簡易檢索 / 詳目顯示

研究生: 陳盈琳
Ying-Lin Chen
論文名稱: 開發雷射燒蝕石墨烯電極技術於PEDOT:PSS有機電化學電晶體之兒茶酚胺類化合物感測應用
Development of Laser-subscribed Graphene Electrode Technology for PEDOT:PSS-based Electrochemical transistors in Catecholamines Sening Applications
指導教授: 蕭育生
Yu-Sheng Hsiao
口試委員: 洪維松
Wei-Song Hung
李健峰
Kin-Fong Lei
蘇清源
Ching-Yuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 123
中文關鍵詞: 雷射燒蝕石墨烯聚二氧乙基噻吩:聚苯乙烯磺酸氧化石墨烯奈米帶有機化學電晶體兒茶酚胺
外文關鍵詞: Laser-scribed graphene, Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, Graphene oxide nanoribbon, Organic electrochemical transistor, Catecholamines
相關次數: 點閱:339下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 論 文 摘 要 ABSTRACT 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 緒論 1.2 生物電子 1.2.1 有機電化學電晶體 1.2.2有機電化學電晶體應用於穿戴式化學感測器 1.3 液態病理感測 1.3.1 神經遞質:兒茶酚胺 1.4 研究動機與目的 第二章 原理與文獻回顧 2.1 有機混合離子電子導體 2.1.1 PEDOT:PSS 2.2 雷射燒蝕石墨烯 2.3 氧化石墨烯奈米帶 2.4 多重奈米孿晶 2.5 有機電化學電晶體操作原理 2.5.1 開關效應 2.5.2 整流開關比 2.5.3 跨導率分析 第三章 參數設計與實驗方法 3.1 實驗流程與參數 3.1.1 改變雷射鏡組、功率與聚焦距離對LSG形貌與性能的影響 3.1.2 合成AuAg/GONR及分析 3.1.3開發AuAg/GONR複合薄膜材料應用於軟性基板OECT 元件 3.2 實驗儀器 3.4 實驗製備方式與參數 3.4.1 萬能試驗機 3.4.2 SEM 3.4.3 四點探針 3.4.4 Raman試片製作 3.4.5 XPS試片製作 3.4.6 TEM試片製作 3.4.7 CV與EIS試片製作 3.4.6 IV-Curve 第四章 結果與討論 4.1 改變功率與聚焦距離對LSG形貌與性能的影響 4.2 LSG/PDMS基板特性探討 4.3 AuAg/GONR的合成與分析 4.4 開發AuAg/GONR複合薄膜材料應用於軟性基板OECT 元件 第五章 結論 參考文獻

    1. Kudo, H., et al., A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques. Biosensors and Bioelectronics, 2006. 22(4): p. 558-562.
    2. Kim, J., et al., Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst, 2014. 139(7): p. 1632-1636.
    3. Kim, J., et al., Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Advanced Science, 2018. 5(10): p. 1800880.
    4. Zhang, J., et al., Wearable biosensors for human fatigue diagnosis: A review. Bioengineering & Translational Medicine, 2023. 8(1): p. e10318.
    5. Steckl, A.J. and P. Ray, Stress biomarkers in biological fluids and their point-of-use detection. ACS sensors, 2018. 3(10): p. 2025-2044.
    6. Dallinger, A., et al., Stretchable and Skin-Conformable Conductors Based on Polyurethane/Laser-Induced Graphene. ACS Applied Materials & Interfaces, 2020. 12(17): p. 19855-19865.
    7. Bauer, M., et al., Electrochemical multi-analyte point-of-care perspiration sensors using on-chip three-dimensional graphene electrodes. Analytical and Bioanalytical Chemistry, 2021. 413(3): p. 763-777.
    8. Prabhakaran, A. and P. Nayak, Surface Engineering of Laser-Scribed Graphene Sensor Enables Non-Enzymatic Glucose Detection in Human Body Fluids. ACS Applied Nano Materials, 2020. 3(1): p. 391-398.
    9. Hui, X., et al., A highly flexible and selective dopamine sensor based on Pt-Au nanoparticle-modified laser-induced graphene. Electrochimica Acta, 2019. 328: p. 135066.
    10. Pu, Z., et al., A flexible enzyme-electrode sensor with cylindrical working electrode modified with a 3D nanostructure for implantable continuous glucose monitoring. Lab on a Chip, 2018. 18(23): p. 3570-3577.
    11. Hernández, L., et al., Polymeric nanowires directly electrosynthesized on the working electrode. Electrochimica Acta, 2015. 166: p. 163-167.
    12. Qi, H. and C. Zhang, Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2005. 17(10): p. 832-838.
    13. Тарануха, Н.И., et al., Opportunities in the determination cysteine voltammetry using an electrode modified nanoparticles of gold. Вестник АПК Ставрополья, 2015(S1): p. 157-161.
    14. Wang, L., et al., Flexible organic electrochemical transistors for chemical and biological sensing. Nano Research, 2021: p. 1-32.
    15. Lin, P. and F. Yan, Organic Thin-Film Transistors for Chemical and Biological Sensing. Advanced Materials, 2012. 24(1): p. 34-51.
    16. Alberga, D., et al., Effects of Annealing and Residual Solvents on Amorphous P3HT and PBTTT Films. Journal of Physical Chemistry C, 2014. 118(16): p. 8641-8655.
    17. Bai, L.M., et al., Biological Applications of Organic Electrochemical Transistors: Electrochemical Biosensors and Electrophysiology Recording. Frontiers in Chemistry, 2019. 7: p. 16.
    18. Wu, F., P. Yu, and L.Q. Mao, Self-powered electrochemical systems as neurochemical sensors: toward self-triggered in vivo analysis of brain chemistry. Chemical Society Reviews, 2017. 46(10): p. 2692-2704.
    19. Strakosas, X., M. Bongo, and R.M. Owens, The organic electrochemical transistor for biological applications. Journal of Applied Polymer Science, 2015. 132(15): p. 14.
    20. Wang, L., et al., Flexible organic electrochemical transistors for chemical and biological sensing. Nano Research, 2022. 15(3): p. 2433-2464.
    21. Rashid, R.B., et al., A Semiconducting Two-Dimensional Polymer as an Organic Electrochemical Transistor Active Layer. Advanced Materials, 2022. 34(21): p. 8.
    22. Khodagholy, D., et al., High transconductance organic electrochemical transistors. Nature Communications, 2013. 4: p. 6.
    23. Aliakbarinodehi, N., et al., Aptamer-based Field-Effect Biosensor for Tenofovir Detection. Scientific Reports, 2017. 7: p. 10.
    24. Macchia, E., et al., About the amplification factors in organic bioelectronic sensors. Materials Horizons, 2020. 7(4): p. 999-1013.
    25. Shim, N.Y., et al., All-Plastic Electrochemical Transistor for Glucose Sensing Using a Ferrocene Mediator. Sensors, 2009. 9(12): p. 9896-9902.
    26. Yang, S.Y., et al., Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors. Lab on a Chip, 2009. 9(5): p. 704-708.
    27. Gualandi, I., et al., All poly(3,4-ethylenedioxythiophene) organic electrochemical transistor to amplify amperometric signals. Electrochimica Acta, 2018. 268: p. 476-483.
    28. Wang, N.X., et al., Functionalized Organic Thin Film Transistors for Biosensing. Accounts of Chemical Research, 2019. 52(2): p. 277-287.
    29. Seshadri, P., et al., Low-picomolar, label-free procalcitonin analytical detection with an electrolyte-gated organic field-effect transistor based electronic immunosensor. Biosensors and Bioelectronics, 2018. 104: p. 113-119.
    30. Khodagholy, D., et al., Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing. Journal of Materials Chemistry, 2012. 22(10): p. 4440-4443.
    31. Zhang, S.M., et al., Tuning the Electromechanical Properties of PEDOT:PSS Films for Stretchable Transistors And Pressure Sensors. Advanced Electronic Materials, 2019. 5(6): p. 7.
    32. Hong, J.Y., et al., Omnidirectionally Stretchable and Transparent Graphene Electrodes. ACS Nano, 2016. 10(10): p. 9446-9455.
    33. Stanford, M.G., et al., Laser-Induced Graphene Triboelectric Nanogenerators. ACS Nano, 2019. 13(6): p. 7166-7174.
    34. Dai, Y.H., et al., Stretchable Redox-Active Semiconducting Polymers for High-Performance Organic Electrochemical Transistors. Advanced Materials, 2022. 34(23): p. 8.
    35. Ko, J., et al., Self-Healable Organic Electrochemical Transistor with High Transconductance, Fast Response, and Long-Term Stability. ACS Applied Materials & Interfaces, 2020. 12(30): p. 33979-33988.
    36. Wang, Y., et al., A highly stretchable, transparent, and conductive polymer. Science Advances, 2017. 3(3): p. 10.
    37. De Bellis, M.D., et al., Developmental traumatology Part I: Biological stress systems. Biological Psychiatry, 1999. 45(10): p. 1259-1270.
    38. Yehuda, R., et al., URINARY CATECHOLAMINE EXCRETION AND SEVERITY OF PTSD SYMPTOMS IN VIETNAM COMBAT VETERANS. Journal of Nervous and Mental Disease, 1992. 180(5): p. 321-325.
    39. Pliszka, S.R., J.T. McCracken, and J.W. Maas, Catecholamines in attention-deficit hyperactivity disorder: Current perspectives. Journal of the American Academy of Child and Adolescent Psychiatry, 1996. 35(3): p. 264-272.
    40. Madhurantakam, S., et al., "Nano": An Emerging Avenue in Electrochemical Detection of Neurotransmitters. ACS Chemical Neuroscience, 2020. 11(24): p. 4024-4047.
    41. Ribeiro, J.A., et al., Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review. Talanta, 2016. 160: p. 653-679.
    42. Liang, Y.Y., et al., Label-Free Split Aptamer Sensor for Femtomolar Detection of Dopamine by Means of Flexible Organic Electrochemical Transistors. Materials, 2020. 13(11): p. 13.
    43. Zendron, L., et al., Lesson of the week - Pitfalls in the diagnosis of phaeochromocytoma. Bmj-British Medical Journal, 2004. 328(7440): p. 629-630.
    44. Silva, L.I.B., et al., Optical fiber biosensor coupled to chromatographic separation for screening of dopamine, norepinephrine and epinephrine in human urine and plasma. Talanta, 2009. 80(2): p. 853-857.
    45. Keiser, H.R., SURREPTITIOUS SELF-ADMINISTRATION OF EPINEPHRINE RESULTING IN PHEOCHROMOCYTOMA. Jama-Journal of the American Medical Association, 1991. 266(11): p. 1553-1555.
    46. Tan, S.T.M., et al., Operation mechanism of organic electrochemical transistors as redox chemical transducers. Journal of Materials Chemistry C, 2021. 9(36): p. 12148-12158.
    47. Paulsen, B.D., et al., Organic mixed ionic-electronic conductors. Nature Materials, 2020. 19(1): p. 13-26.
    48. Jang, H.J., et al., Suppression of Ionic Doping by Molecular Dopants in Conjugated Polymers for Improving Specificity and Sensitivity in Biosensing Applications. ACS Applied Materials & Interfaces, 2020. 12(40): p. 45036-45044.
    49. Kayser, L.V. and D.J. Lipomi, Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT:PSS. Advanced Materials, 2019. 31(10): p. 13.
    50. Facchetti, A., pi-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications. Chemistry of Materials, 2011. 23(3): p. 733-758.
    51. Khodagholy, D., et al., Highly Conformable Conducting Polymer Electrodes for In Vivo Recordings. Advanced Materials, 2011. 23(36): p. H268-+.
    52. Liao, C.Z., et al., Flexible Organic Electronics in Biology: Materials and Devices. Advanced Materials, 2015. 27(46): p. 7493-7527.
    53. Bendrea, A.D., L. Cianga, and I. Cianga, Review paper: Progress in the Field of Conducting Polymers for Tissue Engineering Applications. Journal of Biomaterials Applications, 2011. 26(1): p. 3-84.
    54. Picca, R.A., et al., Ultimately Sensitive Organic Bioelectronic Transistor Sensors by Materials and Device Structure Design. Advanced Functional Materials, 2020. 30(20): p. 23.
    55. Xue, P.Y., et al., Printing fabrication of large-area non-fullerene organic solar cells. Materials Horizons, 2022. 9(1): p. 194-219.
    56. Vivaldi, F.M., et al., Three-Dimensional (3D) Laser-Induced Graphene: Structure, Properties, and Application to Chemical Sensing. ACS Applied Materials & Interfaces, 2021. 13(26): p. 30245-30260.
    57. Martinez, A., K. Fuse, and S. Yamashita, Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers. Applied Physics Letters, 2011. 99(12): p. 3.
    58. Chang, Y.M., et al., Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers. Applied Physics Letters, 2010. 97(21): p. 3.
    59. Zhang, Y., L.Y. Zhang, and C.W. Zhou, Review of Chemical Vapor Deposition of Graphene and Related Applications. Accounts of Chemical Research, 2013. 46(10): p. 2329-2339.
    60. Chua, C.K. and M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chemical Society Reviews, 2014. 43(1): p. 291-312.
    61. Lin, J., et al., Laser-induced porous graphene films from commercial polymers. Nature Communications, 2014. 5: p. 8.
    62. Abdulhafez, M., G.N. Tomaraei, and M. Bedewy, Fluence-Dependent Morphological Transitions in Laser-Induced Graphene Electrodes on Polyimide Substrates for Flexible Devices. ACS Applied Nano Materials, 2021. 4(3): p. 2973-2986.
    63. Hsiao, Y.-S., et al., Lightweight Flexible Polyimide-Derived Laser-Induced Graphenes for High-Performance Thermal Management Applications. Chemical Engineering Journal, 2023. 451: p. 138656.
    64. Ahuja, P., S.K. Ujjain, and R. Kanojia, Electrochemical behaviour of manganese & ruthenium mixed oxide@ reduced graphene oxide nanoribbon composite in symmetric and asymmetric supercapacitor. Applied Surface Science, 2018. 427: p. 102-111.
    65. Han, M.Y., et al., Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, 2007. 98(20): p. 4.
    66. Zhou, X.Z., et al., A Method for Fabrication of Graphene Oxide Nanoribbons from Graphene Oxide Wrinkles. Journal of Physical Chemistry C, 2009. 113(44): p. 19119-19122.
    67. Dong, X., et al., A graphene nanoribbon network and its biosensing application. Nanoscale, 2011. 3(12): p. 5156-5160.
    68. Sun, L.W., et al., Facile hydrothermal preparation of graphene oxide nanoribbons from graphene oxide. Chemical Communications, 2013. 49(54): p. 6087-6089.
    69. Sun, C.L., et al., Microwave-Assisted Synthesis of a Core-Shell MWCNT/GONR Heterostructure for the Electrochemical Detection of Ascorbic Acid, Dopamine, and Uric Acid. ACS Nano, 2011. 5(10): p. 7788-7795.
    70. Higginbotham, A.L., et al., Lower-Defect Graphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes. ACS Nano, 2010. 4(4): p. 2059-2069.
    71. Moreno-Guzman, M., et al., Electrochemical behavior of hybrid carbon nanomaterials: the chemistry behind electrochemistry. Electrochimica Acta, 2016. 214: p. 286-294.
    72. Sun, C.L., et al., Visible-Light-Assisted Photoelectrochemical Biosensing of Uric Acid Using Metal-Free Graphene Oxide Nanoribbons. Nanomaterials, 2021. 11(10): p. 12.
    73. Ujjain, S.K., P. Ahuja, and R.K. Sharma, Facile preparation of graphene nanoribbon/cobalt coordination polymer nanohybrid for non-enzymatic H2O2 sensing by dual transduction: electrochemical and fluorescence. Journal of Materials Chemistry B, 2015. 3(38): p. 7614-7622.
    74. Lin, L.Y., et al., A novel core-shell multi-walled carbon nanotube@graphene oxide nanoribbon heterostructure as a potential supercapacitor material. Journal of Materials Chemistry A, 2013. 1(37): p. 11237-11245.
    75. Su, C.H., C.L. Sun, and Y.C. Liao, Printed Combinatorial Sensors for Simultaneous Detection of Ascorbic Acid, Uric Acid, Dopamine, and Nitrite. ACS Omega, 2017. 2(8): p. 4245-4252.
    76. Lin, T.C., et al., A high sensitivity field effect transistor biosensor for methylene blue detection utilize graphene oxide nanoribbon. Biosensors and Bioelectronics, 2017. 89: p. 511-517.
    77. Yang, P., H. Portales, and M.P. Pileni, Dependence of the localized surface plasmon resonance of noble metal quasispherical nanoparticles on their crystallinity-related morphologies. Journal of Chemical Physics, 2011. 134(2): p. 6.
    78. Wang, H.L., et al., Icosahedral nanocrystals of noble metals: Synthesis and applications. Nano Today, 2017. 15: p. 121-144.
    79. Li, M.F., et al., Applications of Metal Nanocrystals with Twin Defects in Electrocatalysis. Chemistry-an Asian Journal, 2020. 15(20): p. 3254-3265.
    80. Wang, S., et al., Defective PdRh bimetallic nanocrystals enable enhanced methanol electrooxidation. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2021. 616: p. 7.
    81. Xiong, Y.J., et al., Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. Angewandte Chemie-International Edition, 2007. 46(5): p. 790-794.
    82. Ciplak, Z. and N. Yildiz, A parametric study for the synthesis of graphene-AgAu nanocomposites: performances as electrode material. Journal of Materials Science-Materials in Electronics, 2018. 29(12): p. 10411-10426.
    83. Huang, H.J., et al., Graphene Nanoarchitectonics: Recent Advances in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction. Advanced Materials, 2019. 31(48): p. 34.
    84. Lv, H.F., et al., A New Core/Shell NiAu/Au Nanoparticle Catalyst with Pt-like Activity for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2015. 137(18): p. 5859-5862.
    85. Qin, Y.C., et al., Microwave-assisted synthesis of multiply-twinned Au-Ag nanocrystals on reduced graphene oxide for high catalytic performance towards hydrogen evolution reaction. Journal of Materials Chemistry A, 2016. 4(10): p. 3865-3871.
    86. Tarabella, G., et al., Effect of the gate electrode on the response of organic electrochemical transistors. Applied Physics Letters, 2010. 97(12): p. 3.
    87. Braendlein, M., et al., Voltage Amplifier Based on Organic Electrochemical Transistor. Advanced Science, 2017. 4(1): p. 6.
    88. Bernards, D.A. and G.G. Malliaras, Steady-state and transient behavior of organic electrochemical transistors. Advanced Functional Materials, 2007. 17(17): p. 3538-3544.
    89. Cucchi, M., et al., Thermodynamics of organic electrochemical transistors. Nature Communications, 2022. 13(1): p. 8.
    90. Ma, X., et al., OFET and OECT, Two Types of Organic Thin-Film Transistor Used in Glucose and DNA Biosensors: A Review. Ieee Sensors Journal, 2022. 22(12): p. 11405-11414.
    91. Marks, A., et al., Organic Electrochemical Transistors: An Emerging Technology for Biosensing. Advanced Materials Interfaces, 2022. 9(6): p. 23.
    92. Friedlein, J.T., R.R. McLeod, and J. Rivnay, Device physics of organic electrochemical transistors. Organic Electronics, 2018. 63: p. 398-414.
    93. Wang, J.-b., et al., A review of graphene synthesisatlow temperatures by CVD methods. New Carbon Materials, 2020. 35(3): p. 193-208.
    94. Qi, Z., et al., Chemical vapor deposition growth of bernal-stacked bilayer graphene by edge-selective etching with H2O. Chemistry of Materials, 2018. 30(21): p. 7852-7859.
    95. Oyarzún, A.M., X. García-Carmona, and L.R. Radovic, Kinetics of oxygen transfer reactions on the graphene surface. Part II. H2O vs. CO2. Carbon, 2020. 164: p. 85-99.
    96. Liang, Z., et al., The Dynamic Nature of Graphene Active Sites in the H2O Gasification process: A ReaxFF and DFT Study. Journal of Molecular Modeling, 2023. 29(4): p. 116.
    97. Yen, Y.-H., et al., Laser-Induced Graphene Stretchable Strain Sensor with Vertical and Parallel Patterns. Micromachines, 2022. 13(8): p. 1220.
    98. Harito, C., et al., Inhibition of polyimide photodegradation by incorporation of titanate nanotubes into a composite. Journal of Polymers and the Environment, 2019. 27: p. 1505-1515.
    99. Cho, E.-C., et al., PEDOT-modified laser-scribed graphene films as bginder–and metallic current collector–free electrodes for large-sized supercapacitors. Applied Surface Science, 2020. 518: p. 146193.
    100. Zhang, Y. and J. Ye, Electrochemical sensor based on palladium loaded laser scribed graphitic carbon nanosheets for ultrasensitive detection of hydrazine. New Journal of Chemistry, 2018. 42(16): p. 13744-13753.
    101. Wang, C.-C., et al., Fabrication, characterization and optical properties of Au-decorated Bi2Se3 nanoplatelets. Scientific Reports, 2022. 12(1): p. 17761.
    102. Firet, N.J., et al., Operando EXAFS study reveals presence of oxygen in oxide-derived silver catalysts for electrochemical CO 2 reduction. Journal of Materials Chemistry A, 2019. 7(6): p. 2597-2607.
    103. Pardieu, E., et al., Hybrid layer-by-layer composites based on a conducting polyelectrolyte and Fe 3 O 4 nanostructures grafted onto graphene for supercapacitor application. Journal of Materials Chemistry A, 2015. 3(45): p. 22877-22885.
    104. Lai, C.-M., et al., Contribution of Nafion loading to the activity of catalysts and the performance of PEMFC. International Journal of Hydrogen Energy, 2008. 33(15): p. 4132-4137.
    105. Zhang, S., et al., Tuning the electromechanical properties of PEDOT: PSS films for stretchable transistors and pressure sensors. Advanced Electronic Materials, 2019. 5(6): p. 1900191.
    106. Li, W., et al., Fast‐Scanning Potential‐Gated Organic Electrochemical Transistors for Highly Sensitive Sensing of Dopamine in Living Rat Brain. Angewandte Chemie, 2022. 134(31): p. e202204134.
    107. Tang, K., et al., Organic Electrochemical Transistor with Molecularly Imprinted Polymer-Modified Gate for the Real-Time Selective Detection of Dopamine. ACS Applied Polymer Materials, 2022. 4(4): p. 2337-2345.
    108. Chou, J.-A., et al., Organic electrochemical transistors/SERS-active hybrid biosensors featuring gold nanoparticles immobilized on thiol-functionalized PEDOT films. Frontiers in Chemistry, 2019. 7: p. 281.
    109. Tawade, A.K., et al., Simultaneous electrochemical investigations of dopamine and uric acid by in situ amino functionalized reduced grahene oxide. SN Applied Sciences, 2020. 2: p. 1-10.
    110. Renjini, S. and K. Sreevalsan, Electrochemical behaviour of dopamine on a glassy carbon electrode modified by graphene chitosan copper composite. Oriental Journal of Chemistry, 2017. 33(3): p. 1259.
    111. Hassine, C.B.A., H. Kahri, and H. Barhoumi, Enhancing dopamine detection using glassy carbon electrode modified with graphene oxide, nickel and gold nanoparticles. Journal of The Electrochemical Society, 2020. 167(2): p. 027516.
    112. Sipuka, D.S., et al., Gold‐dendrimer nanocomposite based electrochemical sensor for dopamine. Electroanalysis, 2023. 35(3): p. e202200099.
    113. Ferro, L.M., et al., Ultrahigh‐Gain Organic Electrochemical Transistor Chemosensors Based on Self‐Curled Nanomembranes. Advanced Materials, 2021. 33(29): p. 2101518.
    114. Xi, X., et al., Manipulating the sensitivity and selectivity of OECT‐based biosensors via the surface engineering of carbon cloth gate electrodes. Advanced Functional Materials, 2020. 30(4): p. 1905361.
    115. Saraf, N., et al., Highly selective aptamer based organic electrochemical biosensor with pico-level detection. Biosensors and Bioelectronics, 2018. 117: p. 40-46.
    116. Mak, C.H., et al., Highly-sensitive epinephrine sensors based on organic electrochemical transistors with carbon nanomaterial modified gate electrodes. Journal of Materials Chemistry C, 2015. 3(25): p. 6532-6538.
    117. Coppedè, N., et al., Human stress monitoring through an organic cotton-fiber biosensor. Journal of Materials Chemistry B, 2014. 2(34): p. 5620-5626.
    118. Sipuka, D.S., et al., Electrochemical sensing of epinephrine on a carbon nanofibers and gold nanoparticle-modified electrode. Electrocatalysis, 2023. 14(1): p. 9-17.
    119. Fouad, D.M. and W.A. El-Said, Selective electrochemical detection of epinephrine using gold nanoporous film. Journal of Nanomaterials, 2016. 2016.
    120. Kumar, S., et al., Functionalized multiwall carbon nanotube-molybdenum disulphide nanocomposite based electrochemical ultrasensitive detection of neurotransmitter epinephrine. Materials Chemistry and Physics, 2022. 290: p. 126656.
    121. Kiranmai, S., et al., Construction of ultrasensitive electrochemical sensor using TiO2-reduced graphene oxide nanofibers nanocomposite for epinephrine detection. Surfaces and Interfaces, 2022. 35: p. 102455.
    122. Li, T., et al., Highly sensitive trivalent copper chelate-luminol chemiluminescence system for capillary electrophoresis detection of epinephrine in the urine of smoker. Journal of Chromatography B, 2012. 911: p. 1-5.
    123. Gualandi, I., et al., Textile organic electrochemical transistors as a platform for wearable biosensors. Scientific reports, 2016. 6(1): p. 33637.
    124. Lee, E.J., et al., Electrochemical sensor for selective detection of norepinephrine using graphene sheets-gold nanoparticle complex modified electrode. Korean Journal of Chemical Engineering, 2017. 34: p. 1129-1132.
    125. Rajarathinam, T., et al., Screen-printed carbon electrode modified with de-bundled single-walled carbon nanotubes for voltammetric determination of norepinephrine in ex vivo rat tissue. Bioelectrochemistry, 2022. 146: p. 108155.
    126. Jafarei, S., et al., New strategy for selective voltammetric determination of norepinephrine using modified electrode by using benzoyl ferrocene and manganese ferrite nanoparticles. Journal of Materials Science: Materials in Electronics, 2022. 33(15): p. 11813-11824.
    127. Ying, Z., et al., Micro-needle electrode for real-time monitoring of norepinephrine in rat central nervous system. Chinese Journal of Analytical Chemistry, 2021. 49(11): p. 35-40.
    128. Samdani, K.J., et al., Electrochemical mediatorless detection of norepinephrine based on MoO3 nanowires. Electrochimica Acta, 2017. 252: p. 268-274.
    129. Chen, J., et al., A novel composite of molecularly imprinted polymer-coated PdNPs for electrochemical sensing norepinephrine. Biosensors and Bioelectronics, 2015. 65: p. 366-374.
    130. Son, S.E., et al., Highly Sensitive Electrochemical Determination of Norepinephrine Using Poly Acrylic Acid‐Coated Nanoceria. ChemElectroChem, 2019. 6(17): p. 4666-4673.
    131. Huang, S.-H., H.-H. Liao, and D.-H. Chen, Simultaneous determination of norepinephrine, uric acid, and ascorbic acid at a screen printed carbon electrode modified with polyacrylic acid-coated multi-wall carbon nanotubes. Biosensors and Bioelectronics, 2010. 25(10): p. 2351-2355.
    132. Lavanya, N. and C. Sekar, Electrochemical sensor for simultaneous determination of epinephrine and norepinephrine based on cetyltrimethylammonium bromide assisted SnO2 nanoparticles. Journal of Electroanalytical Chemistry, 2017. 801: p. 503-510.
    133. Su, M., et al., Honeycomb-like nickel oxide-reduced graphene oxide based sensor for the electrochemical tracking of norepinephrine in neuronal cells. Analytica Chimica Acta, 2023. 1262: p. 341247.

    無法下載圖示 全文公開日期 2032/08/28 (校內網路)
    全文公開日期 2038/08/28 (校外網路)
    全文公開日期 2038/08/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE