簡易檢索 / 詳目顯示

研究生: 許智為
Zhi-wei Hsu
論文名稱: 等徑轉角擠製(ECAE)對AZ61添加不同強化相鎂基複合材料之機械性質研究
Effect of equal channel angular extrusion on the mechanical properties of AZ61 matrix composites with different reinforcement
指導教授: 黃崧任
Song-jeng Huang
口試委員: 向四海
Su-hai Hsiang
周振嘉
Chen-chia Chou
汪俊延
Jun-yen Uan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 82
中文關鍵詞: 等徑轉角擠製(ECAE)AZ61鎂基複合材料強化相顆粒(Al2O3p、SiCp)
外文關鍵詞: Equal Channel Angular Extrusion (ECAE), AZ61 magnesium matrix composites, reinforcement particles (Al2O3p、SiCp)
相關次數: 點閱:252下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎂合金在常溫之塑性變形能力較差,若要克服此缺點,我們可以使用大量塑性變形法來改善。等徑轉角擠製使用大量塑性變形法來進行鎂合金機械性質的改善。本研究選用微米級氧化鋁(1、2、5wt%)及碳化矽顆粒(1、2、5wt%)為強化相,平均粒徑大小為10μm,利用等徑轉角擠型(Equal Channel Angular Extrusion, ECAE)製程對添加不同氧化鋁及碳化矽顆粒含量的鎂基複合材料進行擠製,並且探討鎂基複合材料經ECAE後之機械性質與微觀組織之差異。
    本研究結果顯示,隨著強化相含量增加時,平均晶粒尺寸有明顯下降,對AZ61/5wt% SiCp鎂基複合材料進行ECAE擠製,經由BC路徑擠壓四道次後,平均晶粒尺寸可降低至5.2μm。
    AZ61鎂基複合材料的降伏強度(Yield Strength, YS)以及硬度(Hardness)皆會隨著強化相含量的增加而明顯提升,對AZ61/5wt% SiCp鎂基複合材料進行BC路徑擠製四道次,可獲得最佳降伏強度及硬度,對AZ61/5wt% Al2O3p鎂基複合材料進行BC路徑擠製四道次,可獲得最佳極限強度(Ultimate Tensile Strength, UTS)及延展率(Ductility)。ECAE擠製比較四種不同路徑,由結果顯示,其中以BC路徑細化效果及機械性質為最佳,C路徑次之,而路徑A、BA為最差的。
    AZ61/SiCp鎂基複合材料在添加1wt% SiCp後,其極限強度及延展率隨著含量增加而下降。在AZ61/5 wt% SiCp鑄錠經固溶處理後,由金相圖中之晶粒與晶界處皆有發現Mg2Si化合物存在,由數據結果顯示,此化合物會降低鎂基複材之機械性質。


    Magnesium alloy has poor plastic deformation ability under room temperature, in order to overcome its shortcoming, we can use “severe plastic deformation” (SPD) to improve this defect. Severe Plastic Deformation (SPD) is widely used to improve the mechanical properties of magnesium. In this study, the average particles size are 10μm with 1,2 and 5wt% of micron sized Al2O3 and SiC particles for reinforcement . By using Equal angular extrusion (Equal Channel Angular Extrusion, ECAE) process of adding Al2O3 and SiC particles of different levels of magnesium matrix composites were extruded.To investigate the difference of mechanical properties and microstructure after ECAE apply on magnesium matrix composites.

    The results shows that the average grain size will decrease with increasing the volume fraction of reinforcement. The average grain size of magnesium matrix composites will reduce to 5.2μm by ECAE four passes at route BC.

    The results shows that the yielding strength and hardness of magnesium matrix composites will increase with increasing the volume fraction of reinforcement. For AZ61 / 5wt% SiCp magnesium matrix composites will get the best yield strength and hardness by extruding four passes at route BC. AZ61 / 5wt% Al2O3p magnesium matrix composites will get the best ultimate tensile strength and ductility by extruding four passes at route BC. ECAE extruded compare four different routes, the results shows that the effect of which route BC refinement and mechanical properties is the best, route C followed ,route A and BA is the worst.

    In this study, microstructure of AZ61/1wt% SiCp shows that the ultimate tensile strength and ductility will decrease with increasing the volume fraction of reinforcement. Microstructure of AZ61/5wt% SiCp ingot shows Mg2Si compound at the grain boundaries after solid solution treatment. This compound will reduce the mechanical properties of magnesium matrix composites.

    目錄 誌謝 I 摘要 II Abstract IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 文獻回顧 4 1.3.1 強化相對鎂基複合材料相關文獻 4 1.3.2 鎂基複合材料擠製加工相關文獻 9 1.3.3 ECAE相關文獻 11 1.4 文獻回顧心得 14 第二章 鎂合金相關性質 15 2.1 鎂合金的特性 15 2.2 鎂合金發展與應用 16 2.3 鎂基複合材料之強化理論 17 2.3.1 晶粒細化 17 2.3.2 析出強化 18 2.3.3 散佈強化 18 2.3.4 熱膨脹係數差異影響 18 2.4 等徑轉角擠製 19 2.4.1 ECAE塑性變形原理 19 2.4.2 ECAE晶粒細化原理 24 2.4.3 ECAE擠型路徑 24 2.4.4 擠製路徑與剪應變幾何特性 26 2.4.5 ECAE製程的優勢 28 第三章 實驗方法與步驟 29 3.1 實驗材料 31 3.2 實驗設備 32 3.2.1 鑄造用熔驢 32 3.2.2 500噸臥式熱間擠製機 34 3.2.3 等徑轉角擠型 (ECAE) 35 3.2.4 高溫熱處理爐 36 3.2.5 濕式自動研磨機和拋光機 37 3.2.6 光學顯微鏡 (Optical Microscope, OM) 37 3.2.7 微型維克氏硬度機 38 3.2.8 拉伸試驗機 (Material Test System, MTS) 39 3.3 鎂基複合材料熔煉及ECAE試棒製備 40 3.3.1 熔煉實驗步驟 40 3.3.2 拉伸試片規劃 43 第四章 結果與討論 44 4.1 AZ61鎂基複合材料之金相觀察 44 4.1.1 鑄錠之微觀分析 44 4.1.2 擠製之微觀分析 48 4.2 AZ61鎂基複合材料之機械性質分析 60 4.2.1 硬度試驗 60 4.2.2 鑄錠之拉伸試驗 62 4.2.3 擠製之拉伸試驗 65 4.3 EDS成分分析 71 4.4 強化機制的貢獻度 74 第五章 結論 77 第六章 未來研究 79 參考文獻 80 圖目錄 圖1-1 SiCp粒徑尺寸與抗拉強度及延展率之關係 [5] 6 圖1-2 觀察顆粒分布情形(a) 1.5 vol% Al2O3p (50nm)(b) 5 vol% Al2O3p (300nm) (c) 10 vol% Al2O3p (1000nm) [6] 7 圖1-3 拉伸實驗之應力-應變曲線圖 [6] 7 圖1-4 拉伸實驗之應力-應變曲線圖 [7] 8 圖1-5 由FESEM觀察顆粒及金屬化合物分布(a)低倍率(b)高倍率 [7] 8 圖1-6 AZ31B顯微組織: (a) AZ31B-H, (b) AZ31B-M, (c) AZ31B-L [8] 10 圖1-7 AZ61A顯微組織: (a) AZ61A-H, (b) AZ61A-M, (c) AZ61A- L [8] 10 圖1-8 AZ31合金在不同溫度和擠壓比下擠製[10] 11 圖1-9 ECAP擠壓後晶粒大小變化 [12] 12 圖2-1 鎂合金商品應用 [16] 17 圖2-2 等通道轉角擠型模具示意圖 [21] 20 圖2-3 模具無導角之ECAE製程剪應變 [22] 23 圖2-4 模具有導角之ECAE製程剪應變 [23] 23 圖2-5 ECAE加工路徑示意圖 [11] 25 圖2-6一次擠製的正方元素剪應變圖形與X、Y、Z 的定義 [11] 27 圖3-1 實驗流程圖 30 圖3-2 (a)AZ61鎂合金基材;(b)金相圖 31 圖3-4 (a)鎂合金熔爐外觀;(b)示意圖 [16] 33 圖3-5 熔爐用攪拌葉片、柱塞、噴氣管 33 圖3-6 喇叭型模具 33 圖3-7 功益500噸熱間擠製機(a)全貌;(b)相對位置 34 圖3-8 ECAE試驗機實體圖 36 圖3-9 熱處理高溫爐 36 圖3-10 濕式自動研磨/拋光機 37 圖3-11 光學顯微鏡 38 圖3-12 微型維克氏硬度試驗機 38 圖3-13 拉伸試驗機 40 圖3-14 鑄錠(Ingot) (a)示意圖;(b)實體圖 42 圖3-15 棒材(Rod)實體圖 42 圖3-16 ECAE試棒實體圖 42 圖3-17 拉伸試片規格 43 圖4-1 AZ61/Al2O3p鎂基複合材料之金相圖(Ingot/T4) 46 圖4-2 AZ61/SiCp鎂基複合材料之金相圖(Ingot/T4) 48 圖4-3 AZ61/Al2O3p鎂基複合材料經擠製成棒材之金相圖 50 圖4-4 AZ61/SiCp鎂基複合材料經ECAE製程之金相圖(route A) 51 圖4-5 AZ61/SiCp鎂基複合材料經ECAE製程之金相圖(route BC) 52 圖4-6 AZ61/ Al2O3p鎂基複合材料經ECAE製程後之金相圖(route A) 54 圖4-7 AZ61/ Al2O3p鎂基複合材料經ECAE製程後之金相圖(route BA) 55 圖4-8 AZ61/ Al2O3p鎂基複合材料經ECAE製程後之金相圖(route BC) 56 圖4-9 AZ61/ Al2O3p鎂基複合材料經ECAE製程後之金相圖(route C) 58 圖4-10 AZ61鎂基複材不同強化相與平均晶粒之關係(Ingot/T4) 59 圖4-11 AZ61鎂基複材經由ECAE不同路徑與平均晶粒之關係 59 圖4-12 AZ61鎂基複材不同強化相與硬度值之關係(Ingot/T4) 61 圖4-13 AZ61鎂基複材經由ECAE不同路徑與硬度值之關係 62 圖4-14 AZ61鎂基複材不同強化相之應力-應變曲線圖(Ingot/T4) 63 圖4-15 AZ61鎂基複材不同強化相與抗拉強度之關係(Ingot/T4) 64 圖4-16 AZ61鎂基複材不同強化相與降伏強度之關係(Ingot/T4) 64 圖4-17 AZ61鎂基複材不同強化相與延展率之關係(Ingot/T4) 65 圖4-18 AZ61鎂基複材經由ECAE不同路徑之應力-應變曲線圖 67 圖4-19 AZ61鎂基複材經由ECAE不同路徑與抗拉強度之關係 68 圖4-20 AZ61鎂基複材經由ECAE不同路徑與降伏強度之關係 68 圖4-21 AZ61鎂基複材經由ECAE不同路徑與延展率之關係 69 圖4-22 AZ61/5 wt% SiCp鑄錠之EDS分析 72 圖4-23 AZ61/5 wt% SiCp鑄錠之X-ray繞射頻譜圖 73 圖4-24 AZ61/5 wt% Al2O3p鑄錠之EDS分析 73 表目錄 表1-1 在室溫下Mg/SiCp之機械性質 [3] 5 表1-2 擠製條件 [8] 9 表1-3 在不同擠製溫度下AZ31B、AZ61A之機械性質 [8] 9 表2-1 四種ECAE實驗所旋轉的角度與方位[11] 25 表2-2 四種不同ECAE實驗的剪應變幾何特性 [11] 27 表3-1 AZ61鎂合金成份表(wt%) 31 表4-1 AZ61鎂基複材經過不同製程與平均晶粒之關係 58 表4-2 AZ61鎂基複材經過不同製程與硬度值之關係 61 表4-3 AZ61鎂基複材經過不同製程之機械性質 69 表4-4 AZ61/5 wt% A12O3p ECAE擠製之強化機制參數計算 75 表4-5 AZ61/5 wt% A12O3p ECAE擠製強化機制貢獻比例計算 76

    [1]T. Mukai, M. Kawazoe and K. Higashi “ Dynamic mechanical properties of a near-nano aluminum alloy processed by Equal-Cannel-Angular-E xtrusion” , pp.755-765, (1998).
    [2]楊仁豪, AZ31鎂合金經ECAE後晶粒細化與超塑性之研究”, 國立交通大學材料科學與工程研究所碩士論文(2001)。
    [3]M. Manoharan, S.C.V. Lim and M. Gupta, “Application of a model for the work hardening behavior to Mg/SiC composites synthesized using a fluxless casting process,Materials Science and Engineering A333, pp.243-249 ( 2002).
    [4]X. Wang, X. Hu, K. Nie, K. Wu and M. Zheng, “Hot extrusion of SiCp/AZ91 Mg matrix composites” , pp.1912-1917 (2012).
    [5]B.W. Chua, L. Lu and M.O. Lai, “Infuence of SiC particles on mechanical properties of Mg based composite” , Composite Structures 47 ,pp.595-601 (1999).
    [6]M. Paramsothya, Q.B. Nguyen, K.S.Tun and J.Chan, “Mechanical property retention in remelted microparticle to nanoparticle AZ31/Al2O3 composites” , Journal of Alloys and Compounds 506, pp.600–606 (2010).
    [7]M. Paramsothy,J.Chan,R.Kwok and M.Gupta , “The synergistic ability of Al2O3 nanoparticles to enhance mechanical response of hybrid alloy AZ31/AZ91” , Journal of Alloys and Compounds 509 ,pp.7572–7578 (2011).
    [8]Y. Uematsu, K. Tokaji, N. Kamakura, K. Uchida, H. Shibate and N. Belkku,“Effect of extrusion conditions on grain refinement and fatigue behaviour in magnesium alloys”, Materials Science and Engineering A 434 ,pp.131–140 (2006).
    [9]M. Thirumurugan, G. M.thirugnasambandam, S.Kumaran and T. Srinivasarao, “Microstructural refinement and mechanical properties of direct extruded ZM21 magnesium alloys”,Tran.Nonferrous Met.Soc.China 21, pp.2154-2159 (2011).
    [10]Zhang Zhi-min, Xu Hong-yan and WangQiang, “Corrosion and mechanical properties of hot-extruded AZ31 magnesium alloys”, Tran.Nonferrous Met.Soc.China 18, pp.140-144 (2008).
    [11]V.M. Segal, “Materials processing by simple shear”, Materials Science and Engineering , Vol.197, pp.157 (1995).
    [12]X.M.Feng and T.T.Ai “Microstructure evolution and mechanical behavior of AZ31 Mg alloy processed by equal-channel angular pressing”, pp.293-298 (2009).
    [13]J.Jiang and Y.Wang “Enhancing room temperature mechanical properties of Mg–9Al–Zn alloy by multi-pass equal channel angular extrusion” Journal of Materials Processing Technology 21, pp.751-758 (2010).
    [14]S.J. Huang,V.I. Semenovb, L.Sh. Shusterb and P.C. Lin“Tribological properties of the low-carbon steels with different micro-structure processed by heat treatment and severe plastic deformation” , Wear 271 pp.705–711 (2011).
    [15]S.J. Huang and P.C. Lin, “Grain refinement of AM60/AL2O3P Megnesium Metal-matrix Composites Processed by ECAE”, Metallic Materials, pp.1-15 (2013).
    [16]蔡承勳,“不同製程對AZ61/Al2O3p鎂基複合材料機械性質及疲勞之影響,國立台灣科技大學機械工程系碩士論文(2013)。
    [17]S. C. V. Lim and M. Gupta, “Enhancing the microstructural and mechanical response of a Mg/SiC formulation by the method of reducing extrusion temperature” , Materials Research Bulletin, Vol.36, pp.2627-2636 (2001).
    [18]S. Ugandhar, M. Gupta and S. K. Sinha, “Enhancing strength and ductility of Mg/SiC composites using recrystallization heat treatment” , Composite Structures, Vol. 72, pp.266-272 (2006)..
    [19]X. J. Wang, K. Wu, H. F. Zhang, W.X. Huang, H.Chang, W.M. Gan, M.Y. Zheng and D.L. Peng, “Effect of hot extrusion on the microstructure of a particulate reinforced magnesium matrix composite” , Materials Science and Engineering A, Vol. 465, pp.78-84 (2007).
    [20]V. M. Segal, “Materials Processing by Simple Shear”, Materials Science and Engineering, A197 pp.157-164 (1995).
    [21]V. M. Segal, K.T. Hartwig and R. E. Goforth, “In Situ Composites Processed by Simple Shear”, Materials Science and Engineering, A224 ,pp.107-115 (1997).
    [22]K. Nakashima, Z. Horita, M. Nemoto and T.G. Langdon, “Influence of channel angle on the development of ultrafine grains inequal-channel angular extrusion”, Acta Materialia , Vol. 46 No.5, pp.1589-1599 (1998).
    [23]V.M. Segal and K.T. Hartwig USSR Patent No. 575892 , (1997).
    [24]M.Furukawa ,Z.Horita and T.G.Langdon, “Factors influencing the shearing patterns in equal-channel angular pressing”, Materials Science and Engineering, A332 ,pp.97-109 (2002).
    [25]T. Mukai, H. Watanabe and K. Higashi, Materials Science Forum,Vol.350-351, pp.159-170 (2000).
    [26]H. Akamatsu and M. Furukawa, “Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al–Mg alloys”, Acta Materialia 50, pp.553–564 (2002).
    [27]M.Furukawa,Y.Iwahashi,Z.H.Terence and G.Langdon,“Theshearing characteristics associated with equal-channel angular pressing”, Materials Science and Engineering A257, pp.328–332 (1998).
    [28]Y.Iwahashi,Z.Horita and T.G.Langdon, “The process of grain refinement in equal-channel angular pressing”, Acta mater. Vol. 46, pp.3317-3331 (1998).
    [29]K. Oh-ishi, Z.Horita, M.Furukawa, M.Nemoto and T.G.Langdon, “Optimizing the Rotation Condition for Grain Refinement in equal-channel angular pressing”, Metal.Tran.A29 , pp.22-45 (1998).
    [30]C. Pithan and T. Hashimoto , “Microstructure and texture evolution in ECAE processed A5056”, Materials Science and Engineering A280 (2000) 62–68.
    [31]黃文賢, “純銅經等徑轉角擠型加工後微觀組織之變化”, 國立中山大學材料科學研究所博士論文, (2000)。
    [32]H.Z.Ye and X.Y.Liu, “Review of recent studies in magnesium matrix composites” ,Journal of Materials Science, Vol. 39, pp. 6153-6171 (2004).
    [33]L. Li, M. O. Lai, M. Gupta, B. W. Chua and A. Osman, “Improvement of microstructure and mechanical properties of AZ91/SiC composite by mechanical alloying” , Journal of Materials Science, Vol. 35, pp.5553-5561 (2000).
    [34]B. Inem and G. Pollard, “Interface structure and fractography of a magnesium-alloy, metal-matrix composite reinforced with SiC particles” , Journal of materials science, Vol. 28, pp. 4427-4434 (1993).
    [35]M. Habibnejad-Korayem, “Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles” ,Materials Science and Engineering A, Vol. 519, pp. 198-203 (2009).
    [36]S. J. Huang and P. C. Lin, “Grain refinement of AM60/Al2O3p Megnesium Metal-matrix Composites Processed by ECAE” , Kovove Materialy-Metallic Materials.
    [37]S. F. Hassan and M. Gupta, “Development of high performance magnesium nanocomposites using solidification processing route” , Materials Science and Technology, Vol. 20, pp. 1383-1388 (2004).
    [38]C. S. Goh, J. Wei, L. C. Lee and M. Gupta, “Properties and deformation behaviour of Mg-Y2O3 nanocomposites” , Acta Mater., Vol. 55, pp. 5115-5121 (2007).
    [39]Z. Zhang and D. L. Chen, “Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites” , Mater. Sci. Eng., A 483-494, pp. 148-152 (2008).

    QR CODE