簡易檢索 / 詳目顯示

研究生: 洪家翔
JIA-SHIANG HUNG
論文名稱: 斜面式滾動隔震支承之分析模型建立與驗證
Development and validation of analysis model for slope rolling-type isolation devices
指導教授: 黃震興
Jenn-shin Hwang
口試委員: 邱建國
Chien-Kuo Chiu
汪向榮
Shiang-Jung Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 162
中文關鍵詞: 斜面式滾動隔震支承數值分析模型即時可變阻尼機制多角度斜面式滾動隔震支承
外文關鍵詞: Sloped-rolling type isolation devices, variable friction damping mechanism.
相關次數: 點閱:211下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 斜面式滾動隔震支承在過去的文獻以及研究中,已證實可明顯減少震動傳遞以及有效的保護上方對於加速度敏感之標的物,但目前鮮少文獻針對斜面式滾動隔震支承之數值模型以及數值分析模擬進行完整探討。因此,本研究將依據過去經驗進行實體改良,在考慮不同設計參數條件下,進行完整且廣義的斜面式滾動隔震支承理論分析與探討,提出可準確模擬斜面式滾動隔震支承動力行為之數值分析模型,以及開發相應之數值模擬分析程式,此外,為使本隔震支承於小、中、大地震或近斷層地震需求下具備不同性能設計,提出被動式即時可變阻尼的概念於斜面式滾動隔震支承,亦建立可變阻尼力學行為之數值分析模型,而後,進行一系列之振動台試驗,驗證斜面式滾動隔震支承數值模型以及即時可變阻尼概念在小、中、大地震下之可行性。而後根據以上結果,提出多角度斜面式滾動隔震支承的設計概念。研究與試驗結果顯示,透過運動方程式所建立之數值分析模型,可以準確提出設計參數與絕對加速度之間的關係,而相應之數值分析程式亦可準確模擬斜面式滾動隔震支承之受震歷時行為。而即時可變阻尼機制經過驗證後證實可行。此外,根據以上結果,所提出之多角度斜面式滾動隔震支承,經過數值分析程式模擬後,證實比傳統單斜面式具有更加良好的隔震性能。建議可以針對多角度斜面式滾動隔震支承,利用本研究所建立之數值分析程式,進行後續參數研究與實體設計,提出明確之設計流程以及設計方法。


    In past research, the sloped rolling-type isolation devices have been proved to be effective in protecting equipment against seismic loading. This is particularly significant for the equipment whose seismic performance relies mainly on its maximum acceleration response, due to the fact that the maximum acceleration transmitted by this isolation device can be designed to be a constant regardless of the excitation intensity. However, it is insufficient in the past research regarding the detailed description on the mechanical characteristics and the associated analytical model of the isolation device. It is therefore one of the objectives of the study to derive the equation of motion of equipment isolated by the device. For doing so, equilibrium equations are derived from a detailed free body diagram of the isolation device. From the equations, the detailed mechanical behavior of the device are clearly identified and described. For solving the equation of motion, an analytical model considering various stages of the rolling motion of the device is then developed. The analytical results are then compared with those determined from a simulated model deduced from available element models of SAP2000. In addition, the analysis results are also compared with experimental results from shaking table tests. From the comparison, it is concluded that the analytical model is superior in capturing the seismic responses of the isolated equipment by the sloped rolling device while the model deduced from the element models of SAP2000 which possesses a great popularity of practical applications around the world can also deduce satisfactory results. Moreover, in order to possibly limit the seismic displacement responses of the isolation device, a friction damping mechanism is also implemented to the device to increase the energy dissipation capacity of the device. Furthermore, the concepts of multi-sloped rolling isolation devices and variable friction damping mechanism are also proposed and realized in the study. The associated mechanical behavior and seismic response control capability are also investigated analytically.

    摘要 i Abstract ii 致謝 iii 目錄 v 表索引 viii 圖索引 ix 第一章 緒論 1 1.1 研究背景及目的 1 1.2 文獻回顧 4 1.3 研究內容 6 第二章 斜面式滾動隔震支承動力行為理論推導 9 2.1 多滾軸斜面式滾動隔震支承基本構造介紹 9 2.2 斜面式滾動隔震支承運動方程式推導 10 2.2.1 單斜面式滾動隔震支承運動方程式 12 2.2.2 對稱斜面式滾動隔震支承運動方程式 14 2.3 斜面式滾動隔震支承運動方程式探討 16 第三章 斜面式滾動隔震支承數值分析原理 21 3.1 斜面式滾動隔震支承數值分析架構 21 3.2 斜面式滾動隔震支承分析斜面角度修正 23 3.3 斜面式滾動隔震支承分析相對速度變號修正 25 3.4 斜面式滾動隔震支承分析停止狀態修正 26 3.5 斜面式滾動隔震支承分析程式流程 28 第四章 試驗模型及振動台試驗 29 4.1 地震模擬振動台 29 4.2 試驗之斜面式滾動隔震支承 29 4.2.1內置摩擦阻尼機制 29 4.2.2斜面式滾動隔震支承參數 32 4.3 試驗感測計裝置及佈置 33 4.3.1 感測器裝置 33 4.3.2 感測計佈置 33 4.4 試驗程序 33 4.4.1 試驗選用之振動歷時資料 33 4.4.2 試驗程序 34 第五章 試驗結果與分析討論 35 5.1 SAP2000分析模型介紹與數值分析程式結果比較 35 5.2 振動台試驗結果 37 5.3 試驗結果與討論 37 5.3.1 地震歷時結果討論 37 5.3.2 定阻尼試驗組與變阻尼試驗組數值分析比較 40 5.4 試驗結論 41 第六章 多角度斜面式滾動隔震支承設計 43 6.1 多角度斜面式滾動隔震支承設計構想 43 6.1.1 多角度斜面式滾動隔震支承遲滯迴圈 44 6.2 多角度機制參數與分析設計 45 6.2.1 多角度設計組設計參數 45 6.2.2 多角度分析規劃 46 6.2.3 多角度分析結果討論 47 第七章 結論 49 參考文獻 51 附錄 139 A. 單斜面式滾動隔震支承運動方程式詳細推導 139 B. 對稱斜面式滾動隔震支承運動方程式詳細推導 142 C. 圓弧曲面與角度位移詳細推導 145

    【1】 羅俊雄,“九二一集集大地震全面勘災精簡報告”,國家地震工程研究中心研究報告,NCREE-99-033,民國八十八年。
    【2】 內政部營建署,“建築物耐震設計規範及解說”民國一百年七月。
    【3】 Hwang JS, Huang YN, Hung YH, Huang JC. “Applicability of seismic protective systems to structures with vibration sensitive equipment,” Journal of Structural Engineering, ASCE, 130(11): 2004,pp. 1676-1684.
    【4】 Nagarajaiah S, Xiaohong S. “Response of base-isolated USC hospital building in Northridge earthquake, ” Journal of Structural Engineering, ASCE, 126, 2000: pp. 1177-1186.
    【5】 Myslimaj B, Gamble S, Chin-Quee D. “Davies A. Base isolation technologies for seismic protection of museum artifacts, ” The 2003 IAMFA Annual Conference, San Francisco, California, September 21-24, 2003.
    【6】 黃昶閔,「醫院重要醫療空間內設備物耐震性能評估之研究」,碩士論文,國立成功大學建築研究所,民國九十八年六月。
    【7】 Skinner RI, Robinson WH, McVerry GH. “An introduction to seismic isolation,” Chichester, England: John Wiley and Sons; 1993.
    【8】 Naeim F, Kelly JM. “Design of seismic isolated structures: from theory to practice,” Wiley, New York, 1999.

    【9】 Al-Hussaini TM, Zayas VA, Constantinou MC. “Seismic isolation of a multi-story frame structure using spherical sliding isolation systems,”Technical Report No. NCEER-94-0007, National Center of Earthquake Engineering Research, University at Buffalo, State University of New York, Buffalo, NY, 1994.
    【10】 Hamidi M, ElNaggar MH, Vafai A, Ahmadi G. “Seismic isolation of buildings with sliding concave foundation (SCF) ,” Earthquake Engineering and Structural Dynamics, 32, 2003, pp. 15-29.
    【11】 Lin TW, Hone CC. “Base isolation by free rolling rods under basement,” Earthquake Engineering and Structural Dynamics, 22, 1993, pp. 261-273.
    【12】 Lin TW, Chern CC, Hone CC. “Experimental study of base isolation by free rolling rods,” Earthquake Engineering and Structural Dynamics, 24, 1995, pp.1645-1650.
    【13】 Jangid RS, Londhe YB. “Effectiveness of elliptical rolling rods for base isolation,” Journal of Structural Engineering, ASCE, 1998, 124, pp. 469-472.
    【14】 Kasalanati A, Reinhorn AM, Constantinou MC, Sanders D. “Experimental study of ball-in-cone isolation system,” Proceedings of the ASCE Structures Congress XV, Portland, Oregon, April 13-16, 1997,pp. 1191–1195.

    【15】 Zhou Q, Lu X, Wang Q, Feng D, Yao Q. “Dynamic analysis on structures base-isolated by a ball system with restoring property,” Earthquake Engineering and Structural Dynamics, 27, 1998, pp. 773-791.
    【16】 Tsai MH, Wu SY, Chang KC, Lee GC. “Shaking table tests of a scaled bridge model with rolling type seismic isolation bearings,” Engineering Structures, 29(9),2007, pp. 694-702.
    【17】 Lee GC, Ou YC, Niu T, Song J, Liang Z. “Characterization of a roller seismic isolation bearing with supplemental energy dissipation for highway bridges,” Journal of Structural Engineering, ASCE, 2010, 136(5), pp. 502-510.
    【18】 Ou YC, Song J, Lee GC. “A parametric study of seismic behavior of roller seismic isolation bearings for highway bridges,” Earthquake Engineering and Structural Dynamics, 39(5), 2010, pp. 541-559.
    【19】 Mahmood H, Amirhossein S. “Using orthogonal pairs of rollers on concave beds (OPRCB) as a base isolation system - part I: analytical, experimental and numerical studies of OPRCB isolators,” The Structural Design of Tall and Special Buildings,20(8) , 2011, pp. 928-950.
    【20】 Lambrou V, Constantinou MC. “Study of seismic isolation systems for computer floors,” Technical Report, NCEER-94-0020, July, 1994.

    【21】 Fan YC, Loh CH, Yang JN, Lin PY. “Experimental performance evaluation of an equipment isolation using MR dampers,” Earthquake Engineering and Structural Dynamics, 38 (3), 2008, pp. 285-305.
    【22】 Lu LY, Chung LL, Lin GL. “A general method for semi-active feedback control of variable friction dampers,” J Intell Mater Syst Struct, 15(5),2004,pp. 393-412.
    【23】 Symans MD, Constantinou MC. “Seismic testing of a building structure with a semi-active fluid damper control system,” Earthquake Engineering and Structural Dynamics, 26, 1997, pp. 759-777.
    【24】 Loh CH. “Interpretation of structural damage in 921 Chi-Chi-earthquake,” Proceedings of international workshop on Chi-Chi, Taiwan earthquake of September 21, 1999, pp. 5-1-5-77.
    【25】 Lu LY, Lin GL. “Predictive control of smart isolation system for precision equipment subjected to near-fault earthquakes,” Engineering Structures, 30, 2008,pp. 3045-3064.
    【26】 Xu YL, Li B. “Hybrid platform for high-tech equipment protection against earthquake and microvibration,” Earthquake Engineering and Structural Dynamics, 35, 2006,pp. 943–967.
    【27】 AC156,Acceptance Criteria for Seismic Qualification by Shake-table Testing of Nonstructural Components and Systems, ICC Evaluation Service inc.,2007.

    【28】 GR-63-CORE, Network Equipment Building System(NERS)Requirements: Physical Protection, Issue2,April 2002.
    【29】 IEEE Std.693TM -2005, IEEE Recommended Practice for Seismic Design of Substations, IEEE-SA Standards Board, 2004.

    QR CODE