簡易檢索 / 詳目顯示

研究生: 王詠正
Yung-Cheng Wang
論文名稱: 以Pickering乳化聚合法製備高分子/氧化石墨烯與高分子/熱還原氧化石墨烯之核殼型顆粒,並探討其對環氧樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、及熱傳導與導電性質的影響研究
Synthesis of polymer/graphene oxide (GO) and polymer/thermally reduced graphene oxide (TRGO) core-shell particles by Pickering emulsion polymerizations, and their effects on cured sample morphologies, volume shrinkage, mechanical properties, and thermal and electrical conductivities for epoxy resins
指導教授: 黃延吉
Yan-Jyi Haung
口試委員: 陳崇賢
Chorng-Shyan Chern
邱文英
Wen-Yen Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 268
中文關鍵詞: 反應性微膠顆粒GO-polymer核殼型顆粒不飽和聚酯樹脂環氧樹脂乙烯基酯樹脂抗收縮劑乳化聚合pickering乳化聚合法體積收縮導電導熱
外文關鍵詞: Reactive microgel (RM) particles, GO-polymer core-shell particles(CSP), Unsaturated polyester (UP) resin, Epoxy resin (EPR), Vinyl ester resin (VER), Low-profile additive (LPA), Emulsion polymerization, Pickering emulsion polymerization, Thermal conductivities, Electrical conductivities
相關次數: 點閱:341下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討以傳統乳化聚合法,同時添加乳化劑及共乳化劑,合成奈米級之反應性微膠(RM)顆粒,以及Pickering乳化聚合法合成高分子(Polymer)-氧化石墨烯(GO)核殼形顆粒(CSP)以及高分子(Polymer)-熱還原氧化石墨烯(GO)核殼形顆粒(CSP)作為環氧樹脂(EPR)之抗體積收縮劑(LPA)以及增加其導熱和導電性能。
    吾人利用總體聚合法及溶液聚合法,合成三種不同化學結構之傳統UP樹脂,包括:Maleic anhydride (MA)- Phthalic anhydride (PA)-1,2-Propanediol (PG)型、MA-PG型、MA-1,6-Hexanediol (HD)型UP樹脂;及聚合度(n)為0.16、2、5之環氧樹脂(EPR)與VER作為基材。
    奈米級RMs顆粒之合成是以苯乙烯(Styrene,St)及上述合成之MA-HD型UP樹脂分別做為共單體,利用傳統乳化聚合法,結合乳化劑(十二烷基硫酸鈉,Sodium dodecyl sulfate,SDS)和共乳化劑(戊醇,1-Pentanol)的添加,並利用氫氧化鈉水溶液(NaOH(aq))控制乳化系統的pH值,以利自乳化聚合的機制同時作用,抑制乳化顆粒的凝聚,進而合成出奈米級(粒徑小於100 nm)之反應性微膠(RM)顆粒。
    高分子(Polymer)-氧化石墨烯(GO)核殼形顆粒(CSP)的合成,是以苯乙烯(Styrene,St)及苯乙烯交聯不飽和聚脂樹脂為核心,不飽和聚脂樹脂是Maleic anhydride (MA) -1,6-Hexanediol (HD)型UP樹脂,利用pickering乳化聚合法以氧化石墨烯(GO)和熱還原氧化石墨烯(TRGO)為界面活性劑包覆高分子的表面。
    於100 ℃下製備不同CSP添加量(0、0.5、1.0及1.5 wt%)之EPR (n=0.16)/DDM/Polymer-GO和EPR (n=0.16)/DDM/Polymer-TRGO固化試片。吾人並以SEM觀察EPR (n=0.16)/DDM/Polymer-GO和EPR (n=0.16)/DDM/Polymer-TRGO三成份聚合固化後樣品之微觀形態結構,亦測量CSP添加量和樹脂基材之種類等因素,對三成份之體積收縮特性與機械性質和導電導熱之影響。


    In this thesis, traditional emulsion polymerization methods with the addition of surfactant and co-surfactant, have been employed to synthesize nano-scale microgel (RM) particles and the synthesis of polymer-graphene oxide(GO) core-shell particles(CSP) and polymer-thermally reduced graphene oxide(TRGO) core-shell particles(CSP) by Pickering emulsion polymerization as low-profile additives (LPA) for epoxy resin, and increase its thermal conductivity and electrical properties has also investigated.
    The bulk and solution polymerization were used to synthesize three kinds of traditional UP resins with different chemical structures, including Maleic anhydride (MA) -Phthalic anhydride (PA) -1, 2-Propanediol (PG) type, MA-PG type, MA-1,6-Hexanediol (HD) type UP resin. Epoxy resin (EPR) and VER with a degree of polymerization (n) of 0.16, 2, and 5,respectively,were synthesized by the bulk and solution polymerizations as well.
    The nano-scale RM particles were synthesized by traditional emulsion polymerization, combined with surfactant (Sodium Dodecyl sulfate, SDS) and co- surfactant (1-Pentanol). In the synthesis of RM, using styrene (St) and unsaturated polyester (MA-HD types of UP) as comonomers, sodium hydroxide solution (NaOH(aq)) was also employed to control pH value of the emulsion systems and facilitate simultaneous action of the mechanism of the self-emulsification polymerization. As a result, the aggregation of colloid particles in the emulsion polymerizations would be greatly reduced, and the nano-scale reactive microgel particles (RM) with a particle size less than 100 nm could be synthesized.
    The synthesis of polymer-graphene oxide (GO) core-shell particles (CSP) and polymer-thermally reduced graphene oxide(TRGO) core-shell particles(CSP) has been based on styrene (Styrene, St) and styrene cross-linked unsaturated polyester resin. The unsaturated polyester resin can be Maleic anhydride (MA) -1,6-Hexanediol (HD) type UP resin, which has been synthesized by pickering emulsification polymerization method and graphene (GO) is a surfactant coating polymer surface.
    EPR (n=0.16)/DDM/Polymer-GO and EPR (n=0.16)/DDM/Polymer-TRGO ternary systems with different loading of CSP (0, 0.5, 1.0 and 1.5 wt%) and EPR (n=0.16)/DDM/Polymer-GO and EPR (n=0.16)/DDM/Polymer-TRGO were cured isothermally at 100 °C. The effects of CSP concentration and type of resin matrix on the cured morphology by SEM, for volumetric shrinkage after the cure, and mechanical properties and thermal and electrical conductivities for the EPR (n=0.16)/DDM/Polymer-GO and EPR (n=0.16)/DDM/Polymer-TRGO cured systems has aslo been investigated.

    摘要 I Abstract II 目錄 IV 圖目錄 VIII 表目錄 XVIII 第一章 緒論 1 1-1 簡介 1 1-2 不飽和聚酯(UP)樹脂之合成 2 1-3 環氧樹脂(EPR)之合成 2 1-4 乙烯基酯樹脂(VER)之合成 4 1-5 不飽和聚酯(UP)與苯乙烯(ST)之交聯共聚合反應 5 1-6 反應性微膠體(REACTIVE MICROGELS,RM) 8 1-7 石墨烯/高分子奈米複合材料 13 1-8 研究範疇 15 第二章 文獻回顧 17 2-1 不飽和聚酯(UP)樹脂之合成 17 2-2 環氧樹脂(EPR)之合成 20 2-3 乙烯基酯樹脂(VER)之合成 22 2-4 逐步成長(縮合)聚合反應 24 2-5 自由基加成(鏈成長)聚合反應 26 2-6 可控/活性自由基聚合法(CRP) 29 2-7 共聚合反應機制與控制共聚合體組成 35 2-8 總體聚合法、溶液聚合法、乳化聚合法 39 2-9 乳液安定性 47 2-10 界面電位(ZETA POTENTIAL) 50 2-11 石墨烯/高分子奈米複合材料之研究 52 2-12 以氧化石墨烯(GO)為穩定劑(界面活性劑)的PICKERING乳液系統 57 2-13 以熱還原氧化石墨烯為穩定劑的 PICKERING 懸浮聚合 60 2-14 以 PICKERING微乳液聚合製備高分子-氧化石墨烯奈米顆粒 61 2-15 以 PICKERING 迷你浮化聚合製備中空混成高分子-氧化石墨烯奈米顆粒 62 第三章 實驗方法及設備 63 3-1 實驗藥品 63 3-1-1 不飽和聚酯(UP)之合成原 63 3-1-2 環氧樹脂(EPR) 及乙烯基酯樹脂(VER)之合成原料 64 3-1-3 應用於環氧樹脂(EPR)鏈延伸之觸媒(ETTP.Ac.HAc)之合成原料 66 3-1-4 反應性微膠顆粒之合成原料 67 3-1-5 氧化石墨烯之合成原料 69 3-1-6 以pickering乳化聚合法合成之Polymer/GO or TRGO核殼型顆粒(CSP)的合成原料 70 3-1-7 EPR/ DDM/ RM三成分系統固化試片之原料 72 3-1-8 EPR/ DDM/ CSP三成分系統固化試片之原料 73 3-2 實驗設備 74 3-2-1 合成設備 74 3-2-2 鑑定設備 79 3-3 實驗步驟 81 3-3-1 不飽和聚酯(UP)樹脂 81 3-3-2 環氧樹脂(EPR) 90 3-3-3 乙烯基酯樹脂(VER) 97 3-3-4 以傳統乳化聚合法合成反應性微膠(RM)顆粒 103 3-3-5 氧化石墨烯(GO)之合成 104 3-3-6 熱還原氧化石墨烯(TRGO)之合成 104 3-3-7 以Pickering乳化聚合法合成高分子-氧化石墨烯核殼型顆粒(polymer-GO CSP) 105 3-3-8 EPR(n=0.16)/ DDM / RM三成分系統固化試片之製作 108 3-3-9 EPR(n=0.16)/ DDM / CSP三成分系統固化試片之製作 109 3-3-10 核磁共振光譜儀樣品之製備 110 3-3-11 相對分子量及分子量分佈之測定 110 3-3-12 乳液粒徑之測定 111 3-3-13 熱傳導係數測定 112 3-3-14 表面電阻測定 112 3-3-15 掃描式電子顯微鏡(SEM) 112 3-3-16 穿透式電子顯微鏡(TEM) 113 3-3-17 拉伸測試 114 3-3-18 耐衝擊測試 114 第四章 結果與討論 115 4-1 樹脂之合成 115 4-1-1 不飽和聚酯(UP)樹脂之合成 115 4-1-2 環氧樹脂(EPR)之合成 125 4-1-3 乙烯基酯樹脂(VER)之合成 130 4-1-4 樹脂合成之注意事項 137 4-2 樹脂之鑑定 140 4-2-1 不飽和聚酯(UP)樹脂之鑑定 140 4-2-2 環氧樹脂(EPR)之鑑定 167 4-2-3 乙烯基酯樹脂(VER)之鑑定 175 4-3 以傳統乳化聚合法製備反應性微膠顆粒及其鑑定分析 185 4-3-1 MA-HD型反應性微膠顆粒(RM) 185 4-4 以PICKERING乳化聚合法合成高分子-氧化石墨烯核殼型顆粒 189 4-4-1 核心為聚苯乙烯之高分子-氧化石墨烯核殼形顆粒(PS-GO,CSP) 190 4-4-2 核心為苯乙烯交聯之不飽和聚酯樹脂(MA-HD),外殼為氧化石墨烯之核殼型顆粒( RM(MA-HD)-GO CSP) 192 4-4-3 核心為苯乙烯交聯之不飽和聚酯樹脂(MA-HD),外殼為熱還原氧化石墨烯之核殼型顆粒( RM(MA-HD)-TRGO CSP) 204 4-5 EPR(N=0.16)/DDM/CSP 三成份聚合固化系統之微觀形態結構 208 4-5-1 EPR(n=0.16)/DDM/PS-GO 三成份聚合固化系統之微觀形態結構 208 4-5-2 EPR(n=0.16)/DDM/(MA-HD)-GO 三成份聚合固化系統之微觀形態結構 211 4-5-3 EPR(n=0.16)/DDM/(MA-HD)-TRGO 三成份聚合固化系統之微觀形態結構 214 4-6 三成份系統之體積收縮性質 217 4-6-1 EPR(n=0.16)/DDM/PS-GO 三成份系統之體積收縮性質 217 4-6-2 EPR(n=0.16)/DDM/(MA-HD)-GO 三成份系統之體積收縮性質 219 4-6-3 EPR(n=0.16)/DDM/(MA-HD)-TRGO 三成份系統之體積收縮性質 221 4-7 三成份系統之耐衝擊強度 223 4-7-1 EPR(n=0.16)/DDM/PS-GO 三成份系統之耐衝擊強度 223 4-7-2 EPR(n=0.16)/DDM/(MA-HD)-GO 三成份系統之耐衝擊強度 225 4-7-3 EPR(n=0.16)/DDM/(MA-HD)-TRGO 三成份系統之耐衝擊強度 227 4-8 三成份系統之楊氏模數 229 4-8-1 EPR(n=0.16)/DDM/PS-GO 三成份系統之楊氏模數 229 4-8-2 EPR(n=0.16)/DDM/(MA-HD)-GO 三成份系統之楊氏模數 231 4-8-3 EPR(n=0.16)/DDM/(MA-HD)-TRGO 三成份系統之楊氏模數 233 4-9 三成分系統之抗張強度 235 4-9-1 EPR(n=0.16)/DDM/PS-GO 三成份系統之抗張強度 235 4-9-2 EPR(n=0.16)/DDM/(MA-HD)-GO 三成份系統之抗張強度 237 4-9-3 EPR(n=0.16)/DDM/(MA-HD)-TRGO 三成份系統之抗張強度 239 4-10 三成分系統之斷裂拉伸率 241 4-10-1 EPR(n=0.16)/DDM/PS-GO 三成份系統之斷裂拉伸率 241 4-10-2 EPR(n=0.16)/DDM/(MA-HD)-GO 三成份系統之斷裂拉伸率 243 4-10-3 EPR(n=0.16)/DDM/(MA-HD)-TRGO 三成份系統之斷裂拉伸率 245 4-11 三成分系統之熱傳導係數 247 4-11-1 EPR(n=0.16)/DDM/PS-GO 三成份系統之熱傳導係數 247 4-11-2 EPR(n=0.16)/DDM/(MA-HD)-GO 三成份系統之熱傳導係數 249 4-11-3 EPR(n=0.16)/DDM/(MA-HD)-TRGO 三成份系統之熱傳導係數 251 4-12 三成分系統之導電性質 253 4-12-1 EPR(n=0.16)/DDM/PS-GO 三成份系統之導電性質 253 4-12-2 EPR(n=0.16)/DDM/(MA-HD)-GO 三成份系統之導電性質 254 4-12-3 EPR(n=0.16)/DDM/(MA-HD)-TRGO 三成份系統之導電性質 255 第五章 結論 256 第六章 未來工作 259 第七章 參考文獻 260

    [1] C. S. Brazel, and S. L. Rosen, Fundamental Principles of Polymeric Materials, Third Edition, Hoboker, New Jersey: John Wiley & Sons, Inc., 2012
    [2] 蘇藤成(譯),最先進的使用樹脂材料的複合技術,台北市:財團法人中興工程科技研究發展基金會,民國103年
    [3] R. B. Burns, Polyester Molding Compounds, New York: Marcel Dekker, 1982
    [4] H. G. Kia, ed., Sheet Molding Compound : Science and Technology, New York: Hanser Publishers, 1993
    [5] M. Gilbert, ed., Brydson’s Plastics Materials, Eighth Edition, Kidlington: Elsevier Ltd., 2017
    [6] S. Jaswal and B. Gaur, Reviews in Chemical Engineering, Vol. 30, 6, pp. 567 (2014)
    [7] The Dow Chemical Company, PCT Int. Appl. WO 86/07067 (Dec. 4, 1986).
    [8] 朱祈佑,奈米級及次微米級壓克力核殼型橡膠添加劑與不飽和聚酯之合成及苯乙烯/不飽和聚酯/特用添加劑三成份系之相容性研究,碩士論文,國立臺灣科技大學,2007
    [9] Y. S. Yang, and L. J. Lee, Microstructure formation in the cure of unsaturated polyester resins, Polymer, 29, 1793-1800, 1988
    [10] K. Horie, I. Mita, and H. Kambe, Calorimetric Investigation of Polymerization Reactions. II. Copolymerization of Diethyl Fumarate with Styrene, J. Polym. Sci.: Part A-1, 7, 2561-2573, 1969
    [11] F. R. Mayo, and F. M. Lewis, Copolymerization. I. A Basis for Comparing the Behavior of Monomers in Copolymerization; The Copolymerization of Styrene and Methyl Methacrylate, J. Amer. Chem. Soc, 66, 1954-1601, 1944
    [12] F. M. Lewis, C. Walling, W. Cummings, E. R. Briggs, and F. R. Mayo, Copolymerization. IV. Effects of Temperature and Solvents on Monomer Reactivity Ratios, J. Amer. Chem. Soc, 70, 1519-1523, 1948
    [13] 江文慶,不飽和聚酯樹脂之合成及苯乙烯/不飽和聚酯二成份系與苯乙烯/不飽和聚酯/抗收縮三成份系之相溶性研究,碩士論文,國立臺灣科技大學,1996
    [14] Y. J. Huang, and W. C. Jiang, Effects of chemical composition and structure of unsaturated polyester resins on the miscibility, cured sample morphology and mechanical properties for styrene/unsaturated polyester/ low-profile additive ternary systems. 1: Miscibility and cured sample morphology, Polymer, 39, 6631-6641, 1998
    [15] W. Funke, Reactive Microgels-Polymers Intermediate in Size Between Single Molecules and Particles, British Polymer Journal, 21, 107-115, 1989
    [16] W. Funke, O. Okay, and B. Joos-Muller, Microgels-Intramoleculary Crosslinked Macromolecules with a Globular Structure, Advance in Polymer Science, 186, 139-234, 1998
    [17] 黃智偉,石墨烯奈米層板之合成及探討無機二氧化矽/有機高分子核殼型顆粒、矽烷接枝之蒙特納石黏土、及石墨烯奈米層板對不飽和聚酯、乙烯基酯、及環氧樹脂之體積收縮、機械性質及微觀型態結構之影響,碩士論文,國立臺灣科技大學,2013
    [18] 蘇清源,石墨烯氧化物之特性與應用前景,物理雙月刊,33卷2期,163-167,2011
    [19] H. Kim, A. A. Abdala, and C. W. Macosko, Graphene/Polymer Nanocomposites, Macromolecules, 43, 6515-6530, 2010
    [20] K. Hu, D. D. Kulkarni, I. Choi, and V. V. Tsukruk, Graphene-polymer nanocomposites for structural and functional applications, Progress in Polymer Science, 39, 1934-1972, 2014
    [21] A. S. Wajid, H. S. T. Ahmed, S. Das, F. Irin, A. F. Jankowski, and M. J. Green, High-Performance Pristine Graphene/Epoxy Composites With Enhanced Mechanical and Electrical Properties, Macromolecule Materials and Engineering, 289, 339-347, 2013 
    [22] H. Kim, Y. Miura, and C. W. Macosko, Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity, Chemistry of Materials, 22, 3441-3450, 2010
    [23] S. He, N. D. Petkovich, K. Liu, Y. Qian, C. W. Macosko, and A. Stein, Unsaturated polyester resin toughening with very low loadings of GO derivatives, Polymer, 110, 149-157, 2017
    [24] 黃豪寬,由元素矽水解法合成無機二氧化矽奈米顆粒及以RAFT活自由基溶液聚合法合成用於不飽和聚酯及乙烯基酯具核殼型結構之高分子接枝二氧化矽奈米顆粒、高分子接枝之氧化石墨烯、及高分子接枝之脫層石墨烯奈米層板抗收縮劑及增韌劑,碩士論文,國立臺灣科技大學,2015
    [25] 曾建誠,官能基化之氧化石墨烯及脫層石墨烯奈米層板之合成及探討奈米級及次微米級核殼型橡膠添加劑、無機二氧化矽/有機高分子核殼型顆粒、官能基化之氧化石墨烯及官能基化之脫層石墨烯奈米層板對不飽和聚酯及乙烯基酯樹脂之體積收縮、機械性質及微觀型態結構之影響,碩士論文,國立臺灣科技大學,2015
    [26] 王妤榛,矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討奈米級及次微米級核殼型橡膠添加劑、無機二氧化矽核殼型顆粒、氧化石墨烯及熱脫層氧化石墨烯及反應型微膠顆粒對乙烯基酯樹脂之體積收縮、機械性質、微觀型態結構及X光散射特性之影響,碩士論文,國立臺灣科技大學,2016
    [27] 林怡均,以RAFT活自由基溶液聚合法合成用於不飽和聚酯及乙烯基酯樹脂具核殼型結構的高分子接枝之氧化石墨烯及高分子接枝之熱脫層氧化石墨烯之抗收縮劑及增韌劑,碩士論文,國立臺灣科技大學,2016
    [28] 廖翊成,矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對乙烯基酯樹脂之體積收縮、機械性質、微觀型態結構、及X光散射特性之影響,碩士論文,國立臺灣科技大學,2017
    [29] 粘純嫣,以RAFT活自由基溶液聚合法合成用於不飽和聚酯及乙烯基酯樹脂具核殼型結構的高分子接枝之氧化石墨烯及高分子接枝之熱脫層氧化石墨烯之抗收縮劑及增韌劑,碩士論文,國立臺灣科技大學,2017
    [30] 邱冠智,矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對環氧樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響,碩士論文,國立臺灣科技大學,2018
    [31] 江義駿,以 RAFT活自由基溶液聚合法合成高分子接枝之氧化石墨烯及熱脫層氧化石墨烯及探討其對環氧樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響,碩士論文,國立臺灣科技大學,2018
    [32] 林禹丞,矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對乙烯基酯樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響,碩士論文,國立臺灣科技大學,2019
    [33] 張庭豐,以 RAFT活自由基溶液聚合法合成高分子接枝之氧化石墨烯及熱脫層氧化石墨烯及探討其對乙烯基酯樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響,碩士論文,國立臺灣科技大學,2019
    [34] 黃妍綾,以RAFT活自由基溶液聚合法合成高分子接枝之氧化石墨烯及熱脫層氧化石墨烯及探討其對不飽和聚酯樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響,碩士論文,國立臺灣科技大學,2020
    [35] 周雅欣,矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對不飽和聚酯樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響,碩士論文,國立臺灣科技大學,2020
    [36] J. Simitzis, Correlation Between the Production Parameters of Unsaturated Polyesters with the Aim to Control the Polyesterifiction Process, European Polymer Journal, 24, 87-92, 1988
    [37] R. Subramaniam, and F. J. McGarry, SPI/CI 48th Annual Conference, Session 14-C (Feb. 8-11, 1993)
    [38] H. Batzer, and S. A. Zahir, Studies in the Molecular Weight Distribution of Epoxide Resins. I. Gel Permeation Chromatography of Epoxide Resins, Journal of Applied Polymer Science, 19, 585-600, 1975
    [39] S. K. Gupta et al., Reaction Engineering of Step Growth Polymerization, New York: Plenum Publishing Corporation, 1987
    [40] Carlisle Chemical works, Inc., U.S. Patent 3,341,580, 1967
    [41] The Dow Chemical Campany, U.S. Patent 3,948,855, 1976
    [42] P. Penczek, J. Sodhi, and R. Ostrysz, Unsaturated Ester Resins, Journal of Applied Polymer Science, 101, 2627-2631, 2006
    [43] G. Odian, Principles of Polymerization, Fourth Edition, New Jersey: John Wiley & Sons, Inc., 2004
    [44] B. Gawdzik, and T. Matynia, Synthesis and Modification of Epoxy-Based Divinyl Ester Resin, Journal of Applied Polymer Science, 81, 2062-2067, 2001
    [45] 彭俊昇,醋酸乙烯團聯共聚合物型抗收縮劑之合成及苯乙烯/不飽和聚酯/抗收縮劑三成份系之聚合固化研究,碩士論文,國立臺灣科技大學,2000
    [46] M. Szwarc, ‘Living’ Polymers, Nature,178 (24), 1168-1169, 1956
    [47] A. D. Jenkins, P. Kratochvil, R. F. T. Stepto, and U. W. Suter, Glossary of Basic Terms in Polymer Science (IUPAC Recommendations 1996), Pure and Applied Chemistry, 68 (12), 2287–2311, 1996
    [48] K. Matyjaszewski, Controlled/Living Radical Polymerizations: From Synthesis to Materials, ACS Symposium Series 944, American Chemical Society: Washington, DC, 2006
    [49] K. Matyjaszewski, and J. Xia, Atom Transfer Radical Polymerization, Chemical Reviews, 101, 2921-2990, 2001
    [50] J. S. Wang, and K. Matyjaszewski, Controlled/“Living” Radical Polymeri-zation. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes, Journal of the American Chemical Society, 117, 5614-5615, 1995
    [51] D. H. Solomon, G. Waverley, E. Rizzardo, W. Hill, and P. Cacioli, US Patent 4,581,429, 1985
    [52] M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, and G. K. Hamer, Narrow Molecular Weight Resins by a Free-Radical Polymerization Process, Macromolecules, 26, 2987-2988, 1993
    [53] T .P. Le, G. Moad, E. Rizzardo, and S. H. Thang, PCT Int. Appl. WO9801478 A1980115, 1998
    [54] 蔡明洲,不同顆粒大小及外殼化學組成之奈米級壓克力核殼型橡膠增韌劑合成及苯乙烯/不飽和聚酯/特用添加劑三成份系之相溶性研究,碩士論文,國立臺灣科技大學,2006
    [55] D. H. Sebastian, and J. A. Biesenberger, Thermal Ignition Phenomena in Chain-Addition Copolymerizations, Journal of Applied Polymer Science, 23, 661-686, 1979
    [56] 許繼強,苯乙烯迷你乳化聚合反應:具官能基單體之效應,碩士論文,國立臺灣科技大學,1999
    [57] A. S. Kabalnov, K. N. Makarov, A. V. Pertzov, and E. D. Shchukin, Ostwald Ripening in Hydrocarbon Emulsions: Experimental Verification of Equation for Absolute Rates, Journal of Colloid and Interface Science, 138 (1), 98-104, 1990
    [58] A. S. Kabalnov, A. V. Pertzov, and E. D. Shchukin, Ostwald Ripening in Two-Component Disperse Phase Systems: Application to Emulsion Stability, Colloids and Surfaces, 24, 19-32, 1987
    [59] P. Taylor, Ostwald ripening in emulsions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 99, 175-185, 1995
    [60] A. S. Kabalnov, and E. D. Shchukin, Ostwald Ripening Theory: Applications to Fluorocarbon Emulsion Stability, Advances in Colloid and Interface Science, 38, 69-97, 1992
    [61] W. L. Grimm, T. I. Min, M. S. El-Aasser, and J. W. Vanderhoff, The Role of Low Concentrations of Ionic Emulsifier-Fatty Alcohol Mixtures in the Emulsification of Styrene, Journal of Colloid and Interface Science, 94 (2), 531-545, 1983
    [62] Y. T. Choi, Formation and Stabilization of Miniemulsions and Latexes, Ph. D. Dissertation, Lehigh University, 1986
    [63] W. L. Grimm, The Use of Mixed-Emulsifier Systems in the Preparation and Stabilization of Emulsions and Latexes, M. S. Thesis, Lehigh University, 1986
    [64] G. W. Lu, and P. Gao, Handbook of Non-Invasive Drug Delivery Systems, Kidlington: Elsevier Ltd., 2010
    [65] Malvern Panalytical Ltd., Zetasizer Nano ZS90, Retrieved from https://www. malvernpanalytical.com/en/products/product-range/zetasizer-range/zetasizer-nano-range/zetasizer-nano-zs90 (June 30, 2019)
    [66] J. N. Losso, A. Khachatryan, M. Ogawa, J. S. Godber, and F. Shih, Random centroid optimization of phosphatidylglycerol stabilized lutein-enriched oil-in-water emulsions at acidic pH, Food Chemistry, 92, 737-744, 2005
    [67] I. Roland, G. Piel, L. Delattre, and B. Evrard, Systematic characterization of oil-in-water emulsions for formulation design, International Journal of Pharmaceutics, 263, 85-94, 2003
    [68] J. Texter, Current Opinion in Colloid & Interface Science, 20, 454 (2015).
    [69] J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull, and J. Huang, J. Am. Chem. Soc., 132, 8180 (2010).
    [70] Y. He, F. Wu, X. Sun, R. Li, Y. Guo, C. Li, L. Zhang, F. Xing, W. Wang, and J. Gao, ACS Applied Materials & Interfaces, 5, 4843 (2013).
    [71] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, and A. Slesareva et al., ACS Nano, 4, 4806 (2010).
    [72] S.C. Thickett and P.B. Zetterlund, Journal of Colloid and Interface Science, 442, 67 (2015).

    [73] P. Xie, X. Ge, B. Fang, Z. Li, Y. Liang, and C. Yang, Colloid Polym Sci, 291, 1631 (2013).
    [74] Y. Huang, X. Wang, X. Jin, and T. Wang, J Therm Anal Calorim, 117, 755 (2014).
    [75] G. Erdenedelger, T.D. Dao, and H.M. Jeong, Journal of Colloid and Interface Science, 476, 47 (2016).
    [76] S. H. Che Man, S.C. Thickett, Michael R. Whittaker, Per B. Zetterlund, Journal of Polymer Science Part A: Polymer Chemistry, 51, 47 (2012)
    [77] S.C. Thickett, N. Wood, Y.H. Ng, and P.B. Zetterlund, Nanoscale, 6, 8590 (2014).
    [78] G.H. Teo, Y.H. Ng, P.B. Zetterlund, and S.C. Thickett, Polymer, 63, 1 (2015).
    [79] L. Liang, and W. Funke, Cross-Linking Self-Emulsify Copolymerization of an Unsaturated Polyester and Styrene, Macromolecules, 29, 8650-8655, 1996
    [80] E. F. Cariston, and G. B. Johnson, U.S. Patent 2,904,533, 1959
    [81] W. Funke, R. Kolitz, and W. Straehle, Emulsion Polymerization of Unsaturated Polyester Resins, Macromolecular Chemistry and Physics, 180, 2797-2799, 1979
    [82] Angel Setyawati Djiuardi,反應性微膠顆粒之合成及其對苯乙烯/不飽和聚酯/反應性微膠顆粒三成份系統之體積收縮、內部可染色性、聚合固化樣品微觀結構及機械性質之研究,碩士論文,國立臺灣科技大學,2008
    [83] 高慶霖,以乳化聚合法合成反應型微膠顆粒及以Pickering乳化聚合法製備反應性微膠/氧化石墨烯之核殼結構顆粒,並探討其對不飽和聚酯樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、及熱傳導與導電性質的影響,碩士論文,國立台灣科技大學,2020
    [84] 楊昌叡,以傳統乳化聚合法合成用於不飽和聚酯及乙烯基酯樹脂之奈米級及次微米級高分子核殼型橡膠及反應型微膠顆粒之抗收縮劑及增韌劑,碩士論文,國立臺灣科技大學,2017
    [85] 詹承穎,以乳化聚合法合成用於乙烯基酯樹脂及環氧樹脂之奈米級及次微米級高分子核殼型橡膠及反應性微膠顆粒之抗收縮劑及增韌劑,碩士論文,國立臺灣科技大學,2018
    [86] 陳彥博,以乳化聚合法合成用於乙烯基酯樹脂及不飽和聚酯樹脂之奈米級及次微米級反應性微膠顆粒之抗收縮劑及增韌劑,碩士論文,國立臺灣科技大學,2019
    [87] 黃俊翰,以傳統乳化聚合法及RAFT活自由基乳化聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級及次微米級壓克力核殼型橡膠添加劑,碩士論文,國立臺灣科技大學,2009
    [88] 饒瑞博,以傳統乳化聚合法及RAFT活自由基乳化聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級及次微米級高分子核殼型橡膠添加劑,碩士論文,國立臺灣科技大學,2013
    [89] 鍾孟儒,以傳統乳化聚合法及RAFT活自由基乳化聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級及次微米級高分子核殼型橡膠及反應型微膠顆粒之抗收縮劑及增韌劑,碩士論文,國立臺灣科技大學,2014
    [90] 楊芝寧,矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對環氧樹脂之聚合固化反應動力、玻璃轉移溫度、及X光散射特性、聚合固化樣品微觀型態結構、体積收縮、機械性質、熱傳導及導電性質的影響,碩士論文,國立臺灣科技大學,2021
    [91] S. Wang, M. Tambraparni, J. Qiu, J. Tipton, D. Dean, Macromolecules, 42, 5251(2009)

    QR CODE