簡易檢索 / 詳目顯示

研究生: 閻祺澐
Chi-Yun Yen
論文名稱: 開發雷射劃線石墨烯複合電極:實現4-硝基苯酚的電化學生物感測
Development of Laser Scribed Graphene Composite Electrode : Enabling Electrochemical Biosensing of 4-Nitrophenol
指導教授: 蕭育生
Yu-Sheng Hsiao
口試委員: 洪維松
劉昭麟
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 65
中文關鍵詞: 對硝基苯酚雷射刻劃石墨烯導電高分子聚二氧乙基噻吩電化學
外文關鍵詞: 4-Nitrophenol, Laser Scribed Graphene, Conductive Polymer, Poly(3,4-ethylenedioxythiophene), Electrochemistry
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為開發出一種雷射劃線石墨烯(Laser Scribed Graphene, LSG)技術於製備生物電極,並評估電化學特性於4-硝基苯酚(4-Nitrophenol)量化感測應用。本研究開發的LSG電極是一種由聚醯亞胺膜當源材料,並以CO2雷射燒蝕轉化成圖案化之三維石墨烯材料,其表現有優異的導電性、高比表面積和極佳電化學穩定性。透過雷射功率、劃線燒蝕時間以及溼度等參數調控,我們可精準控制LSG的形貌及優化的石墨烯結構,以實現最佳化對4-硝基苯酚的(4-NP)電化學的感測性能。後續我們更進一步透過電聚合法製備聚二氧乙基噻吩(PEDOT)鍍層以進行LSG之表面修飾,透過循環伏安法(Cyclic Voltammetry, CV)以及微分脈衝伏安法(Differential Pulse Voltammetry, DPV)提升其對4-NP的感測效能。


    We development a Laser Scribed Graphene (LSG) technology for the fabrication of biosensors and the evaluation of its electrochemical properties in the quantification of 4-Nitrophenol (4-NP). The LSG electrode developed in this study is a three-dimensional graphene material patterned from a polyimide film using CO2 laser scribing, exhibiting excellent conductivity, high specific surface area, and exceptional electrochemical stability. By adjusting parameters such as laser power, scribing time, and humidity, we can precisely control the morphology of LSG and optimize the graphene structure to achieve the best electrochemical sensing performance for 4-NP. Furthermore, we employed electro-polymerization to prepare a poly(3,4-ethylenedioxythiophene) (PEDOT) coating on the LSG surface, enhancing its sensing efficiency for 4-NP through cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques.

    致謝 iii 中文摘要 iv 英文摘要 v 目錄 vi 圖目錄 ix 表目錄 xii 1 第一章 緒論 1 1.1 前言 1 1.2 生物感測器 2 1.2.1 電化學生物感測器 3 2 第二章 文獻探討 4 2.1 電化學感測技術 4 2.1.1 工作電極 8 2.2 雷射劃線石墨烯技術 13 2.2.1 石墨烯 13 2.2.2 雷射劃線石墨烯技術 14 2.3 導電高分子 19 2.3.1 聚苯胺(PANI) 20 2.3.2 聚吡咯(PPy) 20 2.3.3 聚 3,4二氧乙基噻吩(PEDOT) 21 2.3.4 PEDOT導電高分子聚合 22 2.3.5 電化學聚合原理 22 2.4 電化學於4-NP 24 2.4.1 4-NP之電化學感測 24 2.4.2 N-乙醯葡萄糖胺(GlcNAc, NAG) 26 3 第三章 實驗流程與方法 28 3.1 實驗流程 28 3.2 實驗藥品 29 3.3 實驗儀器 29 3.4 電化學電極製程 30 3.4.1 晶片設計 30 3.4.2 金電極熱蒸鍍製程 31 3.4.3 PEDOT導電高分子之電化學聚合製程 32 3.5 電化學特性分析 33 3.5.1 循環伏安法(CV) 33 3.5.2 微分脈衝伏安法(DPV) 34 3.5.3 PEDOT/LSG之質量擴散係數量測 35 3.5.4 4-NP待測液配製 36 3.5.5 LSG的物化性測試 36 4 第四章 結果與討論 38 4.1 .LSG材料分析 38 4.1.1 LSG材料SEM之形貌參數控制 38 4.1.2 LSG材料在場發式SEM之形貌元素分析 39 4.1.3 LSG材料之循環伏安法分析 43 4.1.4 四點探針分析 48 4.1.5 X射線之能譜分析 49 4.1.6 LSG拉曼分析 51 4.1.7 LSG總結 53 4.2 電化學檢測 54 4.2.1 CV表現 54 4.2.2 DPV表現 56 5 第五章 結論 58 6 參考文獻 59

    [1] R. Fatima et al., "Photocatalytic degradation performance of various types of modified TiO2 against nitrophenols in aqueous systems," Journal of cleaner production, vol. 231, pp. 899-912, 2019.
    [2] S. Zhang et al., "Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in pseudomonas sp. 1-7," BMC microbiology, vol. 12, no. 1, pp. 1-11, 2012.
    [3] M. Motamedi, L. Yerushalmi, F. Haghighat, and Z. Chen, "Recent developments in photocatalysis of industrial effluents։ A review and example of phenolic compounds degradation," Chemosphere, vol. 296, p. 133688, 2022.
    [4] N. Panigrahy, A. Priyadarshini, M. M. Sahoo, A. K. Verma, A. Daverey, and N. K. Sahoo, "A comprehensive review on eco-toxicity and biodegradation of phenolics: Recent progress and future outlook," Environmental Technology & Innovation, vol. 27, p. 102423, 2022.
    [5] M. Halecky et al., "Biodegradation of a mixture of mononitrophenols in a packed-bed aerobic reactor," Journal of Environmental Science and Health, Part A, vol. 48, no. 9, pp. 989-999, 2013.
    [6] F. M. M. Tchieno and I. K. Tonle, "p-Nitrophenol determination and remediation: an overview," Reviews in Analytical Chemistry, vol. 37, no. 2, p. 20170019, 2018.
    [7] Y. Tang, R. Huang, C. Liu, S. Yang, Z. Lu, and S. Luo, "Electrochemical detection of 4-nitrophenol based on a glassy carbon electrode modified with a reduced graphene oxide/Au nanoparticle composite," Analytical methods, vol. 5, no. 20, pp. 5508-5514, 2013.
    [8] S. Mummareddy, S. Pradhan, A. K. Narasimhan, and A. Natarajan, "On demand biosensors for early diagnosis of cancer and immune checkpoints blockade therapy monitoring from liquid biopsy," Biosensors, vol. 11, no. 12, p. 500, 2021.
    [9] N. J. Ronkainen, H. B. Halsall, and W. R. Heineman, "Electrochemical biosensors," Chemical Society Reviews, vol. 39, no. 5, pp. 1747-1763, 2010.
    [10] T. Shimomura, T. Itoh, T. Sumiya, F. Mizukami, and M. Ono, "Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials," Sensors and Actuators B: Chemical, vol. 135, no. 1, pp. 268-275, 2008.
    [11] K. Navakul, C. Warakulwit, P.-t. Yenchitsomanus, A. Panya, P. A. Lieberzeit, and C. Sangma, "A novel method for dengue virus detection and antibody screening using a graphene-polymer based electrochemical biosensor," Nanomedicine: Nanotechnology, Biology and Medicine, vol. 13, no. 2, pp. 549-557, 2017.
    [12] V. C. Diculescu, A.-M. Chiorcea-Paquim, and A. M. Oliveira-Brett, "Applications of a DNA-electrochemical biosensor," TrAC Trends in Analytical Chemistry, vol. 79, pp. 23-36, 2016.
    [13] Y. Fang, Y. Umasankar, and R. P. Ramasamy, "A novel bi-enzyme electrochemical biosensor for selective and sensitive determination of methyl salicylate," Biosensors and Bioelectronics, vol. 81, pp. 39-45, 2016.
    [14] Q. Zeng et al., "Self‐assembled graphene–enzyme hierarchical nanostructures for electrochemical biosensing," Advanced Functional Materials, vol. 20, no. 19, pp. 3366-3372, 2010.
    [15] K. K. Mistry, K. Layek, A. Mahapatra, C. RoyChaudhuri, and H. Saha, "A review on amperometric-type immunosensors based on screen-printed electrodes," Analyst, vol. 139, no. 10, pp. 2289-2311, 2014.
    [16] M. Kaisti, "Detection principles of biological and chemical FET sensors," Biosensors and Bioelectronics, vol. 98, pp. 437-448, 2017.
    [17] R. Colucci, H. F. de Paula Barbosa, F. Günther, P. Cavassin, and G. C. Faria, "Recent advances in modeling organic electrochemical transistors," Flexible and Printed Electronics, vol. 5, no. 1, p. 013001, 2020.
    [18] P. T. Kissinger and W. R. Heineman, "Cyclic voltammetry," Journal of chemical education, vol. 60, no. 9, p. 702, 1983.
    [19] S. Zhang, N. Wang, H. Yu, Y. Niu, and C. Sun, "Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor," Bioelectrochemistry, vol. 67, no. 1, pp. 15-22, 2005.
    [20] A. Y. Chamsi and A. G. Fogg, "Oxidative flow injection amperometric determination of nitrite at an electrochemically pre-treated glassy carbon electrode," Analyst, vol. 113, no. 11, pp. 1723-1727, 1988.
    [21] N. Spataru, T. N. Rao, D. A. Tryk, and A. Fujishima, "Determination of nitrite and nitrogen oxides by anodic voltammetry at conductive diamond electrodes," Journal of the Electrochemical Society, vol. 148, no. 3, p. E112, 2001.
    [22] P. Tau and T. Nyokong, "Electrocatalytic oxidation of nitrite by tetra-substituted oxotitanium (IV) phthalocyanines adsorbed or polymerised on glassy carbon electrode," Journal of Electroanalytical Chemistry, vol. 611, no. 1-2, pp. 10-18, 2007.
    [23] D. S. Jeykumari and S. S. Narayanan, "Fabrication of bienzyme nanobiocomposite electrode using functionalized carbon nanotubes for biosensing applications," Biosensors and Bioelectronics, vol. 23, no. 11, pp. 1686-1693, 2008.
    [24] H. A. Abdulbari and E. A. Basheer, "Electrochemical biosensors: electrode development, materials, design, and fabrication," ChemBioEng Reviews, vol. 4, no. 2, pp. 92-105, 2017.
    [25] S.-J. Ko et al., "Highly efficient plasmonic organic optoelectronic devices based on a conducting polymer electrode incorporated with silver nanoparticles," Energy & Environmental Science, vol. 6, no. 6, pp. 1949-1955, 2013.
    [26] Y. Zhang et al., "Progress of electrochemical capacitor electrode materials: A review," International journal of hydrogen energy, vol. 34, no. 11, pp. 4889-4899, 2009.
    [27] X. Li, J. Yu, S. Wageh, A. A. Al‐Ghamdi, and J. Xie, "Graphene in photocatalysis: a review," Small, vol. 12, no. 48, pp. 6640-6696, 2016.
    [28] M. F. El-Kady, V. Strong, S. Dubin, and R. B. Kaner, "Laser scribing of high-performance and flexible graphene-based electrochemical capacitors," Science, vol. 335, no. 6074, pp. 1326-1330, 2012.
    [29] R. Ye, D. K. James, and J. M. Tour, "Laser‐induced graphene: from discovery to translation," Advanced Materials, vol. 31, no. 1, p. 1803621, 2019.
    [30] S. Küper, J. Brannon, and K. Brannon, "Threshold behavior in polyimide photoablation: Single-shot rate measurements and surface-temperature modeling," Applied Physics A, vol. 56, pp. 43-50, 1993.
    [31] J. Lin et al., "Laser-induced porous graphene films from commercial polymers," Nature communications, vol. 5, no. 1, p. 5714, 2014.
    [32] Y. Chyan, R. Ye, Y. Li, S. P. Singh, C. J. Arnusch, and J. M. Tour, "Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food," ACS nano, vol. 12, no. 3, pp. 2176-2183, 2018.
    [33] A. Dallinger, K. Keller, H. Fitzek, and F. Greco, "Stretchable and skin-conformable conductors based on polyurethane/laser-induced graphene," ACS applied materials & interfaces, vol. 12, no. 17, pp. 19855-19865, 2020.
    [34] M. Abdulhafez, G. N. Tomaraei, and M. Bedewy, "Fluence-dependent morphological transitions in laser-induced graphene electrodes on polyimide substrates for flexible devices," ACS Applied Nano Materials, vol. 4, no. 3, pp. 2973-2986, 2021.
    [35] Y.-S. Hsiao et al., "Lightweight flexible polyimide-derived laser-induced graphenes for high-performance thermal management applications," Chemical Engineering Journal, vol. 451, p. 138656, 2023.
    [36] C. Awuzie, "Conducting polymers," Materials Today: Proceedings, vol. 4, no. 4, pp. 5721-5726, 2017.
    [37] M. Rahmanifar, M. Mousavi, and M. Shamsipur, "Effect of self-doped polyaniline on performance of secondary Zn–polyaniline battery," Journal of power sources, vol. 110, no. 1, pp. 229-232, 2002.
    [38] Q. Yao, L. Chen, W. Zhang, S. Liufu, and X. Chen, "Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites," ACS nano, vol. 4, no. 4, pp. 2445-2451, 2010.
    [39] H. Zhou, H. Chen, S. Luo, G. Lu, W. Wei, and Y. Kuang, "The effect of the polyaniline morphology on the performance of polyaniline supercapacitors," Journal of Solid State Electrochemistry, vol. 9, pp. 574-580, 2005.
    [40] H. Chang, Y. Yuan, N. Shi, and Y. Guan, "Electrochemical DNA biosensor based on conducting polyaniline nanotube array," Analytical chemistry, vol. 79, no. 13, pp. 5111-5115, 2007.
    [41] M. Beygisangchin, S. Abdul Rashid, S. Shafie, A. R. Sadrolhosseini, and H. N. Lim, "Preparations, properties, and applications of polyaniline and polyaniline thin films—A review," Polymers, vol. 13, no. 12, p. 2003, 2021.
    [42] L. Li et al., "A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection," Nano letters, vol. 15, no. 2, pp. 1146-1151, 2015.
    [43] S. Ahmad, R. Hammad, and S. Rubab, "Gamma Radiation-Induced Synthesis of Polyaniline-Based Nanoparticles/Nanocomposites," Journal of Electronic Materials, vol. 51, no. 10, pp. 5550-5567, 2022.
    [44] T. Campbell, A. Hodgson, and G. Wallace, "Incorporation of erythrocytes into polypyrrole to form the basis of a biosensor to screen for rhesus (D) blood groups and rhesus (D) antibodies," Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, vol. 11, no. 4, pp. 215-222, 1999.
    [45] D. Kincal, A. Kumar, A. D. Child, and J. R. Reynolds, "Conductivity switching in polypyrrole-coated textile fabrics as gas sensors," Synthetic Metals, vol. 92, no. 1, pp. 53-56, 1998.
    [46] L.-X. Wang, X.-G. Li, and Y.-L. Yang, "Preparation, properties and applications of polypyrroles," Reactive and Functional Polymers, vol. 47, no. 2, pp. 125-139, 2001.
    [47] M. Halim, I. Samuel, J. Pillow, A. Monkman, and P. Burn, "Control of colour and charge injection in conjugated dendrimer/polypyridine bilayer LEDs," Synthetic metals, vol. 102, no. 1-3, pp. 1571-1574, 1999.
    [48] S. M. Sontakke and V. Awate, "The effect of synthesis parameters on the conductivity of PSf/PANI and PSf/PPy composite membranes," The Canadian Journal of Chemical Engineering, vol. 96, no. 2, pp. 564-572, 2018.
    [49] Z. Zhao, G. F. Richardson, Q. Meng, S. Zhu, H.-C. Kuan, and J. Ma, "PEDOT-based composites as electrode materials for supercapacitors," Nanotechnology, vol. 27, no. 4, p. 042001, 2015.
    [50] M. N. Gueye, A. Carella, J. Faure-Vincent, R. Demadrille, and J.-P. Simonato, "Progress in understanding structure and transport properties of PEDOT-based materials: A critical review," Progress in Materials Science, vol. 108, p. 100616, 2020.
    [51] X. Zhang, W. Yang, H. Zhang, M. Xie, and X. Duan, "PEDOT: PSS: From conductive polymers to sensors," Nanotechnology and Precision Engineering (NPE), vol. 4, no. 4, 2021.
    [52] J. Ouyang, "“Secondary doping” methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices," Displays, vol. 34, no. 5, pp. 423-436, 2013.
    [53] S. J. Park et al., "Human dopamine receptor-conjugated multidimensional conducting polymer nanofiber membrane for dopamine detection," ACS applied materials & interfaces, vol. 8, no. 42, pp. 28897-28903, 2016.
    [54] R. Yue and J. Xu, "Poly (3, 4-ethylenedioxythiophene) as promising organic thermoelectric materials: A mini-review," Synthetic metals, vol. 162, no. 11-12, pp. 912-917, 2012.
    [55] W. Wei, H. Wang, and Y. H. Hu, "A review on PEDOT‐based counter electrodes for dye‐sensitized solar cells," International Journal of Energy Research, vol. 38, no. 9, pp. 1099-1111, 2014.
    [56] E. Poverenov, M. Li, A. Bitler, and M. Bendikov, "Major effect of electropolymerization solvent on morphology and electrochromic properties of PEDOT films," Chemistry of Materials, vol. 22, no. 13, pp. 4019-4025, 2010.
    [57] K. Cysewska, J. Karczewski, and P. Jasiński, "Influence of electropolymerization conditions on the morphological and electrical properties of PEDOT film," Electrochimica Acta, vol. 176, pp. 156-161, 2015.
    [58] Y.-F. Lin, C.-T. Li, and K.-C. Ho, "A template-free synthesis of the hierarchical hydroxymethyl PEDOT tube-coral array and its application in dye-sensitized solar cells," Journal of Materials Chemistry A, vol. 4, no. 2, pp. 384-394, 2016.
    [59] P. Wiench, B. Grzyb, Z. González, R. Menéndez, B. Handke, and G. Gryglewicz, "pH robust electrochemical detection of 4-nitrophenol on a reduced graphene oxide modified glassy carbon electrode," Journal of electroanalytical chemistry, vol. 787, pp. 80-87, 2017.
    [60] J. Luo, J. Cong, J. Liu, Y. Gao, and X. Liu, "A facile approach for synthesizing molecularly imprinted graphene for ultrasensitive and selective electrochemical detecting 4-nitrophenol," Analytica chimica acta, vol. 864, pp. 74-84, 2015.
    [61] H. Rao et al., "Electroanalytical investigation of p-nitrophenol with dual electroactive groups on a reduced graphene oxide modified glassy carbon electrode," Int. J. Electrochem. Sci, vol. 12, pp. 1052-1063, 2017.
    [62] Y. Shao, J. Wang, M. Engelhard, C. Wang, and Y. Lin, "Facile and controllable electrochemical reduction of graphene oxide and its applications," Journal of Materials Chemistry, vol. 20, no. 4, pp. 743-748, 2010.
    [63] B. J. Matsoso, K. Ranganathan, B. K. Mutuma, T. Lerotholi, G. Jones, and N. J. Coville, "Time-dependent evolution of the nitrogen configurations in N-doped graphene films," RSC advances, vol. 6, no. 108, pp. 106914-106920, 2016.
    [64] T. Arfin, R. Bushra, and F. Mohammad, "Electrochemical sensor for the sensitive detection of o-nitrophenol using graphene oxide-poly (ethyleneimine) dendrimer-modified glassy carbon electrode," Graphene Technology, vol. 1, pp. 1-15, 2016.
    [65] G. Yang, "One-pot preparation of reduced graphene oxide/silver nanocomposite and its application in the electrochemical determination of 4-nitrophenol," International Journal of Electrochemical Science, vol. 10, no. 11, pp. 9632-9640, 2015.
    [66] L. Yang, H. Zhao, Y. Li, and C.-P. Li, "Electrochemical simultaneous determination of hydroquinone and p-nitrophenol based on host–guest molecular recognition capability of dual β-cyclodextrin functionalized Au@ graphene nanohybrids," Sensors and Actuators B: Chemical, vol. 207, pp. 1-8, 2015.
    [67] K. Ahmad, A. Mohammad, P. Mathur, and S. M. Mobin, "Preparation of SrTiO3 perovskite decorated rGO and electrochemical detection of nitroaromatics," Electrochimica Acta, vol. 215, pp. 435-446, 2016.
    [68] D. Lu, Y. Zhang, L. Wang, S. Lin, C. Wang, and X. Chen, "Sensitive detection of acetaminophen based on Fe3O4 nanoparticles-coated poly (diallyldimethylammonium chloride)-functionalized graphene nanocomposite film," Talanta, vol. 88, pp. 181-186, 2012.
    [69] J. Liu, Y. Chen, Y. Guo, F. Yang, and F. Cheng, "Electrochemical sensor for o-nitrophenol based on β-cyclodextrin functionalized graphene nanosheets," Journal of Nanomaterials, vol. 2013, pp. 11-11, 2013.
    [70] N. E. Zachara and G. W. Hart, "The emerging significance of O-GlcNAc in cellular regulation," Chemical reviews, vol. 102, no. 2, pp. 431-438, 2002.
    [71] P. Vibulcharoenkitja, W. Suginta, and A. Schulte, "Electrochemical N-Acetyl-β-D-glucosaminidase Urinalysis: Toward Sensor Chip-Based Diagnostics of Kidney Malfunction," Biomolecules, vol. 11, no. 10, p. 1433, 2021.
    [72] R. Muzzarelli, "Analytical biochemistry and clinical significance of N-acetyl-beta-D-glucosaminidase and related enzymes," EXS, vol. 87, pp. 235-247, 1999.
    [73] S. Skálová, "The diagnostic role of urinary N-acetyl-beta-D-glucosaminidase (NAG) activity in the detection of renal tubular impairment," ACTA MEDICA-HRADEC KRALOVE-, vol. 48, no. 2, p. 75, 2005.
    [74] E.-C. Cho et al., "PEDOT-modified laser-scribed graphene films as bginder–and metallic current collector–free electrodes for large-sized supercapacitors," Applied Surface Science, vol. 518, p. 146193, 2020.

    無法下載圖示 全文公開日期 2033/12/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE