簡易檢索 / 詳目顯示

研究生: 黃崇煒
Chung-Wei Huang
論文名稱: 開發用於界面太陽能水淨化的聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸)複合材料海綿
Development of PEDOT:PSS Composite Sponge for Interfacial Solar Water Purification
指導教授: 蕭育生
Yu-Sheng Hsiao
口試委員: 王志逢
Chih-Feng Wang
張棋榕
Chi-Jung Chang
吳昌謀
Chang-Mou Wu
蕭育生
Yu-Sheng Hsiao
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 113
中文關鍵詞: 冷凍乾燥聚二氧乙基噻吩:聚苯乙烯磺酸界面太陽能蒸發複合高分子材料海水淨化染料吸附
外文關鍵詞: freeze drying, PEDOT: PSS, interfacial solar evaporation, composite polymer materials, seawater purification, dye adsorption
相關次數: 點閱:275下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為開發可通過太陽能促進海水蒸發而淨化出淡水之複合材料海綿。在研究中,我們混摻不同比例的多壁奈米碳管(Multi-wall Carbon Nanotube, MWCNT)、(3-縮水甘油氧基丙基)三甲氧基矽烷((3-glycidyloxypropyl) trimethoxysilane, GOPS)、聚乙二醇(Poly Ethylene Oxide, PEO)於聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸)(Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, PEDOT:PSS)水溶液中,並利用可程式化的冷凍乾燥製程及熱交聯反應以製備具高吸水、耐水性及高效光熱轉換的複合材料海綿。
    材料分析方面,我們通過觀察(1)海綿對吸收去離子水、海水、磷酸鹽緩衝生理食鹽水(Phosphate Buffered Saline, PBS)之溶脹率,及使用水接觸角量測儀觀察其吸水及親水特性;透過(2)掃描電子顯微鏡(Scanning Electron Microscope, SEM)分析不同添加物比例對材料孔洞的微結構型態影響;使用(3)電熱偶溫度計(thermocouple meter)測量各樣本之熱輻射發射係數(emissivity)進而計算在蒸發實驗過程中造成的熱損失;利用(4)壓汞式孔隙分析儀(mercury porosimeter)測量各材料海綿之總孔體積、總孔面積、孔隙度與孔徑分佈,並使用液體置換法測量海綿骨架的密度和孔隙率;以(5)紅外線顯像儀(infrared thermograph)觀察模擬太陽光(1個太陽光強度)照射一小時後之乾燥海綿溫度,再紀錄表面輻射溫度,並分析其升溫速度與可達到的最高溫,以比較光熱轉換效率;以(6)傅立葉轉換紅外光譜(FTIR)對海綿樣本進行化學組成鑑度;使用(7)標準MTT測試對海綿進行細胞貼附及生物相容性分析以評估後續對生物的影響。
    由介面太陽能水淨化的效能評估,我們發現C1G1P1複合材料海綿表現優化的水蒸發率為1.04 kgm-2h-1及太陽能轉換至蒸氣效率為70.8%。另外,分析其對海水淡化後的鈉離子(Na+)、鉀離子(K+)、鈣離子(Ca2+)及鎂離子(Mg2+)含量皆減少超過99.69%以上。此C1G1P1海綿被發現具有對水中的亞甲藍(methylene blue, MB)移除率在2小時吸附實驗中可達80%及對甲基橙(methyl orange, MO)移除率為28%,代表本PEDOT:PSS複合材料海綿裝置除了能淡化海水工飲用水使用外,還可淨化被染料汙染的水質。由於PEDOT:PSS材料本身具有導電及優異電化學特性,將來極具潛力應用已提供水質檢測的外加功能性領域。


    This research is to develop a composite sponge that can purify fresh water by promoting the evaporation of seawater by solar energy. In our study, we blended different ratios of multi-walled carbon nanotubes (MWCNTs), (3-glycidoxypropyl)trimethoxysilane (GOPS), polyethylene glycol (PEO) in poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) aqueous solution, and using programmable freeze-drying process and thermal crosslinking reaction to prepare high water absorption, water resistance and efficient photothermal conversion. Composite sponge.
    In terms of material analysis, we observed (1) the swelling rate of the sponge to absorb deionized water, seawater, and phosphate-buffered saline (PBS), and used a water contact angle meter to observe its water absorption and hydrophilic properties; through (2) ) Scanning electron microscope (SEM) to analyze the effect of different additive ratios on the microstructure of material pores; (3) Thermocouple meter was used to measure the thermal radiation emission coefficient (emissivity) of each sample and then calculate the evaporation experiment process. (4) Mercury porosimeter was used to measure the total pore volume, total pore area, porosity and pore size distribution of each material sponge, and the density and pore size of the sponge skeleton were measured by liquid displacement method. Porosity; use (5) an infrared thermograph to observe the temperature of the dried sponge after irradiating simulated sunlight (1 sunlight intensity) for one hour, and then record the surface radiation temperature, and analyze the heating rate and the achievable temperature. Maximum temperature to compare photothermal conversion efficiency; chemical composition identification of sponge samples by (6) Fourier transform infrared spectroscopy (FTIR); sponge cell attachment and biocompatibility analysis using (7) standard MTT test to evaluate Subsequent effects on organisms.
    From the performance evaluation of interfacial solar water purification, we found that the C1G1P1 composite sponge exhibited an optimized water evaporation rate of 1.04 kg m-2 h-1 and a solar-to-vapor conversion efficiency of 70.8%. In addition, it was analyzed that the content of sodium ions (Na+), potassium ions (K+), calcium ions (Ca2+) and magnesium ions (Mg2+) after seawater desalination were reduced by more than 99.69%. The C1G1P1 sponge was found to have a removal rate of 80% for methylene blue (MB) in water and 28% for methyl orange (MO) in a 2-hour adsorption experiment, representing This PEDOT:PSS composite sponge device can not only desalinate drinking water in seawater, but also purify the water polluted by dyes. Since PEDOT:PSS material itself has electrical conductivity and excellent electrochemical properties, it has great potential to be applied in the additional functional fields that have provided water quality detection in the future.

    中文摘要 IV ABSTRACT VI 謝誌 VIII 目錄 IX 圖目錄 XII 表目錄 XVI 第一章 緒論 1 1-1背景 1 1-2太陽能驅動蒸發淨化水裝置 3 1-3 光熱蒸發系統分類 5 1-3-1 容積系統(VOLUMETRIC SYSTEM) 6 1-3-1-1 非經典傳熱(非平衡加熱) 6 1-3-1-2 典型傳熱(平衡加熱) 7 1-3-2 界面式太陽能系統(INTERFACIAL SYSTEM) 8 1-3-2-1 直接接觸配置 8 1-3-2-2 間接接觸配置 11 1-3-3隔離系統(INSULATION SYSTEM) 15 1-3-3-1 水路配置的隔離 15 1-3-3-2.完整的隔離配置 17 1-4 研究動機與目標 17 第二章、實驗材料與流程 24 2-1實驗材料及步驟 24 2-1-1實驗藥品 24 2-1-2實驗儀器 24 2-2實驗裝置製備 26 2-2-1海綿模具與容器 26 2-2-2海綿溶液配置 27 2-2-3海綿製備流程 29 2-3材料性質分析 30 2-3-1微結構之SEM分析 30 2-3-2水接觸角 31 2-3-3吸水率分析 31 2-3-4孔徑與孔隙率分析 32 2-3-5發射率測量 33 2-3-6光熱轉換效率 34 2-3-7FTIR分析 34 2-3-8生物相容性測試 35 2-4界面太陽能水蒸發效能分析 36 2-4-1太陽能蒸發 36 2-4-2能量轉換效率分析 37 2-4-2-1裝置、水升溫曲線 37 2-4-2-2太陽能轉換到蒸汽效率與熱損失計算 37 2-5水質淨化實驗 39 2-5-1海水淡化實驗 39 2-5-2染料吸附實驗 40 第三章、實驗結果與討論 41 3-1表面結構分析 41 3-1-1SEM微結構分析 41 3-1-2孔徑與孔隙率分析 42 3-2 FTIR光譜分析 51 3-3親水性與吸水性能分析 52 3-3-1親水性分析 52 3-3-2吸水性能分析 56 3-4光熱轉換效率及發射率分析 59 3-5太陽能蒸發 63 3-5-1蒸發效率 63 3-5-2太陽能轉換到蒸汽效率與熱損失 72 3-6水質淨化 77 3-6-1海水淡化 77 3-6-2染料吸附結果 79 3-7生物相容性 82 第四章、結論 85 第五章、參考文獻 85

    1. Liu, G., et al., Solar evaporation for simultaneous steam and power generation. Journal of Materials Chemistry A, 2020. 8(2): p. 513-531.
    2. Tao, P., et al., Solar-driven interfacial evaporation. Nature energy, 2018. 3(12): p. 1031-1041.
    3. Shang, W. and T. Deng, Solar steam generation: steam by thermal concentration. Nature Energy, 2016. 1(9): p. 1-2.
    4. Liu, H., et al., Interfacial solar‐to‐heat conversion for desalination. Advanced Energy Materials, 2019. 9(21): p. 1900310.
    5. Liu, G., J. Xu, and K. Wang, Solar water evaporation by black photothermal sheets. Nano Energy, 2017. 41: p. 269-284.
    6. Gao, M., et al., Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science, 2019. 12(3): p. 841-864.
    7. Cao, S., et al., Advances in solar evaporator materials for freshwater generation. Journal of Materials Chemistry A, 2019. 7(42): p. 24092-24123.
    8. Deng, Z., et al., The emergence of solar thermal utilization: solar-driven steam generation. Journal of Materials Chemistry A, 2017. 5(17): p. 7691-7709.
    9. Zhu, L., et al., Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons, 2018. 5(3): p. 323-343.
    10. Ni, G., et al., Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy, 2015. 17: p. 290-301.
    11. Neumann, O., et al., Solar vapor generation enabled by nanoparticles. ACS nano, 2013. 7(1): p. 42-49.
    12. Zielinski, M.S., et al., Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation. Nano letters, 2016. 16(4): p. 2159-2167.
    13. Fang, Z., et al., Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano letters, 2013. 13(4): p. 1736-1742.
    14. Fu, Y., et al., Accessible graphene aerogel for efficiently harvesting solar energy. ACS Sustainable Chemistry & Engineering, 2017. 5(6): p. 4665-4671.
    15. Lombard, J., T. Biben, and S. Merabia, Kinetics of nanobubble generation around overheated nanoparticles. Physical review letters, 2014. 112(10): p. 105701.
    16. Gao, M., P.K.N. Connor, and G.W. Ho, Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy & Environmental Science, 2016. 9(10): p. 3151-3160.
    17. Hogan, N.J., et al., Nanoparticles heat through light localization. Nano letters, 2014. 14(8): p. 4640-4645.
    18. Neumann, O., et al., Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proceedings of the National Academy of Sciences, 2013. 110(29): p. 11677-11681.
    19. Bai, H., T. Zhao, and M. Cao, Interfacial solar evaporation for water production: from structure design to reliable performance. Molecular Systems Design & Engineering, 2020. 5(2): p. 419-432.
    20. Hua, Z., et al., Designing a novel photothermal material of hierarchical microstructured copper phosphate for solar evaporation enhancement. The Journal of Physical Chemistry C, 2017. 121(1): p. 60-69.
    21. Zeng, Y., et al., Solar evaporation enhancement using floating light-absorbing magnetic particles. Energy & Environmental Science, 2011. 4(10): p. 4074-4078.
    22. Chen, R., et al., Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating. RSC advances, 2017. 7(32): p. 19849-19855.
    23. Wang, Z., et al., Bio‐inspired evaporation through plasmonic film of nanoparticles at the air–water interface. Small, 2014. 10(16): p. 3234-3239.
    24. Zeng, Y., et al., Hollow carbon beads for significant water evaporation enhancement. Chemical Engineering Science, 2014. 116: p. 704-709.
    25. Zhou, J., et al., Macroscopic and Mechanically Robust Hollow Carbon Spheres with Superior Oil Adsorption and Light‐to‐Heat Evaporation Properties. Advanced Functional Materials, 2016. 26(29): p. 5368-5375.
    26. Liu, Y., et al., Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air–water interface. ACS applied materials & interfaces, 2015. 7(24): p. 13645-13652.
    27. Ghasemi, H., et al., Solar steam generation by heat localization. Nature communications, 2014. 5(1): p. 1-7.
    28. Zhang, L., et al., Hydrophobic light‐to‐heat conversion membranes with self‐healing ability for interfacial solar heating. Advanced Materials, 2015. 27(33): p. 4889-4894.
    29. Li, R., et al., MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS nano, 2017. 11(4): p. 3752-3759.
    30. Kaur, M., et al., All-ceramic microfibrous solar steam generator: TiN plasmonic nanoparticle-loaded transparent microfibers. ACS Sustainable Chemistry & Engineering, 2017. 5(10): p. 8523-8528.
    31. Hu, X., et al., Tailoring graphene oxide‐based aerogels for efficient solar steam generation under one sun. Advanced materials, 2017. 29(5): p. 1604031.
    32. Ren, H., et al., Hierarchical graphene foam for efficient omnidirectional solar–thermal energy conversion. Advanced Materials, 2017. 29(38): p. 1702590.
    33. Sajadi, S.M., et al., Flexible artificially-networked structure for ambient/high pressure solar steam generation. Journal of materials chemistry A, 2016. 4(13): p. 4700-4705.
    34. Zhu, L., et al., Self‐contained monolithic carbon sponges for solar‐driven interfacial water evaporation distillation and electricity generation. Advanced Energy Materials, 2018. 8(16): p. 1702149.
    35. Li, X., et al., Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proceedings of the National Academy of Sciences, 2016. 113(49): p. 13953-13958.
    36. Ye, M., et al., Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Advanced Energy Materials, 2017. 7(4): p. 1601811.
    37. Higgins, M., et al., Carbon fabric based solar steam generation for waste water treatment. Solar Energy, 2018. 159: p. 800-810.
    38. Huang, X., et al., Facile polypyrrole thin film coating on polypropylene membrane for efficient solar-driven interfacial water evaporation. RSC advances, 2017. 7(16): p. 9495-9499.
    39. Liu, Y., et al., A bioinspired, reusable, paper‐based system for high‐performance large‐scale evaporation. Advanced Materials, 2015. 27(17): p. 2768-2774.
    40. Xu, W., et al., Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination. Advanced Energy Materials, 2018. 8(14): p. 1702884.
    41. Gao, X., et al., Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation. Chemistry of Materials, 2017. 29(14): p. 5777-5781.
    42. Yao, J., Z. Zheng, and G. Yang, Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation. Nanoscale, 2018. 10(6): p. 2876-2886.
    43. Yao, J., Z. Zheng, and G. Yang, Alloying-assisted phonon engineering of layered BiInSe 3@ nickel foam for efficient solar-enabled water evaporation. Nanoscale, 2017. 9(42): p. 16396-16403.
    44. Yang, Y., et al., Graphene-based standalone solar energy converter for water desalination and purification. ACS nano, 2018. 12(1): p. 829-835.
    45. Canbazoglu, F., et al., Enhanced solar evaporation of water from porous media, through capillary mediated forces and surface treatment. AIP Advances, 2016. 6(8): p. 085218.
    46. Chen, Q., et al., A durable monolithic polymer foam for efficient solar steam generation. Chemical science, 2018. 9(3): p. 623-628.
    47. Wang, G., et al., Reduced graphene oxide–polyurethane nanocomposite foam as a reusable photoreceiver for efficient solar steam generation. Chemistry of Materials, 2017. 29(13): p. 5629-5635.
    48. Jia, C., et al., Rich mesostructures derived from natural woods for solar steam generation. Joule, 2017. 1(3): p. 588-599.
    49. Wu, X., et al., A plant‐transpiration‐process‐inspired strategy for highly efficient solar evaporation. Advanced Sustainable Systems, 2017. 1(6): p. 1700046.
    50. Gao, M., et al., Solar absorber gel: localized macro‐nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation. Advanced energy materials, 2018. 8(25): p. 1800711.
    51. Xie, M., et al., Construction of an integrated multi-layer textile for solar-driven steam generation. Applied Optics, 2021. 60(16): p. 4930-4937.
    52. Drelich, J., et al., Hydrophilic and superhydrophilic surfaces and materials. Soft Matter, 2011. 7(21): p. 9804-9828.
    53. Hong, S., et al., Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy. ACS applied materials & interfaces, 2018. 10(34): p. 28517-28524.
    54. Chang, C., et al., Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation. ACS applied materials & interfaces, 2016. 8(35): p. 23412-23418.
    55. Fang, J., et al., Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation. Journal of materials chemistry A, 2017. 5(34): p. 17817-17821.
    56. Lou, J., et al., Bioinspired multifunctional paper-based rGO composites for solar-driven clean water generation. ACS applied materials & interfaces, 2016. 8(23): p. 14628-14636.
    57. Yu, S., et al., The impact of surface chemistry on the performance of localized solar-driven evaporation system. Scientific reports, 2015. 5(1): p. 1-10.
    58. Zhou, L., et al., Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy, 2017. 32: p. 195-200.
    59. Zhou, L., et al., Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Science advances, 2016. 2(4): p. e1501227.
    60. Zhou, L., et al., 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 2016. 10(6): p. 393-398.
    61. Liu, C., et al., High‐Performance Large‐Scale Solar Steam Generation with Nanolayers of Reusable Biomimetic Nanoparticles. Advanced Sustainable Systems, 2017. 1(1-2): p. 1600013.
    62. Song, C., et al., Hydrophobic Cu 12 Sb 4 S 13-deposited photothermal film for interfacial water evaporation and thermal antibacterial activity. New Journal of Chemistry, 2018. 42(5): p. 3175-3179.
    63. Wang, J., et al., High‐performance photothermal conversion of narrow‐bandgap Ti2O3 nanoparticles. Advanced Materials, 2017. 29(3): p. 1603730.
    64. Wang, J., et al., Microporous cokes formed in zeolite catalysts enable efficient solar evaporation. Journal of Materials Chemistry A, 2017. 5(15): p. 6860-6865.
    65. Wang, G., et al., Reusable reduced graphene oxide based double-layer system modified by polyethylenimine for solar steam generation. Carbon, 2017. 114: p. 117-124.
    66. Yi, L., et al., Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination. Nano Energy, 2017. 41: p. 600-608.
    67. Jiang, Q., et al., Bilayered biofoam for highly efficient solar steam generation. Advanced Materials, 2016. 28(42): p. 9400-9407.
    68. Zhuang, S., et al., Tuning Transpiration by Interfacial Solar Absorber‐Leaf Engineering. Advanced Science, 2018. 5(2): p. 1700497.
    69. Chen, C., et al., Highly flexible and efficient solar steam generation device. Advanced Materials, 2017. 29(30): p. 1701756.
    70. Liu, K.-K., et al., Wood–graphene oxide composite for highly efficient solar steam generation and desalination. ACS applied materials & interfaces, 2017. 9(8): p. 7675-7681.
    71. Xue, G., et al., Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS applied materials & interfaces, 2017. 9(17): p. 15052-15057.
    72. Wang, Y., L. Zhang, and P. Wang, Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustainable Chemistry & Engineering, 2016. 4(3): p. 1223-1230.
    73. Xiao, P., et al., A scalable, low-cost and robust photo-thermal fabric with tunable and programmable 2D/3D structures towards environmentally adaptable liquid/solid-medium water extraction. Nano Energy, 2019. 65: p. 104002.
    74. Zhao, F., et al., Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature nanotechnology, 2018. 13(6): p. 489-495.
    75. Solar Absorber Gel: Localized Macro-Nano Heat Channeling for Efficient Plasmonic Au Nanoflowers Photothermic Vaporization and Triboelectric Generation.
    76. Xu, N., et al., Mushrooms as efficient solar steam‐generation devices. Advanced Materials, 2017. 29(28): p. 1606762.
    77. Li, Y., et al., Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. Nano Energy, 2017. 41: p. 201-209.
    78. Guo, A., et al., Fiber-based, double-sided, reduced graphene oxide films for efficient solar vapor generation. ACS applied materials & interfaces, 2017. 9(35): p. 29958-29964.
    79. Li, X., et al., Three-dimensional artificial transpiration for efficient solar waste-water treatment. National Science Review, 2018. 5(1): p. 70-77.
    80. Shi, L., et al., Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. Journal of Materials Chemistry A, 2017. 5(31): p. 16212-16219.
    81. Liu, Z., et al., Extremely cost‐effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper. Global Challenges, 2017. 1(2): p. 1600003.
    82. Li, Y., et al., 3D‐printed, all‐in‐one evaporator for high‐efficiency solar steam generation under 1 sun illumination. Advanced Materials, 2017. 29(26): p. 1700981.
    83. Håkansson, A., et al., Effect of (3‐glycidyloxypropyl) trimethoxysilane (GOPS) on the electrical properties of PEDOT: PSS films. Journal of Polymer Science Part B: Polymer Physics, 2017. 55(10): p. 814-820.
    84. Ebadi-Dehaghani, H. and M. Nazempour, Thermal Conductivity of Nanoparticles Filled Polymers.
    85. Zheng, Y., et al., Recent advances in conducting poly (3, 4-ethylenedioxythiophene): polystyrene sulfonate hybrids for thermoelectric applications. Journal of Materials Chemistry C, 2018. 6(33): p. 8858-8873.
    86. Li, C., et al., Polyelectrolyte-based photothermal hydrogel with low evaporation enthalpy for solar-driven salt-tolerant desalination. Chemical Engineering Journal, 2022. 431: p. 134224.
    87. Zhao, Z., et al., Compressible, electrically conductive, fibre-like, three-dimensional PEDOT-based composite aerogels towards energy storage applications. Composites Science and Technology, 2016. 127: p. 36-46.
    88. Yu, C.-C., et al., Poly (3, 4-ethylenedioxythiophene)-based nanofiber mats as an organic bioelectronic platform for programming multiple capture/release cycles of circulating tumor cells. ACS applied materials & interfaces, 2017. 9(36): p. 30329-30342.
    89. Xu, T. and C.-A. Wang, Control of pore size and wall thickness of 3-1 type porous PZT ceramics during freeze-casting process. Materials & Design, 2016. 91: p. 242-247.
    90. Ribeiro, B., et al., Carbon nanotube buckypaper reinforced polymer composites: a review. Polímeros, 2017. 27: p. 247-255.
    91. Wald, S.S., Thermalisation and Relaxation of Quantum Systems. 2017, Université de Lorraine.
    92. Yau, M.K. and R.R. Rogers, A short course in cloud physics. 1996: Elsevier.
    93. Zhu, M., et al., Tree‐inspired design for high‐efficiency water extraction. Advanced Materials, 2017. 29(44): p. 1704107.
    94. Han, X., et al., Intensifying heat using MOF‐isolated graphene for solar‐driven seawater desalination at 98% solar‐to‐thermal efficiency. Advanced Functional Materials, 2021. 31(13): p. 2008904.
    95. Li, T., et al., Scalable and highly efficient mesoporous wood‐based solar steam generation device: localized heat, rapid water transport. Advanced functional materials, 2018. 28(16): p. 1707134.
    96. Eder, D. and A.H. Windle, Carbon–inorganic hybrid materials: the carbon‐nanotube/TiO2 interface. Advanced Materials, 2008. 20(9): p. 1787-1793.
    97. Yin, Z., et al., Extremely black vertically aligned carbon nanotube arrays for solar steam generation. ACS Applied Materials & Interfaces, 2017. 9(34): p. 28596-28603.
    98. Kuang, Y., et al., A high‐performance self‐regenerating solar evaporator for continuous water desalination. Advanced materials, 2019. 31(23): p. 1900498.
    99. AM, G.H.N.G.M., Loomis J. Yerci S. Miljkovic N. Chen G. Nat. Commun, 2014. 5: p. 4449.
    100. Wang, Y., et al., Boosting solar steam generation by structure enhanced energy management. Science Bulletin, 2020. 65(16): p. 1380-1388.
    101. Ma, S., et al., Metal-organic framework derived porous carbon of light trapping structures for efficient solar steam generation. Solar Energy Materials and Solar Cells, 2019. 196: p. 36-42.
    102. Dewprashad, B. and E. Eisenbraun, Fundamentals of epoxy formulation. Journal of chemical education, 1994. 71(4): p. 290.
    103. Guan, Q.-F., et al., Sustainable wood-based hierarchical solar steam generator: a biomimetic design with reduced vaporization enthalpy of water. Nano letters, 2020. 20(8): p. 5699-5704.
    104. Gong, F., et al., Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification. Applied Energy, 2020. 261: p. 114410.
    105. Kashyap, V., et al., Solar desalination by heat localization. 2017.
    106. Xu, W., et al., Efficient water transport and solar steam generation via radially, hierarchically structured aerogels. ACS nano, 2019. 13(7): p. 7930-7938.
    107. Wang, Y., et al., All natural, high efficient groundwater extraction via solar steam/vapor generation. Advanced Sustainable Systems, 2019. 3(1): p. 1800055.
    108. Zhou, L., et al., Zhu Sh and Zhu J 2016. Nature Photon. 10: p. 393.
    109. Chen, S., et al., Plasmonic wooden flower for highly efficient solar vapor generation. Nano Energy, 2020. 76: p. 104998.
    110. Zhou, J., et al., The dispersion of Au nanorods decorated on graphene oxide nanosheets for solar steam generation. Sustainable Materials and Technologies, 2019. 19: p. e00090.
    111. Huang, Z., et al., A broadband aggregation-independent plasmonic absorber for highly efficient solar steam generation. Journal of Materials Chemistry A, 2020. 8(21): p. 10742-10746.
    112. Chen, M., et al., Plasmonic nanoparticle-embedded poly (p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation. Nanoscale, 2018. 10(13): p. 6186-6193.
    113. Bae, K., et al., Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nature communications, 2015. 6(1): p. 1-9.
    114. Jia, J., et al., Fabrication of bilayered attapulgite for solar steam generation with high conversion efficiency. Chemical Engineering Journal, 2019. 361: p. 999-1006.
    115. Sun, Y., et al., Copper sulfide-macroporous polyacrylamide hydrogel for solar steam generation. Chemical Engineering Science, 2019. 207: p. 516-526.
    116. Zhang, H., et al., Efficient Solar Evaporation by [Ni (Phen) 3][V14O34Cl] Cl Hybrid Semiconductor Confined in Mesoporous Glass. ChemSusChem, 2020. 13(11): p. 2945-2951.
    117. Wang, G., et al., Mechanical chameleon through dynamic real-time plasmonic tuning. Acs Nano, 2016. 10(2): p. 1788-1794.
    118. Zhang, Y., et al., Hierarchical K2Mn4O8 nanoflowers: a novel photothermal conversion material for efficient solar vapor generation. Solar Energy Materials and Solar Cells, 2019. 200: p. 110043.
    119. Zhu, G., et al., Constructing black titania with unique nanocage structure for solar desalination. ACS applied materials & interfaces, 2016. 8(46): p. 31716-31721.
    120. Han, S., et al., Cellulose‐conducting polymer aerogels for efficient solar steam generation. Advanced Sustainable Systems, 2020. 4(7): p. 2000004.
    121. Yin, X., et al., Macroporous double-network hydrogel for high-efficiency solar steam generation under 1 sun illumination. ACS applied materials & interfaces, 2018. 10(13): p. 10998-11007.
    122. Chen, T., et al., Hierarchical porous aluminophosphate-treated wood for high-efficiency solar steam generation. ACS applied materials & interfaces, 2020. 12(17): p. 19511-19518.
    123. Zhu, Z., et al., Highly efficient solar steam generation of bilayered ultralight aerogels based on N-rich conjugated microporous polymers nanotubes. European Polymer Journal, 2020. 126: p. 109560.
    124. Gu, Y., et al., Integrated photothermal aerogels with ultrahigh-performance solar steam generation. Nano Energy, 2020. 74: p. 104857.
    125. Lu, H., et al., High‐Yield and Low‐Cost Solar Water Purification via Hydrogel‐Based Membrane Distillation. Advanced Functional Materials, 2021. 31(19): p. 2101036.
    126. Sun, Z., et al., Plasmon based double‐layer hydrogel device for a highly efficient solar vapor generation. Advanced Functional Materials, 2019. 29(29): p. 1901312.
    127. Guo, Y., et al., Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation. Nano letters, 2019. 19(4): p. 2530-2536.
    128. Jiang, Q., et al., Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation. Journal of Materials Chemistry A, 2017. 5(35): p. 18397-18402.
    129. Wang, X., et al., Multilayer polypyrrole nanosheets with self‐organized surface structures for flexible and efficient solar–thermal energy conversion. Advanced Materials, 2019. 31(19): p. 1807716.
    130. He, J., et al., High-performance salt-rejecting and cost-effective superhydrophilic porous monolithic polymer foam for solar steam generation. ACS applied materials & interfaces, 2020. 12(14): p. 16308-16318.
    131. Lei, W., et al., Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation. Nano Research, 2021. 14(4): p. 1135-1140.
    132. Lee, J., et al., RETRACTED: Macroporous photothermal bilayer evaporator for highly efficient and self-cleaning solar desalination. 2020, Elsevier.
    133. Tian, S., et al., Manipulating interfacial charge-transfer absorption of cocrystal absorber for efficient solar seawater desalination and water purification. ACS Energy Letters, 2020. 5(8): p. 2698-2705.
    134. Li, W., et al., Portable low‐pressure solar steaming‐collection unisystem with polypyrrole origamis. Advanced Materials, 2019. 31(29): p. 1900720.
    135. Zhou, X., et al., A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy & Environmental Science, 2018. 11(8): p. 1985-1992.
    136. Zhou, X., et al., Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci Adv 5: eaaw5484. 2019.
    137. Zhao, Q., et al., Robust PEDOT: PSS-based hydrogel for highly efficient interfacial solar water purification. Chemical Engineering Journal, 2022. 442: p. 136284.
    138. Noureen, L., et al., BiVO4 and reduced graphene oxide composite hydrogels for solar-driven steam generation and decontamination of polluted water. Solar Energy Materials and Solar Cells, 2021. 222: p. 110952.

    無法下載圖示 全文公開日期 2032/08/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE