簡易檢索 / 詳目顯示

研究生: 許廷宇
Ting-Yu HSU
論文名稱: 奈米級及次微米級核殼型橡膠添加劑、無機矽膠/有機高分子核殼型顆粒、及蒙特納石黏土對不飽和聚酯、乙烯基酯、及環氧樹脂之聚合固化反應動力及玻璃轉移溫度之影響研究
Effects of nano-scale and submicron-scale core-shell rubber additives, inorganic silica gel/organic polymer core-shell particle, and montmorillonite clay on the cure kinetics and glass transition temperatures for unsaturated polyester, vinyl ester, and epoxy resins
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 陳崇賢
none
邱文英
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 360
中文關鍵詞: 奈米級及次微米級核殼型橡膠添加劑無機矽膠/有機高分子核殼型顆粒蒙特納石黏土不飽和聚酯乙烯基酯環氧樹脂聚合固化反應動力玻璃轉移溫度
外文關鍵詞: core-shell rubber (CSR), low-profile additive (LPA), inorganic silica gel/organic polymer core-shell, unsaturated polyester (UP), glass transition temperature
相關次數: 點閱:443下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文乃探討三種特用添加劑,分別為:(1)奈米級及次微米級核殼型橡膠(core-shell rubber)添加劑(2)無機矽膠/有機高分子核殼型顆粒及(3)矽烷改質蒙特納石黏土(montmorillonite clay,MMT),其對苯乙烯/不飽和聚脂(或乙烯基酯)/特用添加劑三成份系統及環氧樹脂/硬化劑/特用添加劑三成份系統之聚合固化動力及玻璃轉移溫度影響。吾人利用微分掃描熱分析儀(DSC)及傅立葉轉換紅外光譜儀(FTIR)測量ST/UP(or VER)/additive三成份系在聚合固化過程中之反應動力。最後依據Takayanagi機械模式,ST/UP(or VER) /additive三成份系及環氧樹脂/硬化劑/additive三成份系聚合固化後的樣品,其在各相區之玻璃轉移溫度,吾人亦以動態機械測定儀(DMA)測量之。


    Abstract
    The effects of nano-scale and submicron-scale core shell rubbers (CSR) as low-profile additives (LPA), and inorganic silica gel/organic polymer core-shell particle,and silane treated montmorillonite clay (MMT) on the cure kinetics and glass transition temperatures for styrene/unsaturated polyester (or vinyl ester) /additive ternary systems and epoxy/curing agent /additive ternary systems have been investigated. The reaction kinetics for the ST/UP (or VER)/additive ternary system and epoxy/curing agent /additive ternary systems during the cure was measured by differential scanning calorimetry (DSC) and Fourier transform infrared spectrometry (FTIR). Finally, based on the Takayanagi mechanical models, the glass transition temperature in each region of the cured samples for ST/UP (or VER)/additive ternary systems and epoxy/curing agent /additive ternary systems has been measured by the dynamic mechanical analysis (DMA).

    目錄 中文摘要…………………………………………………………………I 英文摘要………………………………………………………………...II 誌謝……………………………………………………………………..III 圖表索引……………………………………………....................……..XI 第一章 緒論…...………………………………………………………...1 1-1 高分子複合材料……………………………………………….1 1-2 乙烯基酯樹脂………………………………………………….3 1-3 環氧樹脂……………………………………………….............4 1-3-1 環氧樹脂的分類………………………………………..5 1-3-2 環氧樹脂之硬化反應機構及硬化特性………………..8 1-3-3 環氧樹脂硬化之流變行為……………………………11 1-4 抗收縮劑……………………………………………………...12 1-5 核殼型橡膠改質不飽和聚酯樹脂…………………………...13 1-6 蒙特納石黏土及其高分子奈米複合材料…………………...14 1-7 研究範疇………………………………………………….…..15 第二章 文獻回顧……………………………………...………….……16 2-1不飽和聚酯與苯乙烯之交聯共聚合反應…………………….16 2-2不飽和聚酯樹脂之反應動力學模式之研究………………….19 2-3不飽和聚酯樹脂之聚合固化研究…………………………….24 2-4低收縮不飽和聚酯樹脂之聚合固化研究…………………….25 2-5核殼型橡膠增韌劑之效應……………………………………27 2-6不飽和聚酯樹脂系統之玻璃轉移溫度之研究………………30 2-7蒙特納石黏土-高分子奈米複合材料研究…………………...33 2-8 可逆加成-斷裂鏈轉移聚合法………………………………..36 第三章 實驗方法………………………………………………………39 3-1 原料……………………………………………………………...39 3-1-1不飽和聚酯樹脂、環氧樹脂與乙烯基酯樹脂……….....39 3-1-2特用添加劑……….............................................................41 3-1-2-1 核殼型橡膠…………………………………………41 3-1-2-2 無機/有機核殼型顆粒……………………………...43 3-1-3 St/UP/特用添加劑三成分試片的原料…………………..46 3-1-4 Epoxy/DDM/特用添加劑三成分試片的原料…………...46 3-1-5 Epoxy/DDS/特用添加劑三成分試片的原料……………46 3-1-6 蒙特納石黏土之合成原料………………………………47 3-2實驗儀器…………………………………………………………48 3-3實驗步驟…………………………………………………………49 3-3-1 PK-805型clay之鈉活性化處理…………………………49 3-3-2 Silane-treated MMT 之製備……………………………49 3-3-3 DSC樣品溶液之製備及DMA三成分試片製備……..50 3-3-4 DSC反應動力測試步驟……………………………......53 3-3-5 FTIR反應動力測試步驟………………………………..54 3-4性質測試與分析…………………………………………………55 3-4-1DSC熱分析……………………………………………….55 3-4-2 DSC反應轉化率之修正…………………………………56 3-4-3 FTIR定量分析…………………………………………...43 3-4-3-1 純UP及VER系統…………………………………43 3-4-4 DMA理論基礎…………………………………………...59 第四章 結果與討論……………………………………………………60 4-1 ST/UP(or VER)/additive三成份系及Epoxy/DDM(or DDS)/additive未反應前之相溶性…………………………… 4-1-1 添加核殼型橡膠CSR之三成分系…………………...60 4-1-2 添加Silane-treated MMT之三成分系………………..64 4-2 SEM微觀型態結構………………………………………...67 4-2-1 ST/VER/CSR三成份系在SEM下的微觀型態結構… 67 4-2-2 Epoxy/DDM/CSR三成份系統在SEM下的微觀型態結構.71 4-3 DSC反應動力………………………………………………..117 4-3-1純粹不飽和聚酯樹脂系統DSC反應動力……………..117 4-3-2不同苯乙烯對VER之C=C雙鍵莫耳比(MR)之純VER樹脂DSC反應動力………..121 4-3-3 ST/UP及ST/VER雙成份系之DSC反應動力…125 4-3-4 ST/UP(MA-PG)/Si-PMA三成分系之DSC反應動力..125 4-3-5 ST/VER/CSR三成份系之DSC反應動力....................130 4-3-5-1 ST/VER/CSR(G0-30,60,240)三成份系...............135 4-3-5-2 ST/VER/CSR(G1-30,60,240)三成份系..140 4-3-5-3 ST/VER/CSR(G2-30,60,240)三成份系…………..145 4-3-5-4 比較ST/VER/5wt% CSR(G0,G1)三成份系149 4-3-5-5 比較ST/VER/10wt% CSR(G0,G1)三成份系 …..153 4-4環氧樹脂動力分析.....158 4-5純粹環氧樹脂系統反應動力--160 4-5-1 Epoxy/DDM/CSR(G0-30,60,240)三成份系............165 4-5-2 Epoxy/DDM/CSR(G1-30,60,240)三成份系..........168 4-6 Silane-Treated MMT之FTIR定量分析.........178 4-7 FT-IR反應動力...............................................................................198 4-7-1 純粹乙烯基酯樹脂系統反應動力..........................................210 4-7-2 DSC反應轉化率之修正...................................................213 4-7-3 純粹MA-PG系統反應動力............................................219 4-7-4 純粹MA-PA-PG系統反應動力......................................223 4-7-5 ST/UP雙成份系統比較..........................................................227 4-8 Takayanagi 機械模式與各相區之玻璃轉移溫度.................266 4-8-1以DMA測定純粹ST/UP(MA-PA-PG)雙成份系聚合固化樣品之Tg....268 4-8-2純粹乙烯基酯樹脂(Vinyl ester resin , VER)系統..........274 4-8-3 ST/UP雙成份系統之比較 4-8-4 ST/UP(MA-PG)/Si-PMA之三成分系............................279 4-8-5 ST/VER/CSR之三成份系............290 4-8-5-1 ST/VER/CSR(G0-30,60,240)三成份系....294 4-8-5-2 ST/VER/CSR(G1-30,60,240)三成份系...295 4-8-5-3 ST/VER/CSR(G2-30,60,240)三成份系...298 4-8-6純粹環氧樹脂(Epoxy resin , EPR)系統,以DDM為硬化劑.......299 4-8-6-1 Epoxy/DDM/CSR(G0-30,60,240)三成份系.....305 4-8-6-2 Epoxy/DDM/CSR(G0-30,60,240)三成份系......308 4-8-7純粹環氧樹脂(Epoxy resin , EPR)系統,以DDS為硬化劑.......321 4-8-8 Epoxy/硬化劑(DDM or DDS)雙成份系統之比較......325 第五章 總結與結論..............................................................................336 參考文獻................................................................................................342

    1. W. Worthy, Chem. Eng. News 7, 1987, March 16.
    2. 江文慶, 碩士論文, 台灣科技大學, 1996.
    3. R.E. Young, in “Unsaturated Polyester Technology,“ ed. P.F. Bruins,
    Gordon and Breach Science Publishers, New York, 1976.
    4. M.E. Kelly, in “Unsaturated P Polyester Technology,“ ed. P.F. Bruins,
    Gordon and Breach Science Publishers, New York, 1976, p.370.
    5. F. Fekete, in “Unsaturated Polyester Technology,“ ed. P.F. Bruins,
    Gordon and Breach Science Publishers, New York, 1976, p.28
    6. 賴耿陽,環氧樹脂應用實務,復漢出版社
    7. 賴家聲 環氧樹脂與硬化劑(上)
    8. 陳育甄,碩士論文,中原大學,2003
    9. S.V.Levchik,G.Camino,M.P.Luda,L.Costa,G.Muller,B.Costes,Polym.
    Deg. Stab., 60, 169 (1998)
    10. 黃滄閔,碩士論文,成功大學,2001
    11. E.J.Bartkus and C.H.Kroekel, Appl.Polym.Symp,15,113(1970)
    12. K.E Atkins,in Sheet Molding Compounds:Science and Technology.
    Ch.4, H.G.Kia ed., Hanser Publishers,N ew York,1993.
    13. V. A. Pattison, R. R. Hindersinn, and W. T. Schwartz, J. Appl. Polym.
    Sci., 18, 2736(1974).
    14. V. A. Pattison, R. R. Hindersinn, and W. T. Schwartz, J. Appl. Polym.
    Sci., 19, 3045(1975).
    15. Y. J. Huang and C. M. Liang, Polymer, 37, 401(1996).
    16. T. Mitani, H.Shiraish, K. Honda, and G. E. Owen in 44th Annual
    Conference, Composites Institute, Cincinnati, Ohio; the Society of the
    Plastics Industry(SPI), New York, 1989, P.12F.
    17. W. Li and L. J. Lee, Polymer, 39, 5677(1998).
    18. M. Kinkelaar, S. Muzumdar, and L. J. Lee, Polym. Eng. Sci., 35, 823
    (1995).
    19. R. R. Hill, S. Muzumdar, and L. J. Lee, Polym. Eng. Sci., 35, 852
    (1995).
    20. Y. J. Huang, J. H. Wu, J. G. Liang, M.W. Hsu, and J. K. Ma, J. Appl.
    Polym. Sci.,107, 939(2008).
    21. E. Martuscelli, P.Musto, G. Ragosta, G. Scarinzi, and E. Bertotti, J.
    Polym. Sci., Part B:Polym. Phys., 31, 619(1993).
    22. S. B. Pandit, and V. M. Nadkarni, Ind. Eng. Chem. Res., 33, 2778
    (1994).
    23. 黃俊翰,碩士論文,台灣科技大學, 2009.
    24. B. M. Novak, Adv. Mater., 5, 422(1993).
    25. X. Kornmann, L. A. Berghund, J. Sterte, and E. P. Giannelis, Polym.
    Eng. Sci., 38, 1351(1998).
    26. Y.Kojima,A.Usuki,M.Kawasumi,A.Okada,T.Kurauchi,and
    O.Kamigaito, J.Polym.Sci. Part A: Polym.Chem, 31,983,(1993)
    27. E. P. Giannelis, Adv. Mater., 8, 29(1996).
    28. A.Usuki, Y. Kojima, M. Kawasumi, A. Okada, A. Fujushima, T.
    Kurauchi, and O. Kamigaito, J. Mater. Res. 8, 1179(1993).
    29. P. B. Messersmith and E. P. Giannelis, Chem. Mater., 6, 1719(1994).
    30. W. Gilman and T. Kashiwagi, SAMPE Journal, 33, 42(1997).
    31. Y. J. Huang and J. C. Horng, Plymer, 39, 3683(1998).
    32. Y. S. Yang and L. J. Lee, Polymer, 29 ,1793 (1988).
    33. K. Horie, I. Mita, and H. Kambe, J. Polym. Sci. PartA-1: Polym.
    Chem., 7, 2561 (1969)
    34. M.R. Kamal, S. Slurour.,and M. Ryan, SPE. ANTEC Papers. 19, 187
    (1973).
    35. S.Y. Pusatcioglu, A.L.Fricke., and J.C. Hasseler, J. Appl. Polym. Sci.,
    24, 937 (1979).
    36. C. D. Han, and K. W. Lem, J. Appl. Polym. Sci., 28, 749 (1983).
    37. J. F. Stevenson, Polym. Eng. Sci., 26(11), 746 (1989).
    38. J. F. Stevenson, SPE. ANTEC. Papers, 26, 452(1980).
    39. L. J. Lee, Polym. Eng. Sci., 21, 483 (1981)
    40. Y. J. Huang, and L. J. Lee, AICHE. J., 31, 1585(1985).
    41. C. D. Han, and D. S. Lee, J. Appl. Polym. Sci., 37, 2859 (1987).
    42. C. S. Chern, and D. C. Sundberg, ACS. Polym. PREP, 26(1), 296
    (1985).
    43. G. L. Batch, and C. W. Mocosko, SPE. ANTEC Paper, 974(1987).
    44. Y. J. Huang, J. D. Fan, and L. J. Lee, Polym. Eng. Sci., 30(11), 684
    (1990).
    45. Y. J. Huang and T. J. Lu, and W. Hwu, Polym. Eng. Sci., 33, 1
    (1993).
    46. Y. J. Huang and C. J. Chen, J. Appl. Polym. Sci., 47, 1533(1993).
    47. Y. J. Huang and C. C. Su, J. Appl. Polym. Sci., 55, 305(1995).
    48. Y. J. Huang, T. S. Chen, J. G. Huang, and F. H. Lee, J. Appl. Polym.
    Sci., 89, 3336(2003).
    49. J. P. Dong, J. G. Huang, F. H. Lee, J. W. Roan, and Y. J. Huang, J.
    Appl. Polym. Sci., 91, 3388(2004).
    50. S. B. Pandit and V. M. Nadkani, Ind. Eng. Chem. Res., 33, 2778
    (1994).
    51. D. S. Kim, K. Cho, J. H. An, and C. E. Park., J. Mater. Sci., 29, 1854
    (1994).
    52. J. S. Ullett,and R. P. Chartoff, Polym. Eng. Sci., 35, 1086(1995).
    53. M. Abbate, E. Martuscelli, P. Musto, G. Ragosta, and G. Scarinzi, J.
    Appl. Polym. Sci., 58, 1825(1995).
    54. M. L. L. Maspochand , and A. B. Matinez, Polym.Eng. Sci., 38, 290
    (1998).
    55. N. A. Miller and C. D. stirling, Polym. Polym. Comps., 9, 31(2001).
    56. The B. F. Goodrich Co., WO 93/31374(Oct. 28, 1993).
    57. K. F. Lin and Y. D. Shieh, J. Appl. Polym. Sci., 69, 2069(1998).
    58. K. F. Lin and Y. D. Shieh, J. Appl. Polym. Sci., 70, 2313(1998).
    59. P. Hazot, C. Pichot, and A. Maazouz, Macromol. Chem. Phys., 201,
    632(2000).
    60. B.J.P. Jansen, S. Rastogi, H. E. H. Meijer, and P. J. Lemstra,
    Macromolecules, 34, 3998(2001).
    61. H.J. Sue, E.I. Garciameitin, and D.M. Picklman, in ”Polymer
    Toughening”, Ch. 5, Ed., C. B. Arends, Marcel Dekker, New York,
    1996.
    62. The Dow Chemical Company, US Patent 4,778,851(Oct. 18 1998).
    63. J. Y. Qian, R. A. Pearson, V. L. Dimonie, and M. S. El-Aasser, J.
    Appl. Polym. Sci.,58, 439(1995).
    64. W.D. Cook and O. Delatycki, J. Polym. Sci., PartB:Polym. Phys.,
    12, 2111(1974).
    65. J. C. Lucas, J. Borrajo and R. J. J. Williams, Polymer, 34, 3216
    (1993).
    66. C. B. Bucknall, I. K. Partridge and M. J. Phillips, Polymer, 32, 786
    (1991).
    67. Y. J. Huang, S. C. Lee, and J. P. Dong, J. Appl. Polym sci. ,78 ,558
    (2000)
    68. P. W. K. Lam, Polym. Eng. Sci. ,29, 609 (1989)
    69. 梁繼文, “礦物學(下)”, 台北市, 五南圖書, 1984.
    70. W. E. Worrall, “Clays and Caramic Raw Materials,” 2nd Ed, Elsevier,
    London, 1986.
    71. T. Lan and T. J. Pinnavaia. Chem. Mater., 6, 2216(1994)
    72. T.P.Le,G.Moad,E.Rizzardo, and S.H.Thang, PCT
    Int.Appl.WO9801478 A1980115,1998.
    73. J.Chiefari, Y.K.Chong, F.Ercole, J. Krstina, J. Jefery, T.P.T.Le,
    R.T.A. Mayadunne, G.F.Meijs, C.L.Moad, G.Moad, E.Rizzardo, S. H. Thong, Macromolecules, 31, 5559 (1998).
    74. P.Takolpuckdee, C. A.Mars, S.Perrier, Org. Lett., 7, 3449(2005).
    75. Y.Tsujii,M.Ejaz, K.Sato, A.Goto, and T.Fukuda, Macromolecules ,
    34, 8872(2001).
    76. D.L.Patton, and R.C.Advincula, Macromolecules, 39, 8674 (2006).
    77. R.Narain, and S.P.Armes, Macromolecules,36,4675(2003).
    78. M. H.Stenzel, T. P.Davis, and A. G.Fane, J Mater Chem, 13,
    2090(2003).
    79. 謝宇軒,碩士論文,台灣科技大學, 2009.
    80. 郭庭蓁,碩士論文,台灣科技大學,2006.
    81. 徐曼紋,碩士論文,台灣科技大學,2003
    82. Y.S. Yang and L.J.Lee., J. Appl. Polym. Sci., 36, 1325 (1988).
    83. K.Horie, I Mita and H.Kambe, J. Polym. Sci., Part A1, 8, 2839
    (1970).
    84. Y. S. Yang and L. J. Lee, Macromolecules 20, 1490(1987).
    85. 盧天智,碩士論文,台灣科技大學,1980.
    86. Y. J. Huang and J. S. Leu, Polym. 34, 301 (1993)
    87. S. L. Rosen, “Fundamental Principles of Polymeric Materials, ” 2nd
    Ed., Wiley, New York, 1993, pp.321-337.
    88. 張瀚文,碩士論文,台灣科技大學, 2009.
    89. Y.J.Huang and C.J.Chen J.Appl.Polym.Sci.,47,1553(1993)
    90. K. HORIE, H. HIURA, M. SAWADA, I. MITA, and H. KAMBE,
    J.Appl.Polym.Sci.,8,1357(1970)
    91. S.ZIAEE, G. R. PALMESE,J.Appl.Polym.Sci:Part B:Polymer Physics, 37, 725–744 (1999)
    92. M. Takayanagi, K. Emada, and T. Kajiyama, J. Polym. Sci. Part C, 15, 263 (1966).

    無法下載圖示 全文公開日期 2014/08/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE