簡易檢索 / 詳目顯示

研究生: 江義駿
YI-JYUN JIANG
論文名稱: 以 RAFT活自由基溶液聚合法合成高分子接枝之氧化石墨烯及熱脫層氧化石墨烯及探討其對環氧樹脂之聚合固化樣品微觀型態結構、体積收縮、機械性質、熱傳導及導電性質的影響。
Synthesis of polymer-grafted graphene oxide and thermally reduced graphene oxide by RAFT free radical solution polymerizations, and their effects on volume shrinkage, mechanical properties, and thermal and electrical conductivities for epoxy resins
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 邱文英
WUN-YING CIOU
陳崇賢
CHONG-SIAN CHEN
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 231
中文關鍵詞: 氧化石墨烯熱還原氧化石墨烯以可逆加成-斷裂鏈轉移( RAFT)之活自由基聚合高分子接枝之氧化石墨烯高分子奈米複合材料環氧樹脂聚合固化體積收縮熱傳導性質導電性質導熱性之低收縮環氧樹脂模造物
外文關鍵詞: thermally reduced GO (TRGO), RAFT living free radical polymerization; polymer-grafted TRGO (pg-TRGO), epoxy resins (EPR), thermally conductive low-shrinkage epoxy molding compound (EMC)
相關次數: 點閱:610下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討用作熱固性樹脂抗收縮劑及增韌劑之具核殼型結構(CSS)高分子接枝之熱還原氧化石墨烯的合成,其對低收縮環氧酯樹脂在聚合固化後之樣品微觀型態結構、体積收縮特性、導電導熱及機械性質的影響。
    這些核殼型結構(CSS),以TRGO-polymer標示之,係以氧化石墨烯(GO)經由熱還原形成之熱脫層氧化石墨烯(TRGO)為核心及有機高分子為外殼,以Z支撐的可逆加成-斷裂鏈轉移聚合法(RAFT),利用S-Benzyl S'-trimethoxysilylpropyl trithiocarbonate (BTPT)作為可偶合的RAFT鏈轉移試劑合成而得。其中,氧化石墨烯(GO)擬由平均粒徑為2 至15 微米的天然石墨粉末,利用改良的Hummers 法自行合成。熱還原氧化石墨烯(TRGO),則擬利用高溫爐在1050℃ 下, 以熱還原法自行製備而得。而TRGO -polymer核殼型結構的高分子外殼為丙烯酸甲酯(MA)與甲基丙烯酸環丙氧烷酯(GMA)的共聚合物(poly(MA-co-GMA))、及聚丙烯酸丁酯(BA)與丙烯酸甲酯(MA)及甲基丙烯酸環丙氧烷酯(GMA)的共聚合物之團聯共聚合物(PBA-b-poly(MA-co-GMA))。
    為利於上述氧化石墨烯或熱脫層氧化石墨烯之特殊添加劑及樹脂基材之適當配對,吾人亦將自行合成具不同分子量(或黏度)之環氧樹脂使用。當石墨烯之表面改質劑或塑膠外殼其化學組成、極性或分子量改變時,在聚合固化過程中,交聯之熱固性樹脂連續相與石墨烯懸浮相間的界面接著力亦隨之改變,進而影響石墨烯在樹脂基材中的分散性,此將影響聚合固化行為、聚合固化後樣品之微觀型態結構、體積收縮、機械性質、熱傳導及導電性質。
    BTPT 、GO、TRGO及TRGO-Polymer的結構與性質,吾人以FTIR、1H-NMR、13C-NMR、GPC、TGA及XRD鑑定之。本文中,吾人亦探討TRGO-Polymer對環氧樹脂(EP)/硬化劑(DDM)/TRGO-Polymer之三成分系統於100℃/180℃階段性恒溫聚合固化後之微觀型態結構、體積收縮、機械性質、及導熱與導電性質的影響。


    Synthesis of polymer-grafted thermally reduced grafted graphene oxide with core-shell structure (CSS) as low-profile additives (LPA) and tougheners for thermoset resins, and their effects on the cured sample morphology, volume shrinkage characteristics and mechanical properties for and thermal and electrical conductivities low-shrink epoxy resins(EPR) during the cure were investigated.
    These CSS designated as TRGO-polymer, which contained thermally reduced graphene oxide(TRGO) as the core and organic polymer as the shell, were synthesized by the Z supported reversible addition-fragmentation chain transfer (RAFT) graft polymerization using S-Benzyl S'-trimethoxysilyl propyl trithio-carbonate (BTPT) as the coupable RAFT chain transfer agent (CTA). The thermally reduced graphene oxide (TRGO) is to produced by placing graphene oxide (GO) in a
    high-temperature furnace kept at 1050℃, which is to be synthesized from natural graphites with average particle size of 2 to 15 μm by a modified Hummers method.The grafted polymer as the shell structure of the TRGO-polymer was made from copolymer of MA and glycidyl methacrylate(poly(MA-co-GMA)),and poly(butylacrylate)-block-poly(methyl-acrylate-co-glycidyl-methacrylate)(PBA-block-poly(MA-co-GMA).
    To facilitate the pairing of the GO or TRGO as the special additive mentioned above and the resin matrix, epoxy resins (EP) with different molecular weight (or viscosity) will also be synthesized and used.
    For the different chemical composition, polarity, or molecular weights of the shell polymer or surface modifier for the GO or TRGO special additive, the interfacial adhesion between the crosslinked thermoset
    continuous phase and the dispersed phase of the special additive GO or TRGO during the cure will be varied,so will be the degrees of dispersion of the GO or TRGO in the resin matrix, which, in turn, may affect the
    curing behavior, cured sample morphologies, volume shrinkage, mechanical properties, thermal conductivity and electrical properties for the cured samples.
    Structure and property characterizations of BTPT, GO, TRGO,and TRGO-polymer have been performed by using FTIR, 1H-NMR, 13C-NMR, GPC, TGA and XRD. In this work, the effects of TRGO-polymer on the cured sample morphologies, volume shrinkage characteristics, mechanical properties, and thermal and electrical conductivities of the Epoxy/ DDM/ TRGO-polymer ternary systems after a stepwise isothermal cure of 100oC/180oC have also been explored.

    目錄 摘要 III Abstract V 致謝 VII 目錄 VIII 圖目錄 XII 表目錄 XVII 第一章 緒論 1 1.1 石墨烯 1 1.2 高分子複合材料 7 1.3不飽和聚酯 (Unsaturated polyester, UP) 8 1.5抗收縮劑 (Low Profile Additive, LPA) 17 1.6增韌劑 18 1.7研究範疇 20 第二章 文獻回顧 22 2.1石墨烯/高分子奈米複合材料之研究 22 2.2 氧化石墨烯(GO)及熱還原氧化石墨(TRGO)的製備 25 2.3 自由基聚合法 27 2.4溶液聚合法 (Solution Polymerization)[49] 30 2.5活性自由基聚合法(living polymerization)[50] 31 2.5.1原子轉移自由基聚合法 (ATRP) 33 2.5.2穩定自由基聚合法 (SFRP) 35 2.5.3 可逆加成-斷裂鏈轉移聚合法 (RAFT) [30]-[32][59]-[61] 37 2.7以RAFT聚合法合成高分子接枝之氧化石墨烯 40 第三章 實驗方法及設備 43 3.1 實驗藥品 43 3.2 實驗儀器 47 3.2.1 傅立葉轉換紅外線光譜儀 (FTIR) 47 3.2.2 凝膠滲透層析儀 (GPC) 49 3.2.3 核磁共振光譜儀 (NMR) 50 3.2.4 熱重分析儀 (TGA) 51 3.2.5 廣角度X光繞射儀 (XRD) 53 3.2.6 電子比重計 (ED) 54 3.2.7 高溫爐 55 3.2.8 掃描式電子顯微鏡(SEM) 55 3.2.9 穿透式電子顯微鏡(TEM) 57 3.2.10耐衝擊測試機 59 3.2.11萬用材料試驗機 60 3.3 實驗方法[65] 63 3.3.1 氧化石墨之製備[43-44] 63 3.3.2熱脫層氧化石墨烯(TRGO)之製備[44][65] 64 3.3.3 鏈轉移試劑S -Benzyl S'-trimethoxysilyl propyl trithiocarbonate (BTPT)之合成[33] 65 3.3.4 氧化石墨接枝聚合物[46] (GO-Polymer)之合成 67 3.3.5 EPR(n=0.16)/DDM/無機有機層狀結構(CSS) 三成分系統之固化試片製作 74 3.3.6 體積變化量測-密度法 77 第四章 結果與討論 78 4.1 氧化石墨烯(GO)及熱還原氧化石墨烯(TRGO) 78 4.1.1 氧化石墨烯(GO) 之FTIR鑑定 78 4.1.2 氧化石墨烯(GO) 之TGA鑑定 80 4.1.3 氧化石墨烯(TRGO) 之TGA鑑定 82 4.2 鏈轉移劑S-Benzyl S'-trimethoxy silylpropyl trithiocarbonate (BTPT)之合成 83 4.2.1探討鏈轉移劑(BTPT)實驗步驟 83 4.2.2鏈轉移試劑(BTPT) 之NMR鑑定[33] 84 4.3 大分子的鏈轉移試劑(macro-RAFT agent of BTPT-P(MA-co-GMA)-xK)(x=30、17、8)之鑑定 87 4.3.1 大分子的鏈轉移試劑(BTPT-P(MA-co-GMA)-xK)之NMR鑑定 87 4.3.2 大分子的鏈轉移試劑(BTPT-P(MA-co-GMA)-xK)之GPC鑑定 100 4.4 接枝嵌段高分子之熱還原氧化石墨烯 (TRGO-Polymer) 之合成與分析 106 4.4.1 溶液中自由相高分子(free polymer)之NMR鑑定 107 4.4.2 溶液中自由相高分子(BTPT polymer)、固相接枝高分子(grafted polymer)之GPC鑑定 116 4.4.3 接枝高分子之熱還原氧化石墨(TRGO-polymer)之TGA鑑定 125 4.5接枝高分子之氧化石墨烯 (TRGO-Polymer) 之XRD鑑定 132 4.6體積收縮特性 139 4.6.1 EPR(n=0.16)/DDM雙成分不同當量比體積收縮特性 139 吾人欲配置不同當量比ER=0.75、1、1.25之EPR/DDM雙成份式片以100℃固化後量測體積收縮特性,觀察其不同比例交聯劑下之交聯情況。 139 如圖4-54及表4-9可以發現當當量比ER偏離1/1時,體積收縮均會上升,且其玻璃轉化溫度Tg亦為最高[72]。故吾人將選用ER=1之環氧當量比為本次實驗之目標。 139 EPR(n=0.16)/DDM 139 4.6.2 EPR(n=0.16)/DDM/TRGO三成分系統固化後之體積收縮特性 141 4.6.3 EPR(n=0.16)/DDM/ TRGO-PBA-b-P(MA-co-GMA10)-xk(x=30、17、8)三成分系統固化後之體積收縮特性 143 4.6.4 EPR(n=0.16)/DDM/ TRGO-PBA-b-P(MA-co-GMA20)-xk(x=30、17、8)三成分系統固化後之體積收縮特性 145 4.7 SEM微觀型結構 147 4.7.1 EPR(n=0.16)/DDM二成分系統 147 4.7.2 EPR(n=0.16)/DDM/TRGO三成分系統 149 4.7.3 EPR(n=0.16)/DDM/ TRGO-PBA-b-P(MA-co-GMA10)-xk(x=30、17、8)三成分系統 151 4.7.4 EPR(n=0.16)/DDM/ TRGO-PBA-b-P(MA-co-GMA20)-xk(x=30、17、8)三成分系統 155 4.8機械性質研究 159 4.8.1 EPR(n=0.16)/DDM/ TRGO三成分系統固化後之機械性質 159 4.8.1.1 EPR(n=0.16)/DDM/ TRGO三成分系統固化後之耐衝擊強度 159 4.8.2 EPR(n=0.16)/DDM/ TRGO-PBA-b-P(MA-co-GMA10)-xk(x=30、17、8)三成分系統固化後之機械性質 171 4.8.3 EPR(n=0.16)/DDM/ TRGO-PBA-b-P(MA-co-GMA20)-xk(x=30、17、8)三成分系統固化後之機械性質 185 第五章 結論 198 第六章 建議之未來工作 208 第七章 參考文獻 209

    第七章 參考文獻
    [1] H. Kim, A. A. Abdala, C. W. Macosko, Macromolecules 2010, 43, 6515.
    [2] KesongHu,Dhaval D.,KulkarniIkjunChoi,Vladimir V.Tsukruk
    Progress in Polymer Science. 2014,39,1934
    [3] R. B. Burns, "Polyester molding compounds", Marcel Dekker, New York, 1982
    [4] K. E. Atkins, H. G. Kia, Sheet Molding Compounds: Science and Technology, Ch. 4, H.G. Kia, Hanser, New York 1993.
    [5] Y. J. Huang, C. M. Liang, Polymer 1996, 37, 401.
    [6] Y. J. Huang, C. J. Chu, J. P. Dong, Journal of Applied Polymer Science 2000, 78, 543.
    [7] Y.J. Huang, T.S. Chen, J.G. Huang, F. H. Lee, "Polym. Mater. Sci. Eng , 2000, 83, 493 .
    [8] Y.J. Huang, J.P. Dong, J.J. Yang, J.H. Lee, D. H. Lai, Polym. Mater. Sci. Eng. 85, 497 2001.
    [9] The B.F. Goodriche Co, WO93/21274, Oct. 28.1993.
    [10] E. Martuscelli, P. Musto, G. Ragosta, G. Scarinzi, E. Bertotti, Journal of Polymer Science Part B: Polymer Physics 1993, 31, 619.
    [11] S. B. Pandit, V. M. Nadkarni, Industrial & Engineering Chemistry Research 1994, 33, 2778.
    [12] D. S. Kim, K. Cho, J. H. An, C. E. Park, Journal of Materials Science 1994, 29, 1854.
    [13] J. S. Ullett, R. P. Chartoff, Polymer Engineering & Science 1995, 35, 1086.
    [14] M. Abbate, E. Martuscelli, P. Musto, G. Ragosta, G. Scarinzi, Journal of Applied Polymer Science 1995, 58, 1825.
    [15] M. L. L. Maspoch, A. B. Martinez, Polymer Engineering & Science 1998, 38, 290.
    [16] N. A. Miller, C. D. Stirling, Polym. Polym. Comps. 2001 , 9, 31.
    [17] R. E. Young, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976.
    [18] M. E. Kelly, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976, 370.
    [19] F. Fekete, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976, 28.
    [20] B. Ellis, "Chemistry and Technology of Epoxy Resins", London: Blackie Academic and Professional 1993.
    [21] 陳東課, 環氧樹脂在基層板之應用, 化工技術第四卷第五期, 1996.
    [22] 賴耿陽, 環氧樹脂應用實務, 復漢出版社, 台灣, 1999.
    [23] 賴家聲, 環氧樹脂與硬化劑(上), 復漢出版社, 台灣, 1999.
    [24] S. V. Levchik, G. Camino, M. P. Luda, L. Costa, G. Muller, B. Costes, Polymer degradation and stability 1998, 60, 169.
    [25] 黃滄閔,碩士論文,國立成功大學,2001.
    [26] T. Mitani, H. Shiraishi, K. Honda, G. E. Owen, 44th Annual Conference Composite Institute, the Society of the Plastics Industry, session RF (Reb3-9) 1989.
    [27] W. Li, L. J. Lee, Polymer 1998, 39, 5677.
    [28] M. Kinkelaar, S. Muzumdar, L. J. Lee, Polymer Engineering & Science 1995, 35, 823.
    [29] R. R. Hill, S. V. Muzumdar, L. J. Lee, Polymer Engineering & Science 1995, 35, 852.
    [30] W. Crc for Polymers Pty. Ltd., WO97,43339 Nov 20,1997.
    [31] J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, Macromolecules 1998, 31, 5559.
    [32] G. M. T. P. Le, S. H. T. E. Rizzardo, PCT Int. Appl. WO9801478 A1980115 1998.
    [33] D. J. Keddie, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 2012, 45, 5321.
    [34] Y. Zhao and S. Perrier," Macromolecules, 2007, 40, 9116-9124.
    [35] H. Kim, Y. Miura, C. W. Macosko, Chemistry of Materials 2010, 22, 3441.
    [36] H. Kim, C. W. Macosko, Macromolecules 2008, 41, 3317.
    [37] W. Huang, X. Ouyang, L. J. Lee, ACS Nano, 6, 10178, 2012.
    [38] J. Z. Xu, C. Chen, Y. Wang, H. Tang, Z. M. Li, B. S. Hsiao, Macromolecules, 2011, 44, 2808.
    [39] J.R.Potts, O.Shankar, L. Du, and R.S. Ruoff, Macromolecules 2012, 45, 6045.
    [40] S. Wang, M. Tambraparni, J. Qiu, J. Tipton, D. Dean, Macromolecules, 2009, 42, 5251.
    [41] S. Ganguli, A. K. Roy, D. P. Anderson, Carbon 2008, 46, 806.
    [42] M. Martin-Gallego, R. Verdejo, M. A. Lopez-Manchado, M. Sangermano, Polymer 2011, 52, 4664.
    [43] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558.
    [44] W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339.
    [45] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, I. A. Aksay, The Journal of Physical Chemistry B 2006, 110, 8535.
    [46] Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, H. Zhao, Langmuir 2009, 25, 11808
    [47] F.Beckert,C.Friedrich, R.Thomann, R.Mulhaupt , Macromolecules 2012, 45, 1346
    [48] 彭俊昇,碩士論文,國立台灣科技大學,2000.
    [49] H. R. Allcock, F. W. Lampe, "Contemporary Polymer Chemistry, 2nd Ed." Prentice-Hall, New Jersey, 1990, p.50.
    [50] C.S.Brazel and S.L. Rosen, "Fundamental Principles of Polymeric Materials, 3rd Ed." Wiley, New York, 2012.
    [51] 張容瑋,碩士論文,國立台灣科技大學, 2008.
    [52] M. Szwarc, Nature, 178, 1168, London, 1956.
    [53] T. Otsu, M. Yoshida, Makromol Chem Rapid Commun. 1982, 3, 127, 542.
    [54] K. Matyjaszewski, J. Xia, Chemical Reviews 2001, 101, 2921.
    [55] J. S. Wang, K. Matyjaszewski, Journal of the American Chemical Society 1995, 117, 5614.
    [56] M. Kamigaito, T. Ando, M. Sawamoto, Chemical Reviews 2001, 101, 3689.
    [57] D. H. Solomon, E. Rizzardo, P. Cacioli, US Patent, 4, 581, 429, 1985.
    [58] M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, G. K. Hamer, Macromolecules 1993, 26, 2987.
    [59] R. Francis, D. Taton, J. L. Logan, P. Masse, Y. Gnanou, R. S. Duran, Macromolecules 2003, 36, 8253.
    [60] P. Takolpuckdee, C. A. Mars, S. Perrier, Organic letters 2005, 7, 3449.
    [61] Y. Tsujii, M. Ejaz, K. Sato, A. Goto, T. Fukuda, Macromolecules 2001, 34, 8872.
    [62] R. Narain, S. P. Armes, Macromolecules 2003, 36, 4675.
    [63] Y. Zhao, and S. Perrier, Macromolecules 2006, 39, 8603.
    [64] K. Jiang, C. Ye, P. Zhuang, X. Wang, and Y. Zhao, Macromolecules 2012, 45, 1346.
    [65] 粘純嫣,碩士論文,國立台灣科技大學,2017.
    [66] 王妤榛,碩士論文,國立台灣科技大學,2016.
    [67] 鍾宛倫,碩士論文,國立台灣科技大學,2014.
    [68] L. Hlalele, and B. Klumperman, Macromolecules 2011, 44, 7100.
    [69] N. Rubio, H. Au, H. S. Leese, Sheng Hu, Adam J. Clancy, and Milo S. P. Shaffer , Macromolecules 2017,50,7077
    [70] Sanat K. Kumar* and Nicolas Jouault,2013,46,3203
    [71] 邱淑薇,碩士論文,國立台灣科技大學,2011
    [72] 廖婉茹,碩士論文,國立台灣科技大學,2018

    QR CODE