “The control of a free-piston generator. Part1: Fundamental analyses,” Applied Energy, vol. 87, pp. 1273–1280, 2010.
    [23] ——, “Coupled dynamic-multidimensional modelling of free-piston engine
    combustion,” Applied Energy, vol. 86, pp. 89–95, 2009.
    [24] ——, “The control of a free-piston generator. Part2: Engine dynamics and
    piston motion control,” Applied Energy, vol. 87, pp. 1281–1287, 2010.
    [25] R. Mikalsen, E. Jones, and A. Roskilly, “Predictive piston motion control
    in a free-piston internal combustion engine,” Applied Energy, vol. 87, pp.
    1722–1728, 2010.
    [26] P. Famouri and W. R. Cawthorne, “Design and testing of a novel linear
    alternator and engine system for remote electrical power generation,” IEEE
    Power Engineering Society 1999 Winter Meeting, vol. 1, pp. 108–112, 1999.
    [27] M. Bergman and V. I. Golovitchev, “CFD modeling of a two-stroke free piston energy converter using detailed chemistry,” SAE Paper 2005-24-074.
    [28] K. Li and Z. Sun, “Modeling and control of a hydraulic free piston engine
    with (HCCI) combustion,” Proceedings of the 52nd National Conference on
    Fluid Power, pp. 567–576, 2011.
    [29] P. V. Blarigan, N. Paradiso, and S. Goldsborough, “Homogeneous charge
    compression ignition with a free piston: A new approach to ideal otto cycle
    performance,” SAE paper 982484.
    [30] S. Goldsborough and P. V. Blarigan, “A numerical study of a free piston IC engine operating on homogeneous charge compression ignition combustion,”
    SAE paper 1999-01-0619.
    [31] Q. Li, J. Xiao, and Z. Huang, “Simulation of a two-stroke free-piston engine for electrical power generation,” Energy and Fuels, vol. 22, pp. 3443–3449, 2008.
    [32] A. P. Kleemann, J.-C. Dabadie, and S. Henriot, “Computational design studies for a high-efficiency and low-emissions free piston engine prototype,” SAE Paper 2004-01-2928.
    [33] K. Li, W. Santiage, and Z. Sun, “Modeling of a two-stroke free-piston engine with (HCCI) combustion,” Proceedings of the ASME 2010 Dynamic Systems
    and Control Conference, Boston, MA, DSCC2010-4267, 2010.
    [34] S. Xu, Y.Wang, T. Zhu, T. Xu, and C. Tao, “Numerical analysis of two-stroke free piston engine oerating on HCCI combustion,” Applied Energy, vol. 88, pp. 3712–3725, 2011.
    [35] J. C. Livengood and P. C. Wu, “Correlation of autoignition phenomena in
    internal combustion engines and rapid compression machines,” in Fifth In-
    ternational Symposium on Combustion, 1955, pp. 347–356.
    [36] J. B. Heywood, Internal Combustion Engine Fundamentals. McGraw-Hill
    Inc, 1988.
    [37] A. J. Peter, P. J. Johan, P. Jeroen, and E. M. Georges, “Horsepower with
    brains: The design of the chiron free piston engine,” SAE paper, November
    2000.
    [38] J. O. Olsson, P. Tunestal, B. Johansson, S. Fiveland, R. Agama, M. Willi,
    and D. Assanis, “Compression ratio influence on maximum load of a natural
    gas fueled HCCI engine,” SAE paper 2002-01-0111.
    [39] I. D. Bedoya, S. Saxena, F. J. Cadavid, R. W. Dibble, and M. Wissink,
    “Experimental evaluation of strategies to increase the operatine range of a
    biogas-fueled HCCI engine for power generation,” Accepted by Applied En-
    ergy, 2012.
    [40] H. Machrafi, S. Cavadias, and J. Amouroux, “A parametric study on the
    emissions from an HCCI alternative combustion engine resulting from the
    auto-ignition of primary reference fuels,” Applied Energy, vol. 85, pp. 755–
    764, 2008.
    [41] S. Gan, H. K. Ng, and K. M. Pang, “Homogeneous charge compression ignition (HCCI) combustion: implementation and effects on pollutants in direct
    injection diesel engines,” Applied Energy, vol. 88, pp. 559–567, 2011.
    [42] C. J. Chiang and A. G. Stefanopoulou, “Stability analysis in homogeneous
    charge compression ignition (HCCI) engines with high dilution,” IEEE Trans-
    actions on Control Systems Technology, vol. 5, pp. 209–219, March 2007.
    [43] D. S. Stanglmaier and E. Roberts, “Homogenous charge compression ignition
    (HCCI): Benefits, compromises, and future engine applications,” SAE paper
    1999-01-3682.
    [44] R. K. Maurya and A. K. Agarwal, “Experimental investigation on the effect
    of intake air temperature and air-fuel ratio on cycle-to-cycle variations of
    HCCI combustion and performance parameters,” Applied Energy, vol. 88,
    pp. 1153–1163, 2011.
    [45] P. Najt and D. Foster, “Compression-ignited homegeneous charge combustion,” SAE paper 830264.
    [46] R. H. Thring, “Homegeneous-charge compression-ignition (HCCI) engines,”
    SAE paper 892068.
    [47] F. Caresana, G. Comodi, and L. Pelagalli, “Design approach for a two-stroke free piston engine for electric power generation,” SAE paper 2004-32-0037.
    [48] W. R. Cawthorne, P. Famouri, J. Chen, N. N. Clark, T. I. McDaniel, R. J.
    Atkinson, S. Nandkumar, C. M. Atkinson, and S. Petreanu, “Development
    of a linear alternator-engine for hybrid electric vehicle applications,” IEEE
    Transactios on Vehicular Technology, vol. 48, pp. 1797–1802, November 1999.
    [49] X. He, M. T. Domovan, B. T. Zigler, T. R. Plamer, S. M. Walton, M. S.
    Wooldridge, and A. Atreya, “An experimental and modeling study of isooctane
    ignition delay times under homogeneous charge compression ignition
    conditions,” Combustion and Flame, pp. 266–275, 2005.
    [50] C. J. Chiang and A. G. Stefanopoulou, “Sensitivity analysis of combustion
    timing of homogeneous charge cmpression ignition gasoline engines,” ASME Journal of Dynamic Systems, Measurement and Control, vol. 131, no. 1, pp.
    01456, January 2009.
    [51] R. Kotz, M. Hahn, and R. Gallay, “Temperature behavior and impedance
    fundamentals of supercapacitors,” Journal of Power Sources,, vol. 154, pp.
    550–555, 2006.
    [52] H. Michel, “Temperature and dynamics problem of ultracapacitors in stationary and mobile applications,” Journal of Power Sources,, vol. 154, pp.
    556–560, 2006.
    [53] S. Fletcher, F. Sillars, R. Carter, A. Cruden, M. Mirzaeian, N. Hudson,
    J. Parkinson, and P. Hall, “The effects of temperature on the performance
    of electrochemical double layer capacitors,” Journal of Power Sources,, vol.
    195, pp. 7484–7488, 2010.
    [54] M. A. Sakka, H. Gualous, J. V. Mierlo, and H. Culcu, “Thermal modeling
    and heat management of supercapacitor modules for vehicle applications,”
    Journal of Power Sources,, vol. 194, pp. 581–587, 2009.
    [55] S. Buller, E. Karden, D. Kok, and R. D. Doncker, “Modeling the dynamic behavior of supercapacitors using impedance spectroscopy,” IEEE Transactions
    on Industry Applications,, vol. 38, 2002.
    [56] H. Gualous, D. Bouquain, A. Berthon, and J. M. Kauffmann, “Experimental
    study of supercapacitor serial resistance and capacitance variations with
    temperature,” Journal of Power Sources,, vol. 123, pp. 86–93, 2003.
    [57] F. Rafik, H. Gualous, R. Gallay, A. Crausaz, and A. Berthon, “Frequency,
    thermal and voltage supercapacitor characterization and modeling,” Journal
    of Power Sources,, vol. 165, pp. 928–934, 2007.
    [58] C. H. Wu, Y. H. Hung, and C. W. Hong, “On-line supercapacitor dynamic
    models for energy conversion and management,” Energy Conversion and
    Management,, vol. 53, pp. 337–345, 2012.
    [59] MaxwellTechnologies, “Product guide,” http://www.maxwell.com, 2009.
    [60] ——, “Maxwell bc series ultracapacitor datasheet,”
    www.maxwell.com/products/ultracapaicotr/docs/datasheet−bc−series−1017105.pdf,
    2013.
    [61] G. L. Plett, “Extended kalman filtering for battery management systems of
    lipb-based hev battery packs: part 1. background,” Journal of Power Sources,
    vol. 134, pp. 252–261, 2004.
    [62] ——, “Extended kalman filtering for battery management systems of lipbbased hev battery packs: part 2. modeling and identification,” Journal of
    Power Sources, vol. 134, pp. 262–276, 2004.
    [63] ——, “Extended kalman filtering for battery management systems of lipbbased hev battery packs: part 3. state and parameter estimation,” Journal
    of Power Sources, vol. 134, pp. 277–292, 2004.
    [64] A. Vasebi, M. Partovibakhsh, and S. M. T. Bathaee, “A novel combined
    battery model for state-of-charge estimation in lead-acid batteries based on
    extended kalman filter for hybrid electric vehicle applications,” Ccontrol En-
    gineering Practice,, vol. 174, pp. 30–40, 2007.
    [65] G. L. Plett, “Sigma-point kalman filtering for battery management systems
    of lipb-based hev battery packs: part 1. introduction and state estimation,”
    Journal of Power Sources, vol. 161, pp. 1356–1368, 2006.
    [66] ——, “Sigma-point kalman filtering for battery management systems of lipbbased hev battery packs: part 2. simulataneous state and parameter estimation,” Journal of Power Sources, vol. 161, pp. 1369–1384, 2006.
    [67] S. Santhanagophlan and R. E. White, “State of charge estimation using an
    unscented filter for high power lithium ion cells,” International journal of
    energy research, vol. 34, pp. 152–163, 2010.
    [68] J. Zhang and C. Xia, “State-of-charge estimation of valve regulated lead acid battery based on multi-state unscented kalman filter,” Electrical Power and Energy Systems, vol. 33, pp. 472–476, 2011.
    [69] X. Hu, S. Li, H. Peng, and F. Sun, “Robustness analysis of state-of-charge estimation methods for two types of li-ion batteries,” Journal of Power Sources, vol. 217, pp. 209–219, 2012.
    [70] K. Ogata, Discrete-time control systems. Prentice-Hall International, 1987.
    [71] G. Welch and G. Bishop, An Introduction to the Kalman Filter. Department
    of Computer Science University of North Carolina at Chapel Hill, 2006.
    [72] T. Markel, A. Brooker, T. Hendricks, V. Johnson, K. Kelly, B. Kramer,
    M. O’Keefe, S. Sprik, and K. Wipke, “advisor: a systems analysis tool for
    advanced vehicle modeling,” Journal of Power Sources, vol. 110, pp. 255–266,
    2002.
    [73] V. H. Johnson, “Battery performance models in advisor,” Journal of Power
    Sources, vol. 110, pp. 321–329, 2002.
    [74] J. Han, D. Kim, and M. Sunwoo, “State-of-charge estimation of lead-acid batteries using an adaptive extended kalman filter,” Journal of Power Sources,
    vol. 188, pp. 606–612, 2009.
    [75] D. Andre, C. Apple, T. Soczka-Guth, and D. U. Sauer, “Advanced mathematical methods of soc and soh estimation for lithium-ion batteries,” Journal of Power Sources, vol. 224, pp. 20–27, 2013.

    QR CODE