簡易檢索 / 詳目顯示

研究生: 林玟淨
Wen-Jing Lin
論文名稱: 探討複合式蔻奈米纖維/PEDOT:PSS主動層之有機電化學電晶體於腫瘤相關微核糖核酸檢測
Investigation of Combinatorial Coronene Nanofibers/PEDOT:PSS Active Layers on Organic Electrochemical Transistors for Tumor-related miRNA Detection
指導教授: 蕭育生
Yu-Sheng Hsiao
口試委員: 尤嘯華
Hsiao-hua Yu
邱南福
Nan-Fu Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 108
中文關鍵詞: 導電高分子之生物電子界面有機電化學電晶體單股去氧核醣核酸探針微核醣核酸
外文關鍵詞: bioeletronic interfaces, organic electrochemical transistors, coronene, ssDNA probe, miRNA
相關次數: 點閱:207下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗開發了一種三維有機電晶體(OECT),透過蔻(coronene , CR)奈米纖維沉積於聚二氧乙基噻吩:聚苯乙烯磺酸(PEDOT:PSS)當作主動層通道,再經由後續DNA探針之表面改質,製作出一個能檢測miRNA的生物感測晶片。由於miRNA可由癌細胞萃取,估計此晶片可對於癌症病人之液態病理切片中的miRNA進行定量分析,首先我們利用真空熱蒸鍍製程將CR小分子沉積形成奈米纖維陣列於有機電晶體的聚二氧乙基噻吩:聚苯乙烯磺酸 (PEDOT:PSS)薄膜上,並利用π-π interaction將芘丁酸(PBA)經溶液修飾在CR鍍膜表面,然後利用EDC/NHS反應使 PBA的羧基得以和經胺基修飾的單鏈DNA (single - stranded DNA)探針接枝在晶片上,透過DNA和miRNA含氮鹼基互補對的特性,可以將待測miRNA的訊號放大,進行電訊號檢測。關於OECT元件效能分析方面,此實驗進行Id - Vd及跨導率 (transconductance)之量測,並分析其開關比例(on-off ratio)。關於miRNA感測方面,我們導入不同濃度下的miRNA的電流對響應時間的變化、ssDNA探針對miRNA的專一性做了檢測。此晶片對miRNA-21和miRNA-155的感測效能評估上,不僅能提供高靈敏度之量化感測,其最低檢測極限可達到10 fM,另外,利用和ssDNA探針不同序列的miRNA進行電流檢測,透過電流差異的大小,顯示其還可保有感測之專一性。期許對未來癌症之液態病理感測有極大幫助。


    We have developed a three-dimensional organic electrochemical transistor (OECT) for the fabrication of a biosensor capable of detecting miRNA. The OECT utilizes coronene (CR) nanofibers deposited on a poly (3,4-ethylenedioxythiophene) : poly (styrenesulfonate) (PEDOT : PSS) layer as the active channel. Subsequently, the surface of the device is modified with DNA probes for the detection of miRNA through a series of modifications. First, CR small molecules are deposited as nanofibers array on the PEDOT:PSS thin film through a vacuum thermal evaporation process. Then, pyrenebutyric acid (PBA) is introduced onto the CR-coated surface through solution modification, taking advantage of π-π interaction. Next, the carboxyl groups of PBA are conjugated with amine-modified single-stranded DNA probes through an EDC/NHS reaction, allowing for the immobilization of the DNA probes on the chip surface. By exploiting the complementary base pairing between DNA and miRNA, the signal of the target miRNA can be amplified, enabling electrical signal detection. To evaluate the performance of the OECT device, measurements of Id-Vd and transconductance are conducted, and the on-off ratio is analyzed. Regarding miRNA sensing, we investigate the response time of the current signal with different concentrations of miRNA and test the specificity of the single-stranded DNA probes towards miRNA. The sensing performance of the chip is assessed for miRNA-21 and miRNA-155, demonstrating high sensitivity for quantitative detection with a limit of detection as low as 10 fM. Furthermore, the chip exhibits specificity in detecting miRNA by measuring the difference in current response between different sequences of ssDNA probes. This biosensor holds great potential for liquid biopsy analysis in cancer patients.

    論文摘要 5 ABSTRACT 6 誌謝 8 目錄 9 圖目錄 11 表目錄 12 第一章 緒論 13 1.1 癌症檢測 13 1.2 液態病理切片(Liquid biopsy) 14 1.3微核糖核酸(microRNA, miRNA) 16 1.4 生物感測器(Biosensor) 19 1.5 蔻半導體材料 24 1.6 研究動機與目的 26 第二章 文獻回顧 28 2.1 指叉式電極(Interdigitated electrode , IDE)應用 28 2.2 電晶體對於miRNA的檢測 30 第三章 設計與實驗方法 33 3.1 實驗流程 33 3.2 實驗藥品及材料 35 3.3 細胞培養 39 3.4 實驗儀器 42 3.5 實驗流程 50 第四章 結果與討論 58 4.1 材料分析 58 4.2. 表面改質 77 第五章 結論 96 參考文獻 97

    [1] Bhushan, A.; Gonsalves, A.; Menon, J.U. (2021) Current State of Breast Cancer Diagnosis, Treatment, and Theranostics. Pharmaceutics 13, 723.
    [2] Heredia-Soto, V.; Rodríguez-Salas, N.; Feliu, J. (2021) Liquid Biopsy in Pancreatic Cancer: Are We Ready to Apply It in the Clinical Practice Cancers? 13, 1986.
    [3] Freitas, A.J.A.d.; Causin, R.L.; Varuzza, M.B.; Calfa, S.; Hidalgo Filho, C.M.T.; Komoto, T.T.; Souza, C.d.P.; Marques, M.M.C.(2022) Liquid Biopsy as a Tool for the Diagnosis, Treatment, and Monitoring of Breast Cancer. Int. J. Mol. Sci. 23, 9952.
    [4] Tae Jin Lee, Xiaoyi Yuan, Keith Kerr, Ji Young Yoo, Dong H. Kim, Balveen Kaur and Holger K. Eltzschig Eric L. Barker, (2020) ASSOCIATE EDITOR Pharmacological Reviews.
    [5] Shah, Nirav and Hexin Chen.(2014) MicroRNAs in pathogenesis of breast cancer: Implications in diagnosis and treatment. World journal of clinical oncology, 52, 48-60 .
    [6] Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY.(2007) miR-21-mediated tumor growth. Oncogene.
    [7] Hrovatin K, Kunej T.( 2018 ) A Classification of miRNA-related sequence variations. Epigenomics.
    [8] Ergin, K., Çetinkaya, R. (2022). Regulation of MicroRNAs. In: Allmer, J., Yousef, M. (eds) miRNomics. Methods in Molecular Biology, vol 2257.
    [9] Winter, J., Jung, S., Keller, S. et al. (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11, 228–234
    [10] Loukia Petrou, Sylvain Ladame. (2022) On-chip miRNA extraction platforms: recent technological advances and implications for next generation point-of-care nucleic acid tests. Lab Chip, 22, 463.
    [11] 1 H.-L. Cheng, C.-Y. Fu, W.-C. Kuo, Y.-W. Chen, Y.-S. Chen, Y.-M. Lee, K.-H. Li, C. Chen, H.-P. Ma and P.-C. Huang(2018), Detecting miRNA biomarkers from extracellular vesicles for cardiovascular disease with a microfluidic system, Lab Chip, 18(19), 2917–2925.
    [12] C. C. Huang, Y. H. Kuo, Y. S. Chen and G. B. Lee, An.(2021) Integrated Microfluidic System for Early Diagnosis of Breast Cancer in Liquid Biopsy by Using Microrna and FET Biosensors, 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems(MEMS), pp. 318–321.
    [13] G. Dame, J. Lampe, S. Hakenberg, G. Urban(2015) , Development of a Fast miRNA Extraction System for Tumor Analysis Based on a Simple Lab on Chip Approach, Procedia Engineering, Volume 120
    [14] Jacob T. Friedlein, Robert R. McLeod, Jonathan Rivnay(2018) , Device physics of organic electrochemical transistors, Organic Electronics, Volume 63
    [15] Shen, Hongguang & Abtahi, Ashkan & Lussem, Björn & Boudouris, Bryan & Mei, Jianguo. (2021), Device Engineering in Organic Electrochemical Transistors toward Multifunctional Applications. ACS Applied Electronic Materials. 3.
    [16] Rivnay, J., Inal, S., Salleo, A., Owens, R. M., Berggren, M., & Malliaras, G. G. (2018). Organic electrochemical transistors. Nature Reviews Materials, 3, [17086].
    [17] Chenfang, Sun & Wang, Xue & Aminu Auwalu, Muhammad & Cheng, Shanshan & Hu, Wenping. (2021). Organic thin film transistors‐based biosensors.
    [18] Moser, Maximilian & Ponder, James & Wadsworth, Andrew & Giovannitti, Alexander & McCulloch, Iain. (2019). Materials in Organic Electrochemical Transistors for Bioelectronic Applications: Past, Present, and Future. Advanced Functional Materials. 29. 1807033.
    [19] Khodagholy, D., Rivnay, J., Sessolo, M. et al.(2013) High transconductance organic electrochemical transistors. Nat Commun 4, 2133
    [20] Keene, S. T., van der, T. P. A., Zakhidov, D., Weijtens, C. H. L., Janssen, R. A. J., Salleo, A., van de, Y.(2020) , Enhancement-Mode PEDOT:PSS Organic Electrochemical Transistors Using Molecular De-Doping. Adv. Mater. 32, 2000270.
    [21] Giovannitti, A., Nielsen, C., Sbircea, DT. et al. (2016), N-type organic electrochemical transistors with stability in water. Nat Commun 7, 13066.
    [22] Dimov, Ivan & Moser, Maximilian & Malliaras, George & McCulloch, Iain. (2022) Semiconducting Polymers for Neural Applications. Chemical Reviews. 122.
    [23] Sun, Hengda & Gerasimov, Jennifer & Berggren, Magnus & Fabiano, Simone. (2018). N-Type organic electrochemical transistors: Materials and challenges. Journal of Materials Chemistry C. 6. 10.1039
    [24] Yingying Liang, Weilong Xing, Liyao Liu, Yimeng Sun, Wei Xu, Daoben Zhu(2020) ,Charge transport behaviors of a novel 2:1 charge transfer complex based on coronene and HAT(CN)6,Organic Electronics,Volume 78, 105608,ISSN 1566-1199
    [25] Wanning Huang, Kang Xiao, Lixing Luo, Canglei Yang, Zhengkun Ju, Jinqiu Chen, Jing Zhang(2021) , Synthesis, structure, and charge transport properties of a novel donor-acceptor complex of coronene and DTTCNQ,Journal of Solid State Chemistry,Volume300
    [26] Takazawa, K., Inoue, Ji., Mitsuishi, K. et al. (2021) Phase-transition-induced jumping, bending, and wriggling of single crystal nanofibers of coronene. Sci Rep 11, 3175
    [27] Potticary, J., Terry, L., Bell, C. et al.(2016) An unforeseen polymorph of coronene by the application of magnetic fields during crystal growth. Nat Commun 7, 11555
    [28] Nag A, Mukhopadhyay SC, Kosel J (2019) Interdigitated Sensing and Electrochemical Impedance Spectroscopy.Springer Series on Fluorescence: 83–89.
    [29] P. Lamberti, S. A. Mousavi, V. Tucci, V. Wagner(2014) , "Label-free biosensor for detection of specific protein based on carbon nanotubes network thin film transistor", 2014 IEEE 9th Nanotechnology Materials and Devices Conference (NMDC), pp.140-144.
    [30] Geng, Hongyao & Cho, Sung Kwon. (2017). Dielectrowetting for Digital Microfluidics: Principle and Application. A Critical Review. Reviews of Adhesion and Adhesives. 5. 268-302.
    [31] Jildeh, Z.B., Oberländer, J., Kirchner, P., Keusgen, M., Wagner, P.H. and Schöning, M.J. (2018), Experimental and Numerical Analyzes of a Sensor Based on Interdigitated Electrodes for Studying Microbiological Alterations. Phys. Status Solidi A, 215: 1700920.
    [32] Guo, Jianglong & Bamber, Tom & Chamberlain, Matthew. (2016). Optimization and experimental verification of coplanar interdigital electroadhesives. Journal of Physics D Applied Physics. 49. 415304.
    [33] Choi, Kisuk & Kim, Ye Chan & Sun, Hanna & Kim, Sung-Hoon & Yoo, Ji & Park, In-Kyung & Lee, Pyoung-Chan & Choi, Hyouk & Kim, Taesung & Suhr, Jonghwan & Lee, Young & Nam, Jae-Do. (2019). Quantitative Electrode Design Modeling of an Electroadhesive Lifting Device Based on the Localized Charge Distribution and Interfacial Polarization of Different Objects. ACS Omega. 4. 7994-8000.
    [34] Choi, Kisuk & Kim, Sung-Hoon & Hwang, Uiseok & Kim, Junyoung & Park, In-Kyung & Jang, Keon-Soo & Choi, Hyouk & Kim, Taesung & Suhr, Jonghwan & Nam, Jae-Do. (2020). Lifting-Force Maximization of a Micropatterned Electroadhesive Device Comparable to the Human-Finger Grip. ACS Applied Electronic Materials.
    [35] Santos-Neto, I.S.d.; Carvalho, C.D.; Filho, G.B.A.; Andrade, C.D.S.S.; Santos, G.C.d.O.; Barros, A.K.; Neto, J.V.d.F.; Casas, V.L.P.; Alencar, L.M.R.; Lopes, A.J.O.; et al.(2021) Interdigitated Electrode for Electrical Characterization of Commercial Pseudo-Binary Biodiesel–Diesel Blends. Sensors 21, 7288.
    [36] Bowen, C.R.; Bowles, A.; Drake, S.; Johnson, N.; Mahon, S.(1999) Fabrication and finite element modelling of interdigitated electrodes. Ferroelectrics 228, 257–269.
    [37] A. Dey, C. Sharma and U. Sarma(2022) , Fringing Field Capacitive Sensor: A Study of Different Configurations for Soil Moisture Measurement, 2022 International Interdisciplinary Conference on Mathematics, Engineering and Science (MESIICON)
    [38] J. Mizuguchi, J. C. Piai, J. A. de França, M. B. de Morais França, K. Yamashita and L. C. Mathias(2015) , Fringing Field Capacitive Sensor for Measuring Soil Water Content: Design, Manufacture, and Testing, in IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 1, pp. 212-220
    [39] M. Vakilian and B. Y. Majlis(2014) , Study of interdigitated electrode sensor for lab-on-chip applications,2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)
    [40] Liang, Y., Brings, F., Maybeck, V., Ingebrandt, S., Wolfrum, B., Pich, A., Offenhäusser, A., Mayer, D.(2019) Tuning Channel Architecture of Interdigitated Organic Electrochemical Transistors for Recording the Action Potentials of Electrogenic Cells. Adv. Funct. Mater. 29, 1902085.
    [41] Liang, Y.; Guo, T.; Zhou, L.; Offenhäusser, A.(2020) Mayer, D. Label-Free Split Aptamer Sensor for Femtomolar Detection of Dopamine by Means of Flexible Organic Electrochemical Transistors. Materials, 13, 2577.
    [42] Tyrrell, J. E., Boutelle, M. G., Campbell, A. J. (2021) Measurement of Electrophysiological Signals In Vitro Using High-Performance Organic Electrochemical Transistors. Adv. Funct. Mater. 31, 2007086.
    [43] Yuanying Liang, Changtong Wu, Gabriela Figueroa-Miranda, Andreas Offenhäusser, Dirk Mayer, (2019) Amplification of aptamer sensor signals by four orders of magnitude via interdigitated organic electrochemical transistors. Biosensors and Bioelectronics, Volume 144,111668
    [44] Conlathan Ibau, M.K. Md Arshad, Subash C.B. Gopinath, M. Nuzaihan M.N, M.F. M. Fathil, Pedro Estrela(2019) ,Gold interdigitated triple-microelectrodes for label-free prognosticative aptasensing of prostate cancer biomarker in serum, Biosensors and Bioelectronics,Volume 136, Pages 118-127, 0956-5663.
    [45] Kosri, E.; Ibrahim, F.; Thiha, A.; Madou, M.(2022) Micro and Nano Interdigitated Electrode Array (IDEA)-Based MEMS/NEMS as Electrochemical Transducers: A Review. Nanomaterials 12, 4171.
    [46] Lei Wang, Milena Veselinovic, Lang Yang, Brian J. Geiss, David S. Dandy, Tom Chen(2017) , A sensitive DNA capacitive biosensor using interdigitated electrodes, Biosensors and Bioelectronics,Volume 87, Pages 646-653.
    [47] Aparna, G.M.; Tetala, K.K.R. (2023) Recent Progress in Development and Application of DNA, Protein, Peptide, Glycan, Antibody, and Aptamer Microarrays. Biomolecules, 13, 602.
    [48] Kaban, Kübra & Salva, Emine & Akbuga, Jülide. (2016). In Vitro Dose Studies on Chitosan Nanoplexes for microRNA Delivery in Breast Cancer Cells. Nucleic Acid Therapeutics. 27.
    [49] Swati Srivastava, Iti Garg, Yamini Singh, Ramesh Meena, Nilanjana Ghosh, Babita Kumari, Vinay Kumar, Malleswara Rao Eslavath, Sayar Singh, Vikas Dogra, Mona Bargotya, Sonali Bhattar, Utkarsh Gupta, Shruti Jain, Javid Hussain, Rajeev Varshney, Lilly Ganju(2023) , Evaluation of altered miRNA expression pattern to predict COVID-19 severity, Heliyon, Volume 9
    [50] Sheng, P., Li, L., Li, T. et al.(2023) Screening of Drosophila microRNA-degradation sequences reveals Argonaute1 mRNA’s role in regulating miR-999. Nat Commun 14, 2108.
    [51] Ban, E.; Song, E.J.(2022) Considerations and Suggestions for the Reliable Analysis of miRNA in Plasma Using qRT-PCR. Genes, 13, 328.
    [52] Ge Gao, Jin Hu, Zhen Li, Qin Xu, Cheng-Shuang Wang, Hui-Min Jia, Hong Zhou, Peng Lin, Wei-Wei Zhao(2022), Hybridization chain reaction for regulating surface capacitance of organic photoelectrochemical transistor toward sensitive miRNA detection, Biosensors and Bioelectronics, Volume 209, 114224
    [53] Miti A, Thamm S, Müller P, Csáki A, Fritzsche W, Zuccheri G. (2020) A miRNA biosensor based on localized surface plasmon resonance enhanced by surface-bound hybridization chain reaction. Biosens Bioelectron.167:112465
    [54] Zhang Y, Xu G, Lian G, Luo F, Xie Q, Lin Z, Chen G.(2020) Electrochemiluminescence biosensor for miRNA-21 based on toehold-mediated strand displacement amplification with Ru(phen)32+ loaded DNA nanoclews as signal tags. Biosens Bioelectron.
    [55] Chen P, Jiang L, Xie X, Sun D, Liu J, Zhao Y, Li Y, Balbín Tamayo AI, Liu B, Miao Y, Ouyang R. (2022) Rapid electrochemical detection of MiRNA-21 facilitated by the excellent catalytic ability of Pt@CeO2 nanospheres. RSC Adv. 19;12(19):11867-11876.
    [56] Ai X, Zhao H, Hu T, Yan Y, He H, Ma C. (2021) A signal-on fluorescence-based strategy for detection of microRNA-21 based on graphene oxide and λ exonuclease-based signal amplification. Anal Methods.13(18):2107-2113.
    [57] li, Xiangtang & Zhao, Jingjin & Xu, Rui & Pan, Li & Liu, Yiming. (2020). Mass spectrometric quantification of microRNA in biological samples based on multistage signal amplification. The Analyst. 145.
    [58] Son, M.H., Park, S.W., Sagong, H.Y. et al.(2023) Recent Advances in Electrochemical and Optical Biosensors for Cancer Biomarker Detection. BioChip J 17, 44–67.
    [59] Fu Y, Wang N, Yang A, Xu Z, Zhang W, Liu H, Law HK, Yan F.(2021) Ultrasensitive Detection of Ribonucleic Acid Biomarkers Using Portable Sensing Platforms Based on Organic Electrochemical Transistors. Anal Chem. 93(43):14359-14364.
    [60] Tingxian Li, Yuqi Liang, Jiahao Li, Yi Yu, Meng-Meng Xiao, Wei Ni, Zhiyong Zhang, and Guo-Jun Zhang(2021) , Carbon Nanotube Field-Effect Transistor Biosensor for Ultrasensitive and Label-Free Detection of Breast Cancer Exosomal miRNA21, Analytical Chemistry 93 (46), 15501-15507.
    [61] Hu, L.; Song, J.; Yin, X.; Su, Z.; Li, Z. (2020) Research Progress on Polymer Solar Cells Based on PEDOT:PSS Electrodes. Polymers, 12, 145.
    [62] Felix Hempel, Jessica Ka Yan Law, Thanh Chien Nguyen, Ruben Lanche, Anna Susloparova,Xuan Thang Vu, Sven Ingebrandt(2021) , PEDOT: PSS organic electrochemical transistors for electrical cell-substrate impedance sensing down to single cells,Biosensors and Bioelectronics,Volume 180, 113101
    [63] Liang, Y., Offenhäusser, A., Ingebrandt, S., Mayer, D.(2021) , PEDOT:PSS-Based Bioelectronic Devices for Recording and Modulation of Electrophysiological and Biochemical Cell Signals. Adv. Healthcare Mater.
    [64] Meen, T. & Chen, Kan-Lin & Chen, Yu-Hao & Chen, Wen-Ray & Chou, Dei-Wei & Lan, Wen-How & Huang, Chien-Jung. (2013). The Effects of Dilute Sulfuric Acid on Sheet Resistance and Transmittance in Poly(3, 4- thylenedioxythiophene): Poly(styrenesulfonate) Films. International Journal of Photoenergy. 1-6.
    [65] Plekhanova Y, Tarasov S, Reshetilov(2021) A. Use of PEDOT:PSS/Graphene/Nafion Composite in Biosensors Based on Acetic Acid Bacteria. Biosensors (Basel).
    [66] Sophia L Bidinger, Sanggil Han, George G. Malliaras(2022) , Tawfique Hasan; Highly stable PEDOT:PSS electrochemical transistors. Appl. Phys. Lett.
    [67] Zhang, L., Yang, K., Chen, R., Zhou, Y., Chen, S., Zheng, Y., Li, M., Xu, C., Tang, X., Zang, Z., Sun, K.(2020), The Role of Mineral Acid Doping of PEDOT:PSS and Its Application in Organic Photovoltaics. Adv. Electron. Mater. 1900648.
    [68] Michael Holzinger, Serge Cosnier, Paulo Henrique M. Buzzetti(2023),The versatility of pyrene and its derivatives on sp2 carbon nanomaterials for bioelectrochemical applications,Synthetic Metals,Volume 292, 117219
    [69] Vladyslav Mishyn, Adrien Hugo, Teresa Rodrigues, Patrik Aspermair, Henri Happy, et al.(2022). The holy grail of pyrene-based surface ligands on the sensitivity of graphene-based field effect transistors.Sensors & Diagnostics
    [70] Sethi J, Van Bulck M, Suhail A, Safarzadeh M, Perez-Castillo A, Pan G.(2020) A label-free biosensor based on graphene and reduced graphene oxide dual-layer for electrochemical determination of beta-amyloid biomarkers. Mikrochim Acta.
    [71] Mitchell B. Lerner, James M. Resczenski, Akshay Amin, Robert R. Johnson, Jonas I. Goldsmith, and A. T. Charlie Johnson(2012),Toward Quantifying the Electrostatic Transduction Mechanism in Carbon Nanotube Molecular Sensors,Journal of the American Chemical Society
    [72] Hinnemo, Malkolm & Zhao, Jie & Ahlberg, Patrik & Hägglund, Carl & Djurberg, Viktor & Scheicher, Ralph & Zhang, Shi-Li & Zhang, Zhi-Bin. (2017). On Monolayer Formation of Pyrenebutyric Acid on Graphene. Langmuir : the ACS journal of surfaces and colloids.
    [73] Psarra E, König U, Müller M, Bittrich E, Eichhorn KJ, Welzel PB, Stamm M, Uhlmann P.(2017) In Situ Monitoring of Linear RGD-Peptide Bioconjugation with Nanoscale Polymer Brushes. ACS Omega. Mar 16;2(3):946-958.
    [74] Enriquez, Erik et al. (2015) Optimization of Thick Negative Photoresist for Fabrication of Interdigitated Capacitor Structures.
    [75] Bart, Jacob & Tiggelaar, Roald & Yang, Menglong & Schlautmann, Stefan & Zuilhof, Han & Gardeniers, Han. (2009). Room-temperature intermediate layer bonding for microfluidic devices. Lab on a chip. 9. 3481-8.

    無法下載圖示 全文公開日期 2033/08/29 (校內網路)
    全文公開日期 2038/08/29 (校外網路)
    全文公開日期 2038/08/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE