簡易檢索 / 詳目顯示

研究生: 林郁彰
YU-CHANG LIN
論文名稱: 在美耐皿海棉表面濺鍍鋯基金屬玻璃於機械性質之研究
Mechanical Properties of Melamine Sputtered with Zirconium-Based Metallic Glass
指導教授: 陳建光
Jem-Kun Chen
口試委員: 朱瑾
鄭智嘉
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 70
中文關鍵詞: 海綿金屬玻璃薄膜
外文關鍵詞: sponge, metallic glass film
相關次數: 點閱:169下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以四乙氧基矽烷(TEOS)在鹼性環境中反應合成奈米級之玻璃薄膜,並使用美耐皿海棉為基材,接著以浸塗法(Dip-Coating)使奈米級玻璃包覆在海綿表面上,再以射頻磁控濺鍍(RF reactive magnetron sputtering)系統來沉積鋯基金屬玻璃於海綿表面形成薄膜,最後利用萬能拉伸機的壓縮測試及自製的吸震測試對濺鍍了不同時間的金屬玻璃海棉進行機械性質的探討。
    藉由SEM觀察發現本實驗所合成之二氧化矽均勻貼附在海綿表面形成矽薄膜,改變了基材的熱穩定性及表面能。觀察經由鍍膜之海棉,可發現鍍膜時間2小時其金屬玻璃薄膜會沉積滿厚度為3mm的美耐皿海棉。再利用壓縮測試分別觀測濺鍍時間為2、4、6、8、10小時的海綿,發現在固定間距對應的最大力量及彈性係數變化依序為0.86、1.02、1.16、1.55、1.64Kg及0.103、0.12、0.159、0.164、0.176MPa,皆有高度的正相關。而在吸震測試中的第一次反彈高度依序為3.25、3.02、2.69、2.41、2.02公分,證明吸震性能有提升的趨勢。此外,將鍍了金屬玻璃薄膜與鍍了金屬薄膜之海棉以相同條件進行對比測試,在比較濺鍍時間為2、4、6小時的金屬薄膜發現其最大力量及彈性係數依序為0.49、0.44、0.42Kgf及0.068、0.052、0.027MPa,鍍了金屬薄膜的海綿的機械強度反而隨著鍍膜時間增加而呈負相關。本研究以設計高強度、高韌性與低成本的金屬玻璃薄膜於多孔高分子海綿上,做為緩衝材料對於各領域是具備高度發展潛力的。
    關鍵字: 海綿、金屬玻璃薄膜


    In this experiment, tetraethoxy decane (TEOS) was reacted in an alkaline environment to synthesize a nano-grade glass film, and the melamine sponge was used as a substrate, followed by dip-coating to make the nano-grade. The glass is coated on the surface of the sponge, and the RF reactive magnetron sputtering system is used to deposit the zirconium-based metallic glass to form a film on the surface of the sponge. Finally, the compression test of the universal stretching machine and the self-made shock absorption test are used for the sputtering. Metallic sponges plated at different times were used to investigate the mechanical properties.
    It was found by SEM observation that the cerium oxide synthesized in this experiment was uniformly attached to the surface of the sponge to form a ruthenium film, which changed the thermal stability and surface energy of the substrate. Observing the sponge through the coating, it can be found that the metal glass film is deposited with a thickness of 3 mm of melamine sponge for 2 hours. The sponges were used to observe the sponges with a sputtering time of 2, 4, 6, 8, and 10 hours. The maximum strength and modulus of elasticity corresponding to the fixed spacing were found to be 0.86, 1.02, 1.16, 1.55, 1.64Kg, and 0.103, respectively. 0.12, 0.159, 0.164, 0.176 MPa, all have a high positive correlation. In the shock absorption test, the first rebound height is 3.25, 3.02, 2.69, 2.41, 2.02 cm, which proves that the shock absorption performance has an increasing trend. In addition, the metallic glass film and the metallic filmed sponge were tested under the same conditions. The maximum strength and elastic coefficient of the metal film with a sputtering time of 2, 4, and 6 hours were found to be 0.49. 0.44, 0.42Kgf and 0.068, 0.052, 0.027MPa, the mechanical strength of the sponge coated with the metal film is negatively correlated with the increase of the coating time. In this study, high-strength, high-toughness and low-cost metal glass films were designed on porous polymer sponges. As a cushioning material, it has high development potential in various fields.
    Keywords: sponge, metallic glass film

    目錄 摘要 I Abstract II 致謝 IV 目錄 VI 圖目錄 X 表目錄 XIII 1. 緒論 1 1.1. 研究背景 1 1.2. 研究動機與目的 2 2. 文獻回顧與實驗理論 4 2.1. 基材種類介紹 4 2.1.1. 三聚氰胺-甲醛 (melamine formaldehyde) 4 2.2. 二氧化矽薄膜介紹 5 2.2.1. 奈米二氧化矽之製備 5 2.2.2. 溶膠-凝膠法 (sol-gel method) 6 2.2.3. 浸塗法 (Dip Coating) 8 2.3金屬玻璃薄膜 8 2.3.1金屬玻璃薄膜之發展 8 2.3.2金屬玻璃薄膜之特性 10 2.4射頻磁控濺鍍介紹 12 2.4.1濺射原理[40] 12 2.4.2射頻濺鍍 13 2.4.3磁控濺鍍[43] 14 3. 儀器原理 16 3.1. 高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope) 16 3.2. X光繞射分析儀 (X-ray Diffractometer) 17 3.3. X射線光電子能譜儀 (X-Ray Photoelectron Spectroscope) 20 3.4. 接觸角量測儀 (Contact Angle Meter) 21 3.5. 磁控濺鍍機 (Magnetron Sputter) 23 3.6. 熱重分析儀 (Thermogravimetric Analysis) 24 3.7. 萬能拉伸機 (Universal Testing Machines) 27 4. 實驗流程與方法 29 4.1. 實驗流程圖 29 4.2. 實驗藥品 30 4.3. 實驗儀器 30 4.4. 實驗步驟 32 4.4.1. 二氧化矽薄膜之製備 32 4.4.2. 鋯基金屬玻璃薄膜之製備 32 4.4.3. 磁控濺鍍系統 33 4.4.4. 海綿之壓縮測試 33 4.4.5. 海綿之吸震測試 34 5. 實驗結果與討論 35 5.1. 海綿之表面形貌-SEM 35 5.2. 矽薄膜包覆海綿之分析 36 5.2.1. 矽薄膜包覆海綿之表面形貌- SEM 36 5.2.2. 矽薄膜包覆海綿之定性分析- EDS 38 5.3. 矽薄膜包覆海綿鍍金屬玻璃之分析 39 5.3.1. 矽薄膜包覆海綿鍍金屬玻璃-SEM 39 5.3.2. 矽薄膜包覆海綿鍍金屬玻璃-EDS-Mapping 40 5.3.2.1. 矽球包覆海綿鍍不同時間的金屬玻璃-EDS-Mapping 42 5.3.3. 矽薄膜包覆海綿鍍金屬玻璃-XPS能譜圖 47 5.3.4. 矽薄膜包覆海綿鍍金屬玻璃- XRD能圖譜 50 5.3.5. 矽薄膜包覆海綿鍍金屬玻璃-TGA 51 5.3.6. 矽薄膜包覆海綿鍍金屬玻璃-接觸角 52 5.4. 鍍了金屬玻璃的矽薄膜海綿的機械測試 53 5.4.1. 鍍金屬玻璃的矽球包覆海綿的機械測試-壓縮測試 53 5.4.2. 矽薄膜包覆海綿濺鍍不同時間的金屬玻璃的機械測試-壓縮測試 56 5.4.4. 矽薄膜包覆海綿濺鍍金屬玻璃的機械測試-吸震測試 62 5.4.3. 壓縮前後之矽薄膜包覆海綿濺鍍不同時間的金屬玻璃薄膜-SEM. 60 5.4.5. 鍍金屬玻璃薄膜與鍍金屬薄膜之比較 63 6. 結論 67 7. 參考文獻 68

    [1] Jun, W. Klement, R. H. Willens, and P. O. L. Duwez.
    "Non-crystalline structure in solidified gold–silicon
    alloys." Nature187.4740 (1960)
    [2] Tsai, P. H., et al. "Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating." Intermetallics 31 (2012)
    [3] Ramsteiner, F., N. Fell, and S. Forster. "Testing the deformation behaviour of polymer foams." Polymer testing 20.6 (2001)
    [4] Jeon, Ho Tak, et al. "Synthesis and characterizations of waterborne polyurethane–silica hybrids using sol–gel process." Colloids and Surfaces A: Physicochemical and Engineering Aspects 302.1-3 (2007)
    [5] Davis, Steven R., Adrian R. Brough, and Alan Atkinson.
    "Formation of silica/epoxy hybrid network polymers." Journal of non-crystalline solids 315.1-2 (2003)
    [6] Chen, Guodong, et al. "Acrylic‐Based Polyurethane/Silica
    Hybrids Prepared by Acid‐Catalyzed Sol–Gel Process:
    Structure and Mechanical Properties." Macromolecular Chemistry and Physics 206.8 (2005)
    [7] 陳慧英,溶膠凝膠法在薄膜製備上之應用,化工技術第七卷第 11期
    [8] R.S. Sonawane, Materials Chemistry and Physics 77 (2002) 744–750
    [9] 張心亞."纳米粒子材料的表面改性及其應用研究進展." 材料工程 10.58.63 (2005).
    [10] 任麗微. 鋯基非晶合金表面鍍膜及其增韌機理的研究. MS thesis. 太原理工大学, 2016..
    [11] W.Klement,R.H.Willens,and P.Duwez,Nature,187,869(1960)
    [12] Chen, H. S. "Glassy metals." Reports on Progress in Physics43.4 (1980): 353.
    [13] Kui, H. W., Al L. Greer, and D. Turnbull. "Formation of bulk metallic glass by fluxing." Applied Physics Letters 45.6 (1984): 615-616.
    [14] A.Inoue,Acta Mater,.48,279(2000)
    [15] T.Zhang,A.Inoue,and T.Masumoto,Mater.Trans.JIM.,32(1991)1005.
    [16] A.Inoue,T.Zhang,and T.Masumoto,Master.Tran.JIM.,30(1989)965.
    [17] Jia, Haoling, et al. "Thin-film metallic glasses for substrate fatigue-property improvements." Thin Solid Films 561 (2014)
    [18] Chu, Jinn P., et al. "Non-stick syringe needles: Beneficial effects of thin film metallic glass coating." Scientific reports 6 (2016)
    [19] Chu, Jinn P., et al. "Thin film metallic glasses: Unique properties and potential applications." Thin Solid Films 520.16 (2012)
    [20] Liu, Yongdong, et al. "Thermal, mechanical and electrical properties of Pd-based thin-film metallic glass." Japanese Journal of Applied Physics 40.9R (2001)
    [21] Chu, J. P., et al. "Annealing-induced full amorphization in a multicomponent metallic film." Physical review B 69.11 (2004)
    [22] Chen, Jem-Kun, et al. "Metallic glass nanotube arrays: Preparation and surface characterizations." Materials Today 21.2 (2018)
    [23] J.P. Chu, J.E. Greene, J.S.C. Jang, J.C. Huang, Y.L.Shen, P.K.
    Liaw, Y. Yokoyama, A. Inoue, T.G. Nieh Acta Mater., 60 (2012)
    [24] J.P. Chu, J.C. Huang, J.S.C. Jang, Y.C. Wang, P.K.Liaw JOM, 62 (2010)
    [25] M. Stoudt, R.C. Cammarata, R.E. Ricker Scr. Mater., 43 (2000)
    [26] K.R. Kim, C.M. Suh, R.I. Murakami, C.W. Chung Surf. Coat. Technol., 171 (2003)
    [27] J.M. Cairney, R. Tsukano, M.J. Hoffman Acta Mater., 52 (2004)
    [28] K. Padilla, A. Velasquez, J.A. Berrios, E.S. Puchi, E.S.P. Cabrera Surf. Coat. Technol., 171 (2003)
    [29] Y.Z. Chang, P.H. Tsai, J.B. Li, H.C. Lin, S.C.J. Jang, C. Li, G.J. Chen, Y.C. Chen, J.P. Chu, P.K. Liaw Thin Solid Films, 544 (2013)
    [30] K.R. Kim, C.M. Suh, R.I. Murakami, C.W. Chung Surf. Coat. Technol., 171 (2003)
    [31] Liu, F. X., et al. "Micro-scratch study of a magnetron-sputtered Zr-based metallic-glass film." Surface and Coatings Technology203.22 (2009)
    [32] Chu, Jinn P., et al. "Zr-based glass-forming film for fatigue-property improvements of 316L stainless steel: Annealing effects." Surface and Coatings Technology 205.16 (2011)
    [33] Deng, Y. P., et al. "A combinatorial thin film sputtering approach for synthesizing and characterizing ternary ZrCuAl metallic glasses." Intermetallics 15.9 (2007)
    [34] Chuang, Ching-Yen, et al. "Electrochemical characterization of Zr-based thin film metallic glass in hydrochloric aqueous solution." Thin Solid Films 529 (2013)
    [35] Chang, Shou-Yi, et al. "Mechanical properties and deformation behavior of amorphous nickel-phosphorous films measured by nanoindentation test." Metallurgical and Materials Transactions A37.10 (2006)
    [36] Chen, Chu-Shuan, et al. "Effects of annealing on mechanical behavior of Zr–Ti–Ni thin film metallic glasses." Materials Science and Engineering: A 608 (2014)
    [37] Zandonella, Catherine. "Metallic glass: A drop of the hard stuff." New Scientist 2 (2005)
    [38] A.Inoue,B.L.Shen,H.Kato,andA.R.Yavari,
    ActaMater,52,1631(2004)
    [39] William D.,Callister.Jr.,'Materials Science and Engineering An Introduction',sixth edition,Wiley company,p 427-428(2006)
    [40] M.A.Nicolet,Thin Solid Films,52,(1978),415.
    [41] 行政院國家科學委員會著,"真空技術與應用",精密儀器發展中心出版(2001)p379.
    [42] 以磁控濺鍍法在聚醯亞胺基材上沉積金屬鍍層之性質研究,連曼君,國立成功大學材料科學及工程系,2002
    [43] M.Ohring,The Materials Science of Thin Films,Acadmic
    press,U.K.,(1992),Chap.3.
    [44] J.L.Vossen and W.Kern,"Thin Film Process,Academic
    Press",(1991)p.134.
    [45] Donaald L.Smith,"Thin-Film Deposition Principles and
    Pratice",(1990)p.483.

    無法下載圖示 全文公開日期 2024/08/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE