簡易檢索 / 詳目顯示

研究生: Niklas Boenninghoff
Niklas Boenninghoff
論文名稱: 高功率脈衝磁控濺鍍金屬玻璃薄膜之低摩擦係數性質
Thin Film Metallic Glass Deposited by High Power Impulse Magnetron Sputtering and its Low Friction Behavior
指導教授: 朱瑾
Jinn P. Chu
口試委員: 姚栢文
張銀祐
顏怡文
李志偉
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 109
中文關鍵詞: HiPIMSMetallic GlassFrictionSurface Phonon
外文關鍵詞: HiPIMS, Metallic Glass, Friction, Surface Phonon
相關次數: 點閱:218下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高功率脈衝磁控式濺鍍(HiPIMS)是一種新興的鍍膜技術,由於結合了磁控濺射和高功率沈積技術的優勢,可以激發更大量的靶材離子,因此近年來受到了廣泛的應用。目前HiPIMS主要被限於利用在具有結晶的鍍膜上,而關於利用HiPIMS鍍覆金屬玻璃主题的文章尚很少。在此篇論文中,主要在比較Zr60Cu25Al10Ni5金屬玻璃鍍層(TFMGs)的性質,藉由傳統的直流磁控式濺鍍(DCMS)和HiPIMS濺鍍比較。製備三種類型的樣品:(1)DCMS在1kW沉積功率下鍍覆的樣品(2)HiPIMS在1kW沉積功率下鍍覆的樣品(3)HiPIMS在2.5kW沉積功率下鍍覆的樣品。經研究發現,薄膜的微觀結構與所使用的沉積方法非常相關。由DCMS鍍覆的薄膜顯示出柱狀結構,柱内微結構出現孔隙,原因是氧氣穿透薄膜產生的途徑。而另一方面,HiPIMS鍍覆顯示出更均勻的微結構,且無柱狀結構。根據X-ray反射率測量,其密度比DCMS沉積之樣品的密度高约4%。此外,選擇區域電子衍射顯示平均原子間距的差異約為12%。這些型態和薄膜特性上的差異可能是HiPIMS薄膜中吸附原子遷移率增加的结果。吸附原子遷移率的增加是由於從靶材到基材的離子能量和離子通量增加所導致的。此外,離子型態在DCMS和HiPIMS之間有所不同,因為在DCMS沉積的情况下,來自靶材的離子只占總離子通量的13%,而HiPIMS沉積的數值為96%。這導致鍍層種類和鍍層生長之間更有效的動量傳遞,而進一步提高吸附原子的遷移率。HiPIMS沉積過程中的陰影效應被最小化,這是因爲外加了一個偏壓,使離子接近法線的角度打到基材。這些沉積技術對於薄膜的粗糙度有直接影響,DCMS和HiPIMS沉積的薄膜粗糙度分別為1.4 nm和0.2 nm。同時影響到的還有薄膜的硬度和楊氏係數。實驗結果最硬的薄膜由HiPIMS 1kW所沉積,硬度和楊氏係數分别为9.2±0.3GPa和131.6±3.6GPa,和最軟的樣品(DCMS)相比,硬度增加了35%。這種硬度上差異可以歸咎於更高的薄膜緻密度,且並無柱狀晶結構,以及樣品在HiPIMS 1kW的情况下具有更高的抗壓應力。本文的第二部分是關於TFMG的表面特性,因為當鍍層被應用於針具和切割刀片時,已被證明可以減少摩擦力、阻抗。兩種技術具有不同探測深度,電子轉換質譜(CEMS,探測深度>100 nm)和核共振散射(NRS,探測深度約2 nm),已被用於研究鍍層表面(65 ± 2 K)以及塊狀材料(约380 K)的Debye溫度。Debye溫度具有巨大的差異將對薄膜表面上的Tg進一步退火實驗,在薄膜的表面將觀察到物質向上生長。最後再進行奈米划痕實驗,在正常負載1000μN的情况下,顯示出0.007的超低COF。這種正常負載的划痕所留下的殘留划痕的深度大約為3nm,這與NRS實驗的探測深度接近。相較之下,相似性質的實驗也在COF較高的矽晶片中進行。


    High power impulse magnetron sputtering (HiPIMS) is an emerging thin film deposition technique that has gathered traction in recent years, as it combines the advantages of magnetron sputtering with the advantages of energetic deposition techniques that produce high amounts of target-originating ions. As of yet, the utilization of HiPIMS has mostly been restricted to crystalline coatings and very little has been published on the topic of metallic glasses deposited by HiPIMS. In this essay, we offer a study that aims at comparing the properties of Zr60Cu25Al10Ni5 thin film metallic glasses (TFMGs) deposited by conventional direct current magnetron sputtering (DCMS) and HiPIMS. Three types of samples have been prepared: a sample deposited by DCMS at 1 kW deposition power, a sample at 1 kW time-averaged deposition power with HiPIMS and a sample at 2.5 kW time-averaged deposition power with HiPIMS. It has been found that the films microstructure strongly depends on the used deposition method. The films deposited by DCMS show a columnar structure that exhibits intra-columnar porosity which creates pathways for oxygen to penetrate the film. On the other hand, the HiPIMS show a more homogeneous microstructure that is column-free. The density of which, according to X-ray reflectivity measurements, is about 4 % higher than that of the DCMS deposited samples. Additionally, selected area electron diffraction shows a difference in average atomic spacing of about 12 %. These differences in morphology and film properties are likely a result of increased ad-atom mobility in the HiPIMS films. The increase in ad-atom mobility is facilitated by an increase in ion energy and ion flux from the target to the substrate. Furthermore, the type of ions present in the plasma differs between DCMS and HiPIMS, as the ions originating from the target constitute only 13 % of the total ion flux to the substrate in the case of the DCMS deposition, whereas this value is 96 % for the deposition by HiPIMS. This causes a more efficient momentum transfer between the film-forming species and the film’s growth front, further enhancing ad-atom mobility. Shadowing effects during HiPIMS deposition are minimized due to the application of a bias that causes the ions to arrive at the substrate with an angle close to substrate normal. These differences between the deposition techniques have a direct effect on the films roughness which are 1.4 nm and 0.2 nm for the films deposited by DCMS and HiPIMS, respectively. Also influenced are the films hardness and Young’s modulus. The hardest film was deposited by HiPIMS 1kW with a hardness and Young’s modulus of 9.2 ± 0.3 GPa and 131.6 ± 3.6 GPa, respectively. This is an increase in hardness of 35 % over the softest sample (DCMS). This difference in hardness can be attributed to a higher film density, the lack of a columnar structure, as well as to a higher compressive stress in the case of the HiPIMS 1kW sample. The second part of this essay deals with the surface properties of TFMGs, as they have shown to reduce friction when applied to e.g. needles and cutting blades. Two techniques with different probing depths, namely conversion electron Mössbauer spectroscopy (CEMS, probing depth > 100 nm) and nuclear resonance scattering (NRS, probing depth ~2 nm), have been employed to study the Debye temperature at the films surface (65 ± 2 K) as well as the bulk of the film (~ 380 K). This large difference in Debye temperature likely correlates to a strongly decreased Tg on the films surface which is further investigated by annealing experiments that show the upward growth of species on the film’s surface. Lastly, a nano-scratch experiment has been performed that shows an exceptionally low COF of 0.007 at a normal load of 1000 µN. The residual grooves left by scratches of this normal loading have an approximate depth of 3 nm which is close to the probing depth of the NRS experiment. As a comparison, a similar experiment has been performed in a Si wafer whose COF is approximately one magnitude higher.

    Abstract I Acknowledgements III List of Figures VI List of Abbreviations IX List of Tables XI 1 Introduction 1 2 State of the art 4 2.1 Structure of metallic glasses 4 2.2 Deformation mechanism of metallic glasses 9 2.3 Manufacturing of metallic glasses 11 2.4 Properties of metallic glasses and their use cases 13 2.4.1 Magnetic properties 13 2.4.2 Corrosion behavior 13 2.4.3 Electrical resistivity 14 2.4.4 Mechanical properties 15 2.4.5 Friction in metallic glasses 19 2.5 Magnetron sputtering 23 2.5.1 Balanced and unbalanced magnetrons 24 2.5.2 Plasmas with high metal ion density 26 2.5.3 High power impulse magnetron sputtering 27 2.5.4 Disadvantages associated with HiPIMS 29 2.5.5 Growth of thin films 30 3 Experimental methodology 35 3.1 Physical vapor deposition 35 3.2 Plasma analysis 38 3.3 Scanning electron microscopy 38 3.4 Transmission electron microscopy 39 3.5 Atomic force microscopy 39 3.6 X-ray diffraction and reflection 40 3.7 X-ray photoelectron spectroscopy 40 3.8 Nano-indentation 41 3.9 Scratch testing 42 3.10 Needle insertion into pork 43 3.11 Mössbauer spectroscopy 43 3.12 Residual Stress in the TFMGs 44 3.13 Contact angle measurements 44 4 DCMS and HiPIMS deposition of ZrCuAlNi TFMGs 46 4.1 Film and target composition 46 4.2 Ion energy distribution in the DCMS and the HiPIMS plasma 47 4.3 Deposition rate 49 4.4 Microstructure analysis 50 4.4.1 SEM observations 50 4.4.2 Surface topography 52 4.4.3 Film-substrate interface 54 4.4.4 X-ray diffraction 59 4.4.5 Electron diffraction 60 4.4.6 Film density 61 4.5 Analysis of the surface’s top layer 62 4.5.1 X-ray photoelectron spectroscopy 62 4.5.2 Surface free energy 64 4.6 Mechanical properties 66 4.6.1 Hardness and modulus 66 4.6.2 Scratch testing 69 5 Friction properties of thin film metallic glass 74 5.1 TFMG coated needle penetration into pork muscle tissue 75 5.2 Softened phonon on the surface of Fe65Ti13Co8Ni7B6Nb1 81 5.3 Isothermal annealing of Fe65Ti13Co8Ni7B6Nb1 87 5.4 Nano-scratch testing on Fe65Ti13 Co8Ni7B6Nb1 90 5.5 Wetting of TFMG as compared to quasi crystal 92 6 Conclusion 95 7 Future outlook 97 8 References 98

    [1] W. Klement, R.H. Willens, P.O.L. Duwez, Nature, 187 (1960) 869-870.
    [2] N. Nishiyama, K. Takenaka, H. Miura, N. Saidoh, Y. Zeng, A. Inoue, Intermetallics, 30 (2012) 19-24.
    [3] J. Qiao, H. Jia, P.K. Liaw, Materials Science and Engineering: R: Reports, 100 (2016) 1-69.
    [4] C.-C. Yu, C.M. Lee, J.P. Chu, J.E. Greene, P.K. Liaw, APL Materials, 4 (2016) 116101.
    [5] H.S. Chou, J.C. Huang, Y.H. Lai, L.W. Chang, X.H. Du, J.P. Chu, T.G. Nieh, Journal of Alloys and Compounds, 483 (2009) 341-345.
    [6] H.S. Chou, J.C. Huang, L.W. Chang, Surface and Coatings Technology, 205 (2010) 587-590.
    [7] A. Anders, Surface and Coatings Technology, 257 (2014) 308-325.
    [8] K. Sarakinos, J. Alami, S. Konstantinidis, Surface and Coatings Technology, 204 (2010) 1661-1684.
    [9] A.P. Ehiasarian, R. New, W.D. Münz, L. Hultman, U. Helmersson, V. Kouznetsov, Vacuum, 65 (2002) 147-154.
    [10] V. Kouznetsov, K. Macák, J.M. Schneider, U. Helmersson, I. Petrov, Surface and Coatings Technology, 122 (1999) 290-293.
    [11] K. Macák, V. Kouznetsov, J. Schneider, U. Helmersson, I. Petrov, Journal of Vacuum Science & Technology A, 18 (2000) 1533-1537.
    [12] K. Ait Aissa, A. Achour, J. Camus, L. Le Brizoual, P.Y. Jouan, M.A. Djouadi, Thin Solid Films, 550 (2014) 264-267.
    [13] M. Samuelsson, D. Lundin, J. Jensen, M.A. Raadu, J.T. Gudmundsson, U. Helmersson, Surface and Coatings Technology, 205 (2010) 591-596.
    [14] M.S. Jochen, R. Suzanne, D.S. William, M. Allan, Journal of Physics D: Applied Physics, 33 (2000) R173.
    [15] M. Kateb, J.T. Gudmundsson, S. Ingvarsson, in, 2020.
    [16] E. Broitman, L. Hultman, Journal of Physics: Conference Series, 370 (2012) 012009.
    [17] J.P. Chu, C.-C. Yu, Y. Tanatsugu, M. Yasuzawa, Y.-L. Shen, Scientific Reports, 6 (2016) 31847.
    [18] J.P. Chu, N. Bönninghoff, C.-C. Yu, Y.-K. Liu, G.-H. Chiang, Thin Solid Films, 688 (2019) 137320.
    [19] J.P. Chu, W. Diyatmika, Y.-J. Tseng, Y.-K. Liu, W.-C. Liao, S.-H. Chang, M.-J. Chen, J.-W. Lee, J.S.C. Jang, Scientific Reports, 9 (2019) 15558.
    [20] J.P. Chu, W.-C. Liao, P. Yiu, M.-T. Chiou, K.-H. Su, Scientific Reports, 10 (2020) 20318.
    [21] W. Diyatmika, C.-C. Yu, Y. Tanatsugu, M. Yasuzawa, J.P. Chu, Thin Solid Films, 688 (2019) 137382.
    [22] C.-H. Chang, C.-L. Li, C.-C. Yu, Y.-L. Chen, S. Chyntara, J.P. Chu, M.-J. Chen, S.-H. Chang, Surface and Coatings Technology, 344 (2018) 312-321.
    [23] P.M. Ossi, P.M. Ossi, Disordered Materials: An Introductions, Springer, 2003.
    [24] P. Chaudhari, D. Turnbull, Science, 199 (1978) 11.
    [25] J.D. Bernal, J. Mason, Nature, 188 (1960) 910-911.
    [26] J.D. Bernal, Nature, 185 (1960) 68-70.
    [27] Y.Q. Cheng, E. Ma, Progress in Materials Science, 56 (2011) 379-473.
    [28] A.R. Yavari, A.L. Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W.J. Botta, G. Vaughan, M.D. Michiel, Å. Kvick, Acta Materialia, 53 (2005) 1611-1619.
    [29] P. Lamparter, Physica Scripta, T57 (1995) 45-63.
    [30] S. Steeb, P. Lamparter, Journal of Non-Crystalline Solids, 156-158 (1993) 24-33.
    [31] D.B. Miracle, Acta Materialia, 54 (2006) 4317-4336.
    [32] M. Ghidelli, in: Materials and Civil Engineering, Université catholique de Louvain, Grenoble, 2015.
    [33] Y.Q. Cheng, H.W. Sheng, E. Ma, Physical Review B, 78 (2008) 014207.
    [34] D.B. Miracle, Nature Materials, 3 (2004) 697-702.
    [35] D.W. Qi, S. Wang, Physical Review B, 44 (1991) 884-887.
    [36] A. Pasturel, Y. Kawazoe, in, 2005.
    [37] M. Shimono, H. Onodera, Metals, 5 (2015) 1163-1187.
    [38] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Materialia, 55 (2007) 4067-4109.
    [39] A.S. Argon, H.Y. Kuo, Materials Science and Engineering, 39 (1979) 101-109.
    [40] F. Spaepen, Acta Metallurgica, 25 (1977) 407-415.
    [41] E.S. Park, AM, 45 (2015) 63-73.
    [42] J.E.K. Schawe, J.F. Löffler, Nature Communications, 10 (2019) 1337.
    [43] P. Bordeenithikasem, J. Liu, S.A. Kube, Y. Li, T. Ma, B.E. Scanley, C.C. Broadbridge, J.J. Vlassak, J.P. Singer, J. Schroers, Scientific Reports, 7 (2017) 7155.
    [44] M. Telford, Materials Today, 7 (2004) 36-43.
    [45] R.C. Budhani, T.C. Goel, K.L. Chopra, Bulletin of Materials Science, 4 (1982) 549-561.
    [46] A.A. Shirzadi, T. Kozieł, G. Cios, P. Bała, Journal of Materials Processing Technology, 264 (2019) 377-381.
    [47] H.B. Yao, Y. Li, A.T.S. Wee, Electrochimica Acta, 48 (2003) 2641-2650.
    [48] H.A. Davies, J.B. Hull, Journal of Materials Science, 9 (1974) 707-717.
    [49] P.G. Boswell, Journal of Materials Science, 15 (1980) 1926-1938.
    [50] H.A. Davies, J.B. Hull, Journal of Materials Science, 11 (1976) 215-223.
    [51] D. Ouyang, N. Li, W. Xing, J. Zhang, L. Liu, Intermetallics, 90 (2017) 128-134.
    [52] X.P. Li, M. Roberts, Y.J. Liu, C.W. Kang, H. Huang, T.B. Sercombe, Materials & Design (1980-2015), 65 (2015) 1-6.
    [53] H.Y. Jung, S.J. Choi, K.G. Prashanth, M. Stoica, S. Scudino, S. Yi, U. Kühn, D.H. Kim, K.B. Kim, J. Eckert, Materials & Design, 86 (2015) 703-708.
    [54] S. Pauly, L. Löber, R. Petters, M. Stoica, S. Scudino, U. Kühn, J. Eckert, Materials Today, 16 (2013) 37-41.
    [55] P. Drescher, H. Seitz, RTeJournal - Fachforum für Rapid Technologie, 2015 (2015).
    [56] H. Sun, K.M. Flores, Journal of Materials Research, 23 (2008) 2692-2703.
    [57] H. Sun, K.M. Flores, Metallurgical and Materials Transactions A, 41 (2010) 1752-1757.
    [58] J.F.S. Joanna R. Groza, Enrique J. Lavernia, Michael T. Powers, Materials Processing Handbook, CRC Press, USA, 2007.
    [59] M. Zhu, Y. Fa, Z.-y. Jian, L.-j. Yao, C.-q. Jin, J.-f. Xu, R.-h. Nan, F.-e. Chang, Transactions of Nonferrous Metals Society of China, 27 (2017) 857-862.
    [60] T. Zhang, F. Liu, S. Pang, R. Li, MATERIALS TRANSACTIONS, 48 (2007) 1157-1160.
    [61] H.Y. Jung, M. Stoica, S. Yi, D.H. Kim, J. Eckert, Journal of Magnetism and Magnetic Materials, 364 (2014) 80-84.
    [62] Q. Wang, J. Zhou, Q. Zeng, G. Zhang, K. Yin, T. Liang, W. Yang, M. Stoica, L. Sun, B. Shen, Materialia, 9 (2020) 100561.
    [63] Q. Wang, G. Zhang, J. Zhou, C. Yuan, B. Shen, Journal of Alloys and Compounds, 820 (2020) 153105.
    [64] Z. Li, K. Yao, D. Li, X. Ni, Z. Lu, Progress in Natural Science: Materials International, 27 (2017) 588-592.
    [65] W. Lu, B. Yan, W.-h. Huang, Journal of Non-Crystalline Solids, 351 (2005) 3320-3324.
    [66] M. Manivel Raja, K. Chattopadhyay, B. Majumdar, A. Narayanasamy, Journal of Alloys and Compounds, 297 (2000) 199-205.
    [67] H. Metals, in, Hitachi Metal Ltd.
    [68] M. Naka, K. Hashimoto, T. Masumoto, Journal of Non-Crystalline Solids, 29 (1978) 61-65.
    [69] V.R. Raju, U. Kühn, U. Wolff, F. Schneider, J. Eckert, R. Reiche, A. Gebert, Materials Letters, 57 (2002) 173-177.
    [70] Z.M. Wang, J. Zhang, X.C. Chang, W.L. Hou, J.Q. Wang, Corrosion Science, 52 (2010) 1342-1350.
    [71] M.D. Archer, C.C. Corke, B.H. Harji, Electrochimica Acta, 32 (1987) 13-26.
    [72] S.D. Zhang, Z.M. Wang, X.C. Chang, W.L. Hou, J.Q. Wang, Corrosion Science, 53 (2011) 3007-3015.
    [73] A. Kawashima, K. Ohmura, Y. Yokoyama, A. Inoue, Corrosion Science, 53 (2011) 2778-2784.
    [74] M. Zhang, D. Yao, X. Wang, L. Deng, Corrosion Science, 82 (2014) 410-419.
    [75] W. Kai, Y.H. Wu, W.S. Chen, L.W. Tsay, H.L. Jia, P.K. Liaw, Corrosion Science, 66 (2013) 26-32.
    [76] M. Naka, K. Hashimoto, T. Masumoto, Journal of Non-Crystalline Solids, 30 (1978) 29-36.
    [77] B. Liu, L. Liu, Materials Science and Engineering: A, 415 (2006) 286-290.
    [78] H. Habazaki, H. Ukai, K. Izumiya, K. Hashimoto, Materials Science and Engineering: A, 318 (2001) 77-86.
    [79] C. Li, D. Chen, W. Chen, L. Wang, D. Luo, Corrosion Science, 84 (2014) 96-102.
    [80] S.H. Park, K.R. Lim, M.Y. Na, K.C. Kim, W.T. Kim, D.H. Kim, Corrosion Science, 99 (2015) 304-312.
    [81] Z.L. Long, Y. Shao, X.H. Deng, Z.C. Zhang, Y. Jiang, P. Zhang, B.L. Shen, A. Inoue, Intermetallics, 15 (2007) 1453-1458.
    [82] J. Farmer, J.-S. Choi, C. Saw, J. Haslam, D. Day, P. Hailey, T. Lian, R. Rebak, J. Perepezko, J. Payer, D. Branagan, B. Beardsley, A. D’amato, L. Aprigliano, Metallurgical and Materials Transactions A, 40 (2009) 1289-1305.
    [83] H. Koji, K. Masashi, A. Katsuhiko, M. Tsuyoshi, Science reports of the Research Institutes, Tohoku University. Ser. A, Physics, chemistry and metallurgy, (1979) 86-86.
    [84] J.J. Si, X.H. Chen, Y.H. Cai, Y.D. Wu, T. Wang, X.H. Hui, Corrosion Science, 107 (2016) 123-132.
    [85] J.H. Na, M.D. Demetriou, W.L. Johnson, G. Garrett, in, Google Patents, 2018.
    [86] M.A. Howson, B.L. Gallagher, Physics Reports, 170 (1988) 265-324.
    [87] Y.K. Kuo, K.M. Sivakumar, C.A. Su, C.N. Ku, S.T. Lin, A.B. Kaiser, J.B. Qiang, Q. Wang, C. Dong, Physical Review B, 74 (2006) 014208.
    [88] K. Wang, T. Fujita, M.W. Chen, T.G. Nieh, H. Okada, K. Koyama, W. Zhang, A. Inoue, Applied Physics Letters, 91 (2007) 154101.
    [89] Y.X. Zhuang, W.H. Wang, Y. Zhang, M.X. Pan, D.Q. Zhao, Applied Physics Letters, 75 (1999) 2392-2394.
    [90] C. Nagel, K. Rätzke, E. Schmidtke, F. Faupel, W. Ulfert, Physical Review B, 60 (1999) 9212-9215.
    [91] E. Bakke, R. Busch, W.L. Johnson, Applied Physics Letters, 67 (1995) 3260-3262.
    [92] J. Guo, F. Zu, Z. Chen, S. Zheng, Y. Yuan, Solid State Communications, 135 (2005) 103-107.
    [93] R.T. Qu, Z.Q. Liu, R.F. Wang, Z.F. Zhang, Journal of Alloys and Compounds, 637 (2015) 44-54.
    [94] E.J. Pavlina, C.J. Van Tyne, Journal of Materials Engineering and Performance, 17 (2008) 888-893.
    [95] Z. Liao, N. Hua, W. Chen, Y. Huang, T. Zhang, Intermetallics, 93 (2018) 290-298.
    [96] I. Hutchings, P. Shipway, Tribology: friction and wear of engineering materials, Butterworth-Heinemann, 2017.
    [97] M.A. Medina, O. Acikgoz, A. Rodriguez, C.S. Meduri, G. Kumar, M.Z. Baykara, 8 (2020) 85.
    [98] M.L. Rahaman, L.C. Zhang, H.H. Ruan, Wear, 304 (2013) 43-48.
    [99] M. Ishida, H. Takeda, N. Nishiyama, K. Kita, Y. Shimizu, Y. Saotome, A. Inoue, Materials Science and Engineering: A, 449-451 (2007) 149-154.
    [100] S.V. Madge, A. Caron, R. Gralla, G. Wilde, S.K. Mishra, Intermetallics, 47 (2014) 6-10.
    [101] X.F. Pan, H. Zhang, Z.F. Zhang, M. Stoica, G. He, J. Eckert, Journal of Materials Research, 20 (2005) 2632-2638.
    [102] D. Weaire, M.F. Ashby, J. Logan, M.J. Weins, Acta Metallurgica, 19 (1971) 779-788.
    [103] A. Inoue, Acta Materialia, 48 (2000) 279-306.
    [104] K. Holmberg, A. Matthews, H. Ronkainen, Tribology International, 31 (1998) 107-120.
    [105] D.A. Kessler, Nature, 413 (2001) 260-261.
    [106] M. Urbakh, E. Meyer, Nature Materials, 9 (2010) 8-10.
    [107] M. Nosonovsky, The Journal of Chemical Physics, 126 (2007) 224701.
    [108] E. Gerde, M. Marder, Nature, 413 (2001) 285-288.
    [109] Z. Xu, P. Huang, Wear, 262 (2007) 972-977.
    [110] L. Makkonen, AIP Advances, 2 (2012) 012179.
    [111] K.J.P. Johnson, Cambridge, 95 (1985) 365.
    [112] R. Szoszkiewicz, B. Bhushan, B.D. Huey, A.J. Kulik, G. Gremaud, Journal of Applied Physics, 99 (2006) 014310.
    [113] M. Chhowalla, G.A.J. Amaratunga, Nature, 407 (2000) 164-167.
    [114] Z. Parlar, M. Bakkal, A.J. Shih, Intermetallics, 16 (2008) 34-41.
    [115] D.Z. Segu, J.H. Choi, S. Yi, S.S. Kim, Tribology Letters, 47 (2012) 131-138.
    [116] A. Ayyagari, V. Hasannaeimi, H. Arora, S. Mukherjee, Scientific Reports, 8 (2018) 906.
    [117] S.J. Bull, Tribology International, 30 (1997) 491-498.
    [118] S.J. Bull, E.G. Berasetegui, Tribology International, 39 (2006) 99-114.
    [119] F.X. Liu, F.Q. Yang, Y.F. Gao, W.H. Jiang, Y.F. Guan, P.D. Rack, O. Sergic, P.K. Liaw, Surface and Coatings Technology, 203 (2009) 3480-3484.
    [120] A.W.J.A.J.o.S. Wright, Arts, 14 (1877) 169.
    [121] D.M. Mattox, V. Mattox, Vacuum coating technology, Springer, 2003.
    [122] P.F. Michel, in, Google Patents, 1939.
    [123] J. Thornton, A. Penfold, in, Academic Press, New York, NY: Academic Press, 1978.
    [124] D. Mattox, R. Cuthrell, C. Peeples, P.J.S. Dreike, C. Technology, 33 (1987) 425-432.
    [125] D. Lundin, in, Linköping University Electronic Press, 2010.
    [126] I. Petrov, L. Hultman, U. Helmersson, J.E. Sundgren, J.E. Greene, Thin Solid Films, 169 (1989) 299-314.
    [127] B. Window, N. Savvides, Journal of Vacuum Science & Technology A, 4 (1986) 196-202.
    [128] G.K. Wolf, W. Ensinger, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 59-60 (1991) 173-181.
    [129] I. Petrov, F. Adibi, J.E. Greene, L. Hultman, J.E. Sundgren, Applied Physics Letters, 63 (1993) 36-38.
    [130] S. Rossnagel, J.J.J.o.V.S. Hopwood, T.B. Microelectronics, M. Nanometer Structures Processing, Phenomena, 12 (1994) 449-453.
    [131] J.L. Vossen, W. Kern, W. Kern, Thin film processes II, Gulf Professional Publishing, 1991.
    [132] W.D. Davis, H.C.J.J.o.A.P. Miller, 40 (1969) 2212-2221.
    [133] Z. Wang, S.A.J.J.o.V.S. Cohen, S. Technology A: Vacuum, Films, 17 (1999) 77-82.
    [134] E. Klawuhn, G. D’couto, K. Ashtiani, P. Rymer, M. Biberger, K.J.J.o.V.S. Levy, S. Technology A: Vacuum, Films, 18 (2000) 1546-1549.
    [135] A. Anders, Thin Solid Films, 502 (2006) 22-28.
    [136] A. Anders, Surface and Coatings Technology, 205 (2011) S1-S9.
    [137] S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider, F.J.S.C.T. Milde, 61 (1993) 331-337.
    [138] A. Belkind, A. Freilich, R. Scholl, 17 (1999) 1934-1940.
    [139] S.P. Bugaev, N.N. Koval, N.S. Sochugov, A.N. Zakharov, in: Proceedings of 17th International Symposium on Discharges and Electrical Insulation in Vacuum, 1996, pp. 1074-1076 vol.1072.
    [140] I.K. Fetisov, A.A. Filippov, G.V. Khodachenko, D.V. Mozgrin, A.A. Pisarev, Vacuum, 53 (1999) 133-136.
    [141] D. Lundin, N. Brenning, D. Jädernäs, P. Larsson, E. Wallin, M. Lattemann, M.A. Raadu, U. Helmersson, Plasma Sources Science and Technology, 18 (2009) 045008.
    [142] S. Konstantinidis, J.P. Dauchot, M. Ganciu, M. Hecq, Applied Physics Letters, 88 (2006) 021501.
    [143] U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, J.T. Gudmundsson, Thin Solid Films, 513 (2006) 1-24.
    [144] E. Wallin, U. Helmersson, Thin Solid Films, 516 (2008) 6398-6401.
    [145] J.T. Gudmundsson, Vacuum, 84 (2010) 1360-1364.
    [146] J.T. Gudmundsson, Journal of Physics: Conference Series, 100 (2008) 082013.
    [147] A. Anders, J. Andersson, A. Ehiasarian, Journal of Applied Physics, 102 (2007) 113303.
    [148] J. Andersson, A. Anders, Applied Physics Letters, 92 (2008) 221503.
    [149] D.J. Christie, Journal of Vacuum Science & Technology A, 23 (2005) 330-335.
    [150] J. Emmerlich, S. Mráz, R. Snyders, K. Jiang, J.M. Schneider, Vacuum, 82 (2008) 867-870.
    [151] A. Mishra, P.J. Kelly, J.W. Bradley, Plasma Sources Science and Technology, 19 (2010) 045014.
    [152] D. Lundin, P. Larsson, E. Wallin, M. Lattemann, N. Brenning, U. Helmersson, Plasma Sources Science and Technology, 17 (2008) 035021.
    [153] P. Poolcharuansin, B. Liebig, J.W. Bradley, Plasma Sources Science and Technology, 21 (2011) 015001.
    [154] J. Bohlmark, M. Östbye, M. Lattemann, H. Ljungcrantz, T. Rosell, U. Helmersson, Thin Solid Films, 515 (2006) 1928-1931.
    [155] K. Sarakinos, J. Alami, M. Wuttig, Journal of Physics D: Applied Physics, 40 (2007) 2108-2114.
    [156] J. Venables, G. Spiller, Nucleation and growth of thin films, in: Surface Mobilities on Solid Materials, Springer, 1983, pp. 341-404.
    [157] F. Cemin, in: Department of Materials Science, Université Paris Saclay, Paris, 2018.
    [158] F. Wu, in: Material Science & Engineering, North Carolina State University, North Carolina, 2014.
    [159] J. Riikonen, in: Department of Electrical and Communications Engineering, Helsinki University of Technology, Helsinki, 2006.
    [160] M. Pelliccione, T. Karabacak, T.M. Lu, Physical Review Letters, 96 (2006) 146105.
    [161] K. Tansel, Journal of Nanophotonics, 5 (2011) 1-19.
    [162] H.N. Yang, Y.P. Zhao, G.C. Wang, T.M. Lu, Physical Review Letters, 76 (1996) 3774-3777.
    [163] J. Erlebacher, M.J. Aziz, E. Chason, M.B. Sinclair, J.A. Floro, Physical Review Letters, 84 (2000) 5800-5803.
    [164] Y.T. Pei, C.Q. Chen, K.P. Shaha, J.T.M. De Hosson, J.W. Bradley, S.A. Voronin, M. Čada, Acta Materialia, 56 (2008) 696-709.
    [165] J.A. Thornton, Journal of Vacuum Science and Technology, 11 (1974) 666-670.
    [166] I. Petrov, P.B. Barna, L. Hultman, J.E. Greene, 21 (2003) S117-S128.
    [167] S. Mahieu, P. Ghekiere, D. Depla, R. De Gryse, Thin Solid Films, 515 (2006) 1229-1249.
    [168] A. Anders, Thin Solid Films, 518 (2010) 4087-4090.
    [169] Y.H. Liu, T. Fujita, A. Hirata, S. Li, H.W. Liu, W. Zhang, A. Inoue, M.W. Chen, Intermetallics, 21 (2012) 105-114.
    [170] D.E. Newbury*, N.W.M. Ritchie, Scanning, 35 (2013) 141-168.
    [171] L. Qi, M. Li, H. Li, G. Xu, C. Wang, Microscopy Research and Technique, 72 (2009) 338-342.
    [172] G. Greczynski, D. Primetzhofer, J. Lu, L. Hultman, Applied Surface Science, 396 (2017) 347-358.
    [173] G. Greczynski, L. Hultman, Progress in Materials Science, 107 (2020) 100591.
    [174] W.C. Oliver, G.M. Pharr, Journal of Materials Research, 7 (1992) 1564-1583.
    [175] Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, Science, 315 (2007) 1385.
    [176] G.C.A.M. Janssen, M.M. Abdalla, F. van Keulen, B.R. Pujada, B. van Venrooy, Thin Solid Films, 517 (2009) 1858-1867.
    [177] P. Zeman, M. Zítek, Š. Zuzjaková, R. Čerstvý, Journal of Alloys and Compounds, 696 (2017) 1298-1306.
    [178] Y. Zhang, W.H. Wang, A.L. Greer, Nature Materials, 5 (2006) 857-860.
    [179] G. Greczynski, I. Petrov, J.E. Greene, L. Hultman, Vacuum, 116 (2015) 36-41.
    [180] G. Greczynski, J. Jensen, L. Hultman, IEEE Transactions on Plasma Science, 38 (2010) 3046-3056.
    [181] X.W. Zhou, H.N.G. Wadley, Journal of Applied Physics, 87 (2000) 2273-2281.
    [182] F. Eriksson, N. Ghafoor, F. Schäfers, E.M. Gullikson, J. Birch, Thin Solid Films, 500 (2006) 84-95.
    [183] G. West, P. Kelly, P. Barker, A. Mishra, J. Bradley, Plasma Processes and Polymers, 6 (2009) S543-S547.
    [184] T. Kozák, J. Lazar, Plasma Sources Science Technology, 27 (2018) 115012.
    [185] P.-C. Wang, J.-W. Lee, Y.-C. Yang, B.-S. Lou, Thin Solid Films, 618 (2016) 28-35.
    [186] C. Christou, Z.H. Barber, Journal of Vacuum Science & Technology A, 18 (2000) 2897-2907.
    [187] P. Sigmund, Journal of Vacuum Science and Technology, 17 (1980) 396-399.
    [188] G. Greczynski, J. Jensen, L. Hultman, Thin Solid Films, 519 (2011) 6354-6361.
    [189] R. James, The Optical Principles of the Diffraction of X‐Rays (G. Bell and Sons, London, 1948), G. Bell and Sons, London, 1950.
    [190] B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing, 1956.
    [191] D.B. Williams, C.B. Carter, Diffraction in TEM, in: D.B. Williams, C.B. Carter (Eds.) Transmission Electron Microscopy: A Textbook for Materials Science, Springer US, Boston, MA, 2009, pp. 197-209.
    [192] Q. Zeng, Y. Kono, Y. Lin, Z. Zeng, J. Wang, S.V. Sinogeikin, C. Park, Y. Meng, W. Yang, H.-K. Mao, W.L. Mao, Physical Review Letters, 112 (2014) 185502.
    [193] S. Oswald, X-Ray Photoelectron Spectroscopy in Analysis of Surfaces Update based on the original article by Steffen Oswald, Encyclopedia of Analytical Chemistry, © 2000, John Wiley & Sons, Ltd, in: Encyclopedia of Analytical Chemistry.
    [194] H. Tavana, N. Petong, A. Hennig, K. Grundke, A.W. Neumann, The Journal of Adhesion, 81 (2005) 29-39.
    [195] W.C. Bigelow, D.L. Pickett, W.A. Zisman, Journal of Colloid Science, 1 (1946) 513-538.
    [196] J. Moulder, W. Stickle, P. Sobol, K.J.E.P. Bomben, MN, USA, (1992).
    [197] A.I. Goldman, D.J. Sordelet, P.A. Thiel, J.M. Dubois, New Horizons in Quasicrystals, WORLD SCIENTIFIC, 1997.
    [198] C.J. Jenks, P.A. Thiel, MRS Bulletin, 22 (1997) 55-58.
    [199] M. Kalin, M. Polajnar, Tribology Letters, 52 (2013) 185-194.
    [200] S. Lee, J.-S. Park, T.R. Lee, Langmuir, 24 (2008) 4817-4826.
    [201] J.-M. Dubois, E. Belin-Ferré, Applied Adhesion Science, 3 (2015) 28.
    [202] F. Rupp, R.A. Gittens, L. Scheideler, A. Marmur, B.D. Boyan, Z. Schwartz, J. Geis-Gerstorfer, Acta Biomaterialia, 10 (2014) 2894-2906.
    [203] J. Wang, K. Zhang, F. Wang, W. Zheng, RSC Advances, 8 (2018) 11388-11394.
    [204] M.T. F. Samavat, S. Habibi, B. Jaleh and P. Ahmad, Open Journal of Physical Chemistry, Vol. No.2 (2012).
    [205] A. de Monteynard, F. Schuster, A. Billard, F. Sanchette, Surface and Coatings Technology, 330 (2017) 241-248.
    [206] P. Souček, J. Daniel, J. Hnilica, K. Bernátová, L. Zábranský, V. Buršíková, M. Stupavská, P. Vašina, Surface and Coatings Technology, 311 (2017) 257-267.
    [207] A.M. Engwall, S.J. Shin, J. Bae, Y.M. Wang, Surface and Coatings Technology, 363 (2019) 191-197.
    [208] G. Greczynski, I. Petrov, J.E. Greene, L. Hultman, Journal of Vacuum Science & Technology A, 37 (2019) 060801.
    [209] M. Heggen, F. Spaepen, M. Feuerbacher, Journal of Applied Physics, 97 (2004) 033506.
    [210] N.V. Steenberge, in: Departament de F ́ısica, Universitat Autonoma de Barcelona, Bellaterra, 2008.
    [211] L. Wang, H. Bei, Y.F. Gao, Z.P. Lu, T.G. Nieh, Acta Materialia, 59 (2011) 2858-2864.
    [212] E.H. Hirsch, Journal of Physics D: Applied Physics, 13 (1980) 2081-2094.
    [213] Y. Pauleau, Vacuum, 61 (2001) 175-181.
    [214] A. Materne, H. Moriceau, B. Blanchard, J. Florestan, IEEE Transactions on Magnetics, 24 (1988) 1752-1754.
    [215] R.S. Wagner, A.K. Sinha, T.T. Sheng, H.J. Levinstein, F.B. Alexander, Journal of Vacuum Science and Technology, 11 (1974) 582-590.
    [216] M. Ali, in, Sheffield University, 1999.
    [217] N.X. Randall, G. Favaro, C.H. Frankel, Surface and Coatings Technology, 137 (2001) 146-151.
    [218] J. Tomastik, R. Ctvrtlik, EPJ Web of Conferences, 48 (2013).
    [219] B.D. Beake, A.J. Harris, T.W. Liskiewicz, Tribology - Materials, Surfaces & Interfaces, 7 (2013) 87-96.
    [220] T.G. Nieh, C. Schuh, J. Wadsworth, Y. Li, Intermetallics, 10 (2002) 1177-1182.
    [221] T.C. Hufnagel, T. Jiao, Y. Li, L.Q. Xing, K.T. Ramesh, Journal of Materials Research, 17 (2002) 1441-1445.
    [222] J. Lu, G. Ravichandran, W.L. Johnson, Acta Materialia, 51 (2003) 3429-3443.
    [223] F.H. Dalla Torre, A. Dubach, M.E. Siegrist, J.F. Löffler, Applied Physics Letters, 89 (2006) 091918.
    [224] T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, K. Higashi, Intermetallics, 10 (2002) 1071-1077.
    [225] L.F. Liu, L.H. Dai, Y.L. Bai, B.C. Wei, G.S. Yu, Intermetallics, 13 (2005) 827-832.
    [226] W. Ma, H. Kou, J. Li, H. Chang, L. Zhou, Journal of Alloys and Compounds, 472 (2009) 214-218.
    [227] L.F. Liu, L.H. Dai, Y.L. Bai, B.C. Wei, Journal of Non-Crystalline Solids, 351 (2005) 3259-3270.
    [228] J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, C. Rullyani, Thin Solid Films, 520 (2012) 5097-5122.
    [229] P. Yiu, W. Diyatmika, N. Bönninghoff, Y.-C. Lu, B.-Z. Lai, J.P. Chu, Journal of Applied Physics, 127 (2020) 030901.
    [230] S. Jiang, P. Li, Y. Yu, J. Liu, Z. Yang, Journal of Biomechanics, 47 (2014) 3344-3353.
    [231] A.M. Okamura, C. Simone, M.D.O. Leary, IEEE Transactions on Biomedical Engineering, 51 (2004) 1707-1716.
    [232] B. Chu, L. Zhang, Y. Qu, X. Chen, J. Peng, Y. Huang, Z. Qian, Scientific Reports, 6 (2016) 34069.
    [233] Z. Bai, M.J. Filiaggi, R.J. Sanderson, L.B. Lohstreter, M.A. McArthur, J.R. Dahn, Journal of Biomedical Materials Research Part A, 92A (2010) 521-532.
    [234] H.-H. Huang, Y.-S. Sun, C.-P. Wu, C.-F. Liu, P.K. Liaw, W. Kai, Intermetallics, 30 (2012) 139-143.
    [235] S. Fukuzaki, H. Urano, K. Nagata, Journal of Fermentation and Bioengineering, 81 (1996) 163-167.
    [236] W. Norde, J.P. Favier, Colloids and Surfaces, 64 (1992) 87-93.
    [237] J. Li, X. He, G. Zhang, R. Hang, X. Huang, B. Tang, X. Zhang, Bioelectrochemistry, 121 (2018) 105-114.
    [238] K. Alagarsamy, V. Vishwakarma, G.S. Kaliaraj, N.C. Vasantha, S.J.R. Samuel, Journal of Adhesion Science and Technology, 34 (2020) 349-368.
    [239] Z. Yang, Y. Fujii, F.K. Lee, C.-H. Lam, O.K.C. Tsui, 328 (2010) 1676-1679.
    [240] L. Zhu, C.W. Brian, S.F. Swallen, P.T. Straus, M.D. Ediger, L. Yu, Physical Review Letters, 106 (2011) 256103.
    [241] S. Ashtekar, G. Scott, J. Lyding, M. Gruebele, Physical Review Letters, 106 (2011) 235501.
    [242] C.R. Cao, Y.M. Lu, H.Y. Bai, W.H. Wang, Applied Physics Letters, 107 (2015) 141606.
    [243] C.R. Cao, L. Yu, J.H. Perepezko, 116 (2020) 231601.
    [244] L. Chen, C.R. Cao, J.A. Shi, Z. Lu, Y.T. Sun, P. Luo, L. Gu, H.Y. Bai, M.X. Pan, W.H. Wang, Physical Review Letters, 118 (2017) 016101.
    [245] C.J. Ellison, J.M. Torkelson, Nature Materials, 2 (2003) 695-700.
    [246] S.F. Swallen, K.L. Kearns, M.K. Mapes, Y.S. Kim, R.J. McMahon, M.D. Ediger, T. Wu, L. Yu, S. Satija, 315 (2007) 353-356.
    [247] H.-B. Yu, Y. Luo, K. Samwer, Nature Communications, 25 (2013) 5904-5908.
    [248] K. Fukumura, T. Kobayashi, A. Nakanishi, R. Katano, Y. Isozumi, Hyperfine Interactions, 69 (1992) 755-758.
    [249] T. Kobayashi, K. Fukumura, A. Nakanishi, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 76 (1993) 204-206.
    [250] J.P. Hannon, N.V. Hung, G.T. Trammell, E. Gerdau, M. Mueller, R. Rüffer, H. Winkler, Physical Review B, 32 (1985) 5068-5080.
    [251] T. Kawauchi, K. Fukutani, T. Okano, S. Kishimoto, X. Zhang, Y. Yoda, Applied Surface Science, 256 (2009) 962-964.
    [252] C.Y. Ho, R.W. Powell, P.E. Liley, Physical and Chemical Reference Data, 3 (1974).
    [253] E. De Grave, A. Van Alboom, Physics and Chemistry of Minerals, 18 (1991) 337-342.
    [254] W.H. Wang, P. Wen, D.Q. Zhao, M.X. Pan, R.J. Wang, Journal of Materials Research, 18 (2003) 2747-2751.
    [255] Y. Sun, L. Zhu, K.L. Kearns, M.D. Ediger, L. Yu, 108 (2011) 5990-5995.
    [256] W. Diyatmika, J.P. Chu, B.T. Kacha, C.-C. Yu, C.-M. Lee, Current Opinion in Solid State and Materials Science, 19 (2015) 95-106.
    [257] J.P. Chu, C.-T. Lo, Y.-K. Fang, B.-S. Han, Applied Physics Letters, 88 (2006) 012510.
    [258] L. Zhang, H. Tanaka, Wear, 211 (1997) 44-53.
    [259] C. Liu, X. Gu, L. Yang, X. Song, M. Wen, J. Wang, Q. Li, K. Zhang, W. Zheng, C. Chen, The Journal of Physical Chemistry Letters, 11 (2020) 1614-1621.
    [260] M. Kano, Y. Yasuda, Y. Okamoto, Y. Mabuchi, T. Hamada, T. Ueno, J. Ye, S. Konishi, S. Takeshima, J.M. Martin, M.I. De Barros Bouchet, T.L. Mognee, Tribology Letters, 18 (2005) 245-251.
    [261] C. Donnet, J.M. Martin, T. Le Mogne, M. Belin, Tribology International, 29 (1996) 123-128.
    [262] H. Nyberg, J. Sundberg, E. Särhammar, F. Gustavsson, T. Kubart, T. Nyberg, U. Jansson, S. Jacobson, Wear, 302 (2013) 987-997.
    [263] N. Kumar, P.K. Ajikumar, S. Dash, M. Kamruddin, A.K. Tyagi, B. Raj, Tribology International, 44 (2011) 1251-1256.
    [264] H. Zong, C. Geng, C. Kang, G. Cao, L. Li, B. Zhang, M. Li, Results in Physics, 10 (2018) 612-615.

    QR CODE