簡易檢索 / 詳目顯示

研究生: 陳冠宇
Kuan-Yu Chen
論文名稱: 靜電紡絲技術製備抗菌並產氧之奈米纖維薄膜
Antibacterial and Oxygen-generating Electrospun Nanofibrous Mat
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 王孟菊
Meng-Jiy Wang
周秀惠
Shiu-Huey Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 71
中文關鍵詞: 抗菌奈米纖維靜電紡絲過氧化氫
外文關鍵詞: electrospinning, nanofiber, antibacterial, hydrogen peroxide
相關次數: 點閱:304下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自身免疫系統的傷口復原機制,係藉由嗜中性白血球產生活性氧物質(Reactive oxygen Species; ROS),抑制傷口處之細菌生長並防止細菌感染,因此本論文以靜電紡絲技術以製備具產生抑菌能力之過氧化氫(Hydrogen Peroxide; H2O2)之傷口敷料,本論文之研究由兩個方向進行,第一種方式以葡萄糖氧化酶(Glucose Oxidase)與過氧化氫酶(Catalase)以體積比4:1比例下與聚乙烯醇(PVA)均勻混和並以外加電壓13.0-14.5 kV、工作距離為110 mm之條件下以電紡雙針頭方式將酵素同時分別包覆於奈米纖維中其纖維直徑150-250 nm,所形成之奈米纖維膜中葡萄糖氧化酶與過氧化氫酶活性分別為12.46±0.03 10-2U/cm2、67.38±4.65 U/cm2,於定面積0.785cm2提供1ml基質葡萄糖5 mg/ml的濃度,會產生8.94±0.74 mM過氧化氫,對大腸桿菌(Escherichia coli)以及金黃葡萄球(Staphylococcus aureus)菌皆有明顯之抑菌效果,其抑菌效率分別為77.07%與46.28%,所產生之過氧化氫亦會經過氧化氫酶的催化反應而產生氧氣。由於聚乙烯醇為水溶性高分子,因此為了增加其奈米纖維於水中之穩定性,藉著以戊二醛交聯以及市售Opsite Spray 噴霧塗佈兩種方式加以修飾。為了實際應用實驗中將纖維薄膜放置於4C條件下以維持酵素活性。第二種方式以高分子聚乙烯咯烷酮(PVP)與過氧化氫以體積比4:1下所形成之穩定錯合物以雙針頭電紡方式與過氧化氫酶聚乙烯醇纖維同時形成複合纖維薄膜,不須基質下即可釋放產生濃度為2.42±0.1 mM的過氧化氫,一般由於過氧化氫的不穩定性,容易裂解為水與氧氣,故將複合薄膜儲存於-20C下可維持95%的過氧化氫含量,此兩種方式所製備之薄膜因具備抑菌與產氧之特性,可應用於傷口敷料上使用。


    During the wound healing process, the neutrophil can produce the reactive oxygen species (ROS) to kill the bacteria and prevent the infection. A nanofibrous mat with antimicrobial activity was produced by electrospinning. Glucose Oxidase (GOx) (950 U/ml) and Catalase (25 mg/ml) were incorporated in polyvinyalcohol (PVA) nanofibers by mixing enzyme into PVA solution in the volume ratio of 1:4. Both enzymes were encapsulated in the nanofibrous mat (150-250 nm fiber diameter) by simultaneous electrospinning using two separate needles at voltage 13.0-14.5 kV and 110 mm tip-to-collector distance. The activity of GOx and catalase in nanofibrous mats is 12.46±0.0310-2 U/cm2 and 67.38±4.65 U/cm2, respectively. By providing 1 ml of 5 mg/ml glucose to 0.785 cm2 nanofibrous mats, hydrogen peroxide (H2O2) will be generated first from the mat and the antibacterial activity was observed by measuring the inhibition zones of Escherichia coli and Staphylococcus aureus plates. H2O2 that produced from the GOx nanofibers can be catalyzed to generate oxygen (O2) by the catalase nanofibers of the mat. As PVA is water-soluble polymer, PVA nanofibrous mats stability required to be improved by GA cross-link and spray coating. For further application, the nanofibrous mats was stored at 4C to keep the activity of enzyme. Polyvinylpyrrolidone (PVP)-H2O2 complex was co-electrospun with PVA-Catalase nanofibers into a composite mat. without substrate, the nanofibrous mat itself can release H2O2 and show the antibacterial activity. H2O2 can be easily decomposed into water and oxygen, therefore by storing composite nanofibrous mats at -20C can maintain 95% of H2O2 amount. Two kinds of membrane prepared in this research is expected to be applied for wound dressing.

    目錄 摘要I AbstractII 誌謝III 目錄IV 圖目錄VIII 表目錄XI 第一章、 緒論1 1.1前言1 1.2研究目的與簡介2 第二章、 理論基礎與文獻回顧 4 2.1傷口癒合4 2.2過氧化氫 (Hydrogen Peroxide)5 2.3葡萄糖氧化酶 (Glucose Oxidase)5 2.4過氧化氫酶(Catalase)7 2.5抗菌敷料7 2.6產氧之生醫材料9 2.7聚乙烯咯烷酮之錯合物結構11 2.8奈米纖維之製備12 2.9靜電紡絲(Electrospinning)13 2.9.1歷史起源13 2.9.2靜電紡絲原理 13 2.9.3靜電紡絲設備結構15 2.9.4製成參數對靜電紡絲纖維之影響15 2.9.5靜電紡絲纖維之應用18 2.10戊二醛之交聯作用20 第三章、實驗材料與方法21 3.1實驗流程21 3.2實驗藥品22 3.3實驗儀器23 3.4溶液配置24 3.5實驗步驟與方法 26 3.5.1葡萄糖氧化酶/過氧化氫酶之奈米纖維薄膜製備26 3.5.2過氧化氫/過氧化氫酶之奈米纖維薄膜製備27 3.5.3聚己內酯/聚乙烯醇之奈米纖維薄膜製備28 3.5.4電紡絲奈米纖維薄膜與戊二醛交聯 29 3.5.5微量蛋白質之濃度分析-BCA Assay29 3.5.6最低抑菌濃度之分析30 3.5.7抑菌環寬之實驗30 3.5.8葡萄糖氧化酶活性分析31 3.5.9過氧化氫濃度分析(光學法偵測過氧化氫)31 3.5.10過氧化氫酶活性分析32 3.5.11菌落形成之抑菌實驗32 第四章、結果與討論 34 4.1最低抑菌濃度測定34 4.2 PVA-GOx/PVA-Catalase奈米纖維薄膜36 4.2.1 FE-SEM 場發式掃描電子顯微鏡36 4.2.2高分子薄膜定性分析40 4.2.2.1接觸角分析 40 4.2.2.2 FTIR-ATR定性分析41 4.2.3奈米纖維之葡萄糖氧化酶蛋白分析 42 4.2.4奈米纖維之過氧化氫酶蛋白分析45 4.2.6過氧化氫之產量分析48 4.2.6.1定量基質分析48 4.2.6.2葡萄糖濃度對過氧化氫之影響51 4.2.7葡萄糖氧化酶/過氧化氫酶之奈米纖維薄膜抑菌能力51 4.2.8 PVA-GOx/PVA-Catalase奈米纖維薄膜熱穩定分析54 4.3複合奈米纖維薄膜55 4.3.1複合纖維薄膜定性分析56 4.3.2複合奈米纖維薄膜之過氧化氫分析 58 4.3.3複合奈米纖維薄膜之抑菌能力62 4.3.4複合奈米纖維薄膜之熱穩定分析63 4.3.5複合奈米纖維薄膜之製成65 第五章、結論67 參考文獻69

    Agnė Matusevičiūtė, Aliona Butkienė, Sigitas Stanys, & Adomavičiūtė, E. (2012). Formation of PVA Nanofibres with Iodine by Electrospinning.pdf. FIBRES & TEXTILES in Eastern Europe, 20(3(92)), 21-25.
    Arul, V., Masilamoni, J. G., Jesudason, E. P., Jaji, P. J., Inayathullah, M., Dicky John, D. G., . . . Jayakumar, R. (2012). Glucose oxidase incorporated collagen matrices for dermal wound repair in diabetic rat models: a biochemical study. J Biomater Appl, 26(8), 917-938. doi: 10.1177/0885328210390402
    Ashley, N. T., Weil, Z. M., & Nelson, R. J. (2012). Inflammation: Mechanisms, Costs, and Natural Variation. Annual Review of Ecology, Evolution, and Systematics, 43(1), 385-406. doi: 10.1146/annurev-ecolsys-040212-092530
    Bankar, S. B., Bule, M. V., Singhal, R. S., & Ananthanarayan, L. (2009). Glucose oxidase--an overview. Biotechnol Adv, 27(4), 489-501. doi: 10.1016/j.biotechadv.2009.04.003
    Copyright, P.-I. P. G. (2010). A novel nanomanufacuring technique for hybrid nanofibers and their non-woven mats.pdf. Nanomaterials for Chemical Sensors and Biotechnology.
    Dou, G. X., & Qin, X. H. (2011). Research on Water Resistance of Polyvinyl Alcohol Nanofiber Mats. Advanced Materials Research, 175-176, 247-252. doi: 10.4028/www.scientific.net/AMR.175-176.247
    E.F Panarin, K. K. K., D.V Pestov. (2001). Complexation of hydrogen peroxide qith polyvinylpyrrolidone : ab initio calculations. European Polymer Journal, 31, 375-379.
    Fahimi, V. h. a. H. D. (1974). The effect of glutaraldehyde on catalase.pdf.
    Frenot, A., & Chronakis, I. S. (2003). Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid & Interface Science, 8(1), 64-75. doi: 10.1016/s1359-0294(03)00004-9
    Harrison, B. S., Eberli, D., Lee, S. J., Atala, A., & Yoo, J. J. (2007). Oxygen producing biomaterials for tissue regeneration. Biomaterials, 28(31), 4628-4634. doi: 10.1016/j.biomaterials.2007.07.003
    Hong, K. H. (2007). Preparation and properties of electrospun poly(vinyl alcohol)/silver fiber web as wound dressings. Polymer Engineering & Science, 47(1), 43-49. doi: 10.1002/pen.20660
    Hong, K. H., Park, J. L., Sul, I. H., Youk, J. H., & Kang, T. J. (2006). Preparation of antimicrobial poly(vinyl alcohol) nanofibers containing silver nanoparticles. Journal of Polymer Science Part B: Polymer Physics, 44(17), 2468-2474. doi: 10.1002/polb.20913
    Huang, Z.-M., Zhang, Y. Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223-2253. doi: 10.1016/s0266-3538(03)00178-7
    Ignatova, M., Manolova, N., & Rashkov, I. (2007). Electrospinning of poly(vinyl pyrrolidone)–iodine complex and poly(ethylene oxide)/poly(vinyl pyrrolidone)–iodine complex – a prospective route to antimicrobial wound dressing materials. European Polymer Journal, 43(5), 1609-1623. doi: 10.1016/j.eurpolymj.2007.02.020
    JIANGBING XIE, Y.-L. H. (2003). Ultra-high surface fibrous membranes from electrospinning of natural protein - casein and lipase enzyme.pdf. JOURNAL OF MATERIALS SCIENCE, 38, 2125-2133.
    Li, Z., Guo, X., & Guan, J. (2012). An oxygen release system to augment cardiac progenitor cell survival and differentiation under hypoxic condition. Biomaterials, 33(25), 5914-5923. doi: 10.1016/j.biomaterials.2012.05.012
    Meng, H., Li, Y., Faust, M., Konst, S., & Lee, B. P. (2015). Hydrogen peroxide generation and biocompatibility of hydrogel-bound mussel adhesive moiety. Acta Biomater, 17, 160-169. doi: 10.1016/j.actbio.2015.02.002
    Mit-uppatham, C., Nithitanakul, M., & Supaphol, P. (2004). Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. Macromolecular Chemistry and Physics, 205(17), 2327-2338. doi: 10.1002/macp.200400225
    Oh, S. H., Ward, C. L., Atala, A., Yoo, J. J., & Harrison, B. S. (2009). Oxygen generating scaffolds for enhancing engineered tissue survival. Biomaterials, 30(5), 757-762. doi: 10.1016/j.biomaterials.2008.09.065
    Priscila Gava Mazzola, A. F. J., Leticia Celia de Lencastre Novaes, Patricia Moriel , Thereza Christina Vessoni Penna. (2009). Minimal inhibitory concentration (MIC) determination of disinfectant and sterilizing agents.pdf. Brazilian Journal of Pharmaceutical Science, 45, 242-248.
    Ramesh Kumar, P., Khan, N., Vivekanandhan, S., Satyanarayana, N., Mohanty, A. K., & Misra, M. (2012). Nanofibers: Effective Generation by Electrospinning and Their Applications. Journal of Nanoscience and Nanotechnology, 12(1), 1-25. doi: 10.1166/jnn.2012.5111
    Sill, T. J., & von Recum, H. A. (2008). Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 29(13), 1989-2006. doi: 10.1016/j.biomaterials.2008.01.011
    Wang, J., Zhu, Y., Bawa, H. K., Ng, G., Wu, Y., Libera, M., . . . Yu, X. (2011). Oxygen-generating nanofiber cell scaffolds with antimicrobial properties. ACS Appl Mater Interfaces, 3(1), 67-73. doi: 10.1021/am100862h
    Wannatong, L., Sirivat, A., & Supaphol, P. (2004). Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polymer International, 53(11), 1851-1859. doi: 10.1002/pi.1599

    無法下載圖示 全文公開日期 2020/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE