簡易檢索 / 詳目顯示

研究生: 林建江
Jian-Jiang Lin
論文名稱: 以RAFT活自由基溶液聚合法合成高分子接枝之氧化石墨烯及熱脫層氧化石墨烯及探討其對不飽和聚酯樹脂與乙烯基酯樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響
Synthesis of polymer-grafted graphene oxide and thermally reduced graphene oxide by RAFT free radical solution polymerizations, and their effects on cured sample morphologies, volume shrinkage, mechanical properties, and thermal and electrical conductivities for unsaturated polyester and vinyl ester resins
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 邱文英
Wen-Ying Qiu
陳崇賢
Chorng-Shyan Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 180
中文關鍵詞: 熱還原氧化石墨烯高分子接枝熱還原氧化石墨烯抗收縮劑 (LPA)可逆加成-斷裂鏈轉移聚合法(RAFT)unsaturated polyester resins (UP)體積收縮微觀結構導熱性質導電性質
外文關鍵詞: thermal reduced graphene oxide, polymer grafted thermal reduced graphene oxide, low-profile additive (LPA), reversible addition-fragmentation chain transfer (RAFT) polymerization, unsaturated polyester resins (UP), volume shrinkage, micro structure, thermal conductivity, electrical property
相關次數: 點閱:465下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討核殼型結構(CSS)高分子接枝之熱還原氧化石墨烯的合成(TRGO-Polymer),並作為低收縮添加劑(LPA),以不飽和聚酯樹酯(UP)作為基材,探討其體積收縮、微觀結構、導熱性質、導電性質以及機械性質的影響。
    合成之低收縮添加劑(LPA),為核殼型結構(CSS)。其核心是以石墨為原料並用modified Hummers方法經96小時氧化反應製備氧化石墨烯(GO),再將氧化石墨烯(GO)經高溫(1050˚C)處理為熱還原氧化石墨烯(TRGO),再以Z支撐可逆加成-斷裂活性基聚合法(RAFT)與高分子單體交聯合成;其外殼為丙烯酸甲酯(MA)與甲基丙烯酸環氧丙酯(GMA)及聚丙烯酸丁酯(BA)的共聚合物(PBA-b- poly(MA-co-GMA))。
    氧化石墨烯(GO)、熱還原氧化石墨烯(TRGO) 以WAXS、XRD、EA分析;鏈轉移劑(BTPT)、大分子鏈轉移劑、高分子接枝之熱還原氧化石墨烯(TRGO-Polymer),以1H-NMR、GPC鑑定。
    吾人合成了三種不同分子量之高分子接枝於TRGO表面,TRGO-Polymer,並探討苯乙烯(St)/不飽和聚脂樹脂(UP)/TRGO-Polymer之三成分系統,於110˚C恆溫聚合固化後,其體積收縮、微觀結構、導熱性質、導電性質以及機械性質的影響。


    Synthesis of polymer-grafted thermally reduced graphene oxide with core-shell structure (CSS) as low-profile additives (LPA), and thier effects on volume shrinkage, microstructure, thermal conductivity, electrical conductivity and mechanical properties for unsaturated polyester (UP) after cure were investigated.
    The synthesized low shrinkage additive (LPA) has a core-shell structure (CSS). Its core was thermal reduced graphene oxide (TRGO), which was prepared by using graphite as raw material and using the modified Hummers method for 96 hours of oxidation reaction to produce graphene oxide (GO). The thermal reduced graphene oxide (TRGO) was then produced by heating GO in a high temperature furnace at 1050˚C for 30 or 90 seconds. The grafted polymer as the shell structure was grafted on the surface of the thermally reduced graphene oxide (TRGO), where the grafted polymer was copolymer made form methyl acrylate (MA), glycidyl methacrylate (GMA), and butyl acrylate (BA) comonomers (PBA-block-poly(MA-co-GMA)).
    Graphite oxide (GO) and thermally reduced graphene oxide (TRGO) were characterized by using wide angle X-ray scattering system (WAXS), X-ray Diffraction (XRD) and elemental analysis (EA). S -Benzyl S'-trimethoxysilyl propyl trithiocarbonate (BTPT), macro-RAFT agent of BTPT-(MA-co-GMA) and TRGO-PBA-b-P(MA-co-GMA) were characterized by using 1H-NMR, gel permeation chromatography (GPC).
    Three kinds of TRGO-Polymers with different polymer molecular weights were synthesized. In this work, the effect of TRGO-polymer on the volume shrinkage, micro structure, thermal conductivity, electrical conductivity, and mechanical properties for the styrene (St)/unsaturated polyester resins (UP)/TRGO-polymer ternary systems after the cure were investigated.

    摘要 I Abstract II 致謝 IV 目錄 V 圖表索引 XI 第一章 緒論 1 1-1石墨烯 1 1-2高分子複合材料 2 1-3不飽和聚酯 (Unsaturated polyester, UP) 2 1-4環氧樹脂 (Epoxy Resin) 3 1-5乙烯基酯聚脂 (Vinyl Ester Resin, VER) 3 1-6抗收縮劑 (Low Profile Additive, LPA) 3 1-7研究範疇 4 第二章 文獻回顧 5 2-1石墨烯/高分子奈米複合材料 5 2.2氧化石墨烯(GO)及熱還原氧化石墨(TRGO) 7 2.3可逆加成-斷裂鏈轉移聚合法(RAFT) 8 2-4以RAFT聚合法合成高分子接枝之氧化石墨烯 9 2-5不飽和聚酯之聚合固化機制及固化後微觀結構之研究 10 2-6不飽和聚酯之抗收縮補償機制及體積收縮研究 11 2-7不飽和聚酯硬化後的機械性質研究 12 第三章 實驗方法及設備 14 3.1實驗藥品 14 3.2 實驗儀器 19 3.2.1直流攪拌器 19 3.2.2高速離心機 19 3.2.3高溫爐 19 3.2.4真空旋轉減壓濃縮儀 19 3.2.5核磁共振光譜儀 (Nuclear Magnetic Resonance spectroscopy- NMR) 19 3.2.6凝膠滲透層析儀 (Gel permeation chromatography- GPC) 20 3.2.7元素分析儀 (Elemental analysis- EA) 20 3.2.8廣角度X光散射儀 (Wide Angle X-ray Scattering System) 21 3.2.9 X光繞射儀 (XRD: X-ray Diffraction) 21 3.2.10水流抽氣幫浦 21 3.2.11超音波震盪儀 21 3.2.12熱重分析儀 (Thermogravimetric analysis- TGA) 22 3.2.13掃描式電子顯微鏡 (Scanning Electron Microscope- SEM) 22 3.2.14穿透式電子顯微鏡 (Transmission electron microscope- TEM) 23 3.2.15熱傳導分析儀 23 3.2.16導電分析儀 24 3.3 實驗方法 25 3.3.1氧化石墨烯(GO)之合成 25 3.3.2熱脫層氧化石墨烯(TRGO)之製備 26 3.3.3鏈轉移試劑S -Benzyl S'-trimethoxysilyl propyl trithiocarbonate (BTPT)之合成 26 3.3.4大分子鏈轉移試劑(macro-RAFT agent of BTPT-(MA-co-GMA))之合成 29 3.3.5熱還原氧化石墨烯表面接枝聚丙烯酸甲酯與甲基丙烯酸環氧丙酯共聚物(P(MA-co-GMA))及聚丙烯酸正丁酯(PBA)之雙區段共聚物的合成(TRGO-PBA-b-P(MA-co-GMA)) 31 3.3.6胺解接枝於聚合物鏈表面的高分子鏈 33 3.3.7固化試片製作 33 3.3.7-1 St/VER(n=0.16、n=2)雙成份系統溶液及之固化試片製備 33 3.3.7-2 St/UP(MA-PA-PG, AN=30)雙成份系統溶液及之固化試片製備 34 3.3.7-3 St/UP(MA-PA-PG, AN=30)/TRGO三成份系統溶液之製備 34 3.3.7-4體積變化性質試片之製備 35 3.3.8體積變化量測-密度法 35 第四章 結果與討論 37 4.1氧化石墨烯(GO)及熱還原氧化石墨烯(TRGO)之鑑定 37 4.1.1氧化石墨烯(GO)及熱還原氧化石墨烯(TRGO)廣角度散射鑑定 37 4.1.2氧化石墨烯(GO)及熱還原氧化石墨烯(TRGO)XRD繞射鑑定 38 4.1.3氧化石墨烯(GO)及熱還原氧化石墨烯(TRGO)元素分析鑑定 40 4.2鏈轉移劑S-Benzyl S'-trimethoxysilylpropyl trithiocarbonate (BTPT)之合成 44 4.2.1探討鏈轉移劑(BTPT)實驗步驟 44 4.2.2鏈轉移試劑(BTPT)之NMR鑑定 44 4.3大分子鏈轉移試劑(macro-RAFT agent of BTPT-P(MA-co-GMA))之鑑定 51 4.3.1大分子鏈轉移試劑(BTPT-(MA-co-GMA))之NMR鑑定 51 4.3.2大分子的鏈轉移試劑(BTPT-P(MA-co-GMAy)-xK)之GPC鑑定 64 4.4 接枝嵌段高分子之熱還原氧化石墨烯 (TRGO-Polymer) 之鑑定 72 4.4.1溶液中自由相高分子(free polymer)之NMR鑑定 72 4.5體積收縮測定 89 4.5.1 St/VER(n=2)、(n=0.16) 雙成份系統聚合固化後之體積收縮 89 4.5.2 St/UP(MA-PA-PG,AN=30)/TRGO 三成份系統聚合固化後之體積收縮 94 4.5.3 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA10)-xK (x=8、4、2)三成份系統聚合固化後之體積收縮 97 4.5.4 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA20)-xK (x=8、4、2)三成份系統聚合固化後之體積收縮 100 4.6 SEM微觀型態結構 104 4.6.1 St/UP(MA-PA-PG,AN=30)雙成分系統 104 4.6.2 St/UP(MA-PA-PG AN=30)/TRGO三成分系統 105 4.6.3 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA10)-xK (x=8、4、2)三成分系統 110 4.6.4 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA20)-xK (x=8、4、2)三成分系統 115 4.7 TEM微觀型態結構 120 4.7.1 St/UP(MA-PA-PG,AN=30)雙成分系統 120 4.7.2 St/UP(MA-PA-PG AN=30)/TRGO三成分系統 121 4.8導熱性質測定 124 4.8.1 St/UP(MA-PA-PG,AN=30)/TRGO三成分系統 124 4.8.2 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA10)-xK (x=8、4、2)三成分系統 127 4.8.3 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA20)-xK (x=8、4、2)三成分系統 130 4.9導電性質測定 134 4.9.1 St/UP(MA-PA-PG,AN=30)/TRGO三成分系統 134 4.9.2 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA10)-xK (x=8、4、2)三成分系統 137 4.9.3 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA20)-xK (x=8、4、2)三成分系統 140 第五章 結論 143 第六章 未來工作 145 第七章 附錄 146 7.1 熱還原氧化石墨烯表面接枝聚丙烯酸甲酯與甲基丙烯酸環氧丙酯共聚物(P(MA-co-GMA))及聚丙烯酸正丁酯(PBA)之雙區段共聚物鏈段平均聚合度計算 146 7.2 接枝嵌段高分子之熱還原氧化石墨烯 (TRGO-Polymer) 之TGA鑑定 148 第八章 參考文獻 156

    1. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
    2. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature materials, 2007. 6(3): p. 183-191.
    3. Kim, H., A.A. Abdala, and C.W. Macosko, Graphene/polymer nanocomposites. Macromolecules, 2010. 43(16): p. 6515-6530.
    4. Hu, K., et al., Graphene-polymer nanocomposites for structural and functional applications. Progress in polymer science, 2014. 39(11): p. 1934-1972.
    5. Tadmor, Z. and C.G. Gogos, Principles of polymer processing. 2006: John Wiley & Sons.
    6. Gilbert, M., Brydson's plastics materials. 2016: William Andrew.
    7. Anderson, T.F. and V.B. Messick, Vinyl ester resins. Developments in Reinforced Plastics—1: Resin Matrix Aspects, 1980: p. 29-58.
    8. Huang, Y.-J. and C.-M. Liang, Volume shrinkage characteristics in the cure of low-shrink unsaturated polyester resins. Polymer, 1996. 37(3): p. 401-412.
    9. Li, S., et al., Experimental and theoretical analysis of pulling force in pultrusion and resin injection pultrusion (RIP)–part I: experimental. Journal of composite materials, 2003. 37(2): p. 163-189.
    10. Kinkelaar, M., S. Muzumdar, and L.J. Lee, Dilatometric study of low profile unsaturated polyester resins. Polymer Engineering & Science, 1995. 35(10): p. 823-836.
    11. Zhao, Y. and S. Perrier, Reversible addition− fragmentation chain transfer graft polymerization mediated by fumed silica supported chain transfer agents. Macromolecules, 2007. 40(25): p. 9116-9124.
    12. Kim, H., Y. Miura, and C.W. Macosko, Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chemistry of materials, 2010. 22(11): p. 3441-3450.
    13. Kim, H. and C.W. Macosko, Morphology and properties of polyester/exfoliated graphite nanocomposites. 2008.
    14. Brazel, C.S. and S.L. Rosen, Fundamental principles of polymeric materials. 2012: John Wiley & Sons.
    15. Pourhashem, S., et al., Corrosion protection properties of novel epoxy nanocomposite coatings containing silane functionalized graphene quantum dots. Journal of Alloys and Compounds, 2018. 731: p. 1112-1118.
    16. Perreault, F., A.F. De Faria, and M. Elimelech, Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 2015. 44(16): p. 5861-5896.
    17. Hummers Jr, W.S. and R.E. Offeman, Preparation of graphitic oxide. Journal of the american chemical society, 1958. 80(6): p. 1339-1339.
    18. Schniepp, H.C., et al., Functionalized single graphene sheets derived from splitting graphite oxide. The journal of physical chemistry B, 2006. 110(17): p. 8535-8539.
    19. Chiefari, J., et al., Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules, 1998. 31(16): p. 5559.
    20. Zhao, Y. and S. Perrier, Synthesis of well-defined homopolymer and diblock copolymer grafted onto silica particles by Z-supported RAFT polymerization. Macromolecules, 2006. 39(25): p. 8603-8608.
    21. Jiang, K., et al., One-pot controlled synthesis of homopolymers and diblock copolymers grafted graphene oxide using couplable RAFT agents. Macromolecules, 2012. 45(3): p. 1346-1355.
    22. Yang, Y. and L.J. Lee, Microstructure formation in the cure of unsaturated polyester resins. Polymer, 1988. 29(10): p. 1793-1800.
    23. Bucknall, C.B., I.K. Partridge, and M.J. Phillips, Morphology and properties of thermoset blends made from unsaturated polyester resin, poly (vinyl acetate) and styrene. Polymer, 1991. 32(5): p. 786-790.
    24. Huang, Y.-J. and W.-C. Jiang, Effects of chemical composition and structure of unsaturated polyester resins on the miscibility, cured sample morphology and mechanical properties for styrene/unsaturated polyester/low-profile additive ternary systems. 1: Miscibility and cured sample morphology. Polymer, 1998. 39(25): p. 6631-6641.
    25. Pattison, V.A., R.R. Hindersinn, and W.T. Schwartz, Mechanism of low profile behavior in unsaturated polyester systems. Journal of Applied Polymer Science, 1974. 18(9): p. 2763-2771.
    26. Pattison, V.A., R.R. Hindersinn, and W.T. Schwartz, Mechanism of low‐profile behavior in single‐phase unsaturated polyester systems. Journal of Applied Polymer Science, 1975. 19(11): p. 3045-3050.
    27. Bucknall, C.B., I.K. Partridge, and M.J. Phillips, Mechanism of shrinkage control in polyester resins containing low-profile additives. Polymer, 1991. 32(4): p. 636-640.
    28. Huang, Y.J., C.J. Chu, and J.P. Dong, Effects of chemical structure of polyurethane‐based low‐profile additives on the miscibility, curing behavior, volume shrinkage, glass transition temperatures, and mechanical properties for styrene/unsaturated polyester/low‐profile additive ternary systems. I: Miscibility, curing behavior, and volume shrinkage. Journal of applied polymer science, 2000. 78(3): p. 543-557.
    29. Huang, Y.-J. and L.-D. Chen, Effects of chemical composition and structure of unsaturated polyester resins on the miscibility, cured sample morphology and mechanical properties of styrene/unsaturated polyester/low-profile additive ternary systems: 2. Mechanical properties. Polymer, 1998. 39(26): p. 7049-7059.
    30. McAllister, M.J., et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of materials, 2007. 19(18): p. 4396-4404.
    31. 張容瑋,碩士論文,國立臺灣科技大學,2021.
    32. 黃妍綾,碩士論文,國立臺灣科技大學,2020.
    33. Erdenedelger, G., T.D. Dao, and H.M. Jeong, Graphene functionalized with poly (vinyl alcohol) as a Pickering stabilizer for suspension polymerization of poly (methyl methacrylate). Journal of colloid and interface science, 2016. 476: p. 47-54.
    34. Dolbin, A.V., et al., The effect of the thermal reduction temperature on the structure and sorption capacity of reduced graphene oxide materials. Applied Surface Science, 2016. 361: p. 213-220.

    QR CODE