簡易檢索 / 詳目顯示

研究生: 戴劭樺
Shao-Hua Dai
論文名稱: 奈米級及次微米級核殼型橡膠添加劑、矽烷接枝二氧化矽顆粒、官能基化之氧化石墨烯、官能基化之脫層石墨烯奈米層板、高分子接枝之氧化石墨烯及高分子接枝之脫層石墨烯奈米層板對乙烯基酯樹脂之聚合固化反應動力、玻璃轉移溫度及X光散射特性之影響研究
Effects of nano-scale and submicron-scale core-shell rubber additives, silane-grafted silica particle, functionalized graphene oxide, functionalized exfoliated graphene nanoplatelet, polymer-grafted graphene oxide, and polymer-grafted exfoliated graphene nanoplatelet on the cure kinetics, glass transition temperatures, and X-ray scattering characteristics for vinyl ester resins.
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 陳崇賢
Chorng-Shyan Chern
邱文英
Wen-Yen Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 169
中文關鍵詞: 核殼型橡膠二氧化矽奈米顆粒乙烯基酯樹脂聚合固化反應動力微分掃描熱分析儀傅立葉紅外光分析儀動態機械分析儀玻璃轉移溫度氧化石墨烯熱脫層氧化石墨烯小角度X光散射儀廣角度X光散射儀環動半徑
外文關鍵詞: Core-Shell Rubber(CSR), Silica nanoparticle(SNP), Vinyl ester resin(VER), Curing kinetics, DSC, FTIR, DMA, Glass transition(Tg), Graphene oxide(GO), Thermally reduced graphene oxide(TRGO), Radius of gyration(Rg), SAXS, WAXS
相關次數: 點閱:486下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文目的為探討四種特用添加劑,分別為(1)奈米級及次微米級核殼型橡膠(Core-Shell Rubber, CSR) (2)矽烷接枝之二氧化矽奈米顆粒(Silane-grafted silica nanoparticle, SNP) (3)官能基化氧化石墨烯(Functionalized graphene oxide, GO) (4)脫層氧化石墨烯(functionalized thermally reduced graphene oxide, TRGO),其對苯乙烯(St)/乙烯基酯樹脂(VER)/特用添加劑三成份系統之聚合固化反應動力、玻璃轉移溫度及X光散射特性之影響。
    本研究亦利用小角度X光散射儀(Small-angle X-ray Scattering, SAXS),測定VER於稀薄苯乙烯溶液之散射強度,進而根據Guinier law計算不同濃度下之環動半徑(Radius of gyration, Rg),利用廣角度X光散射儀測量苯乙烯/乙烯基酯樹脂/氧化石墨烯(GO)(或熱脫層氧化石墨烯(TRGO))三成份之聚合固化系統其X光散射強度曲線,可以探討GO或TRGO的規則層間距離(d-spacing)的變化及其在樹脂基材中的分散程度。該三成份聚合固化系統是原為插層式脫層的奈米複合材料之特性,因此而得以鑑定之。同時,吾人亦利用拉曼光譜儀(Raman Spectroscope, RS)鑑定官能基化氧化石墨烯與官能基化之脫層石墨烯奈米層板之化學結構。
    此外,吾人亦使用差式掃描卡計(DSC)及傅立葉轉化紅外線光譜儀(FTIR)測量St/VER雙成份系統與St/VER/特用添加劑之三成分系統在聚合固化過程中的反應動力。最後根據Takayanagi機械模式,苯乙烯/乙烯基酯樹脂/特用添加劑三成份聚合固化系統其在每一相區的玻璃轉移溫度,吾人亦使用動態機械分析儀(DMA)測定之。


    The effects of four special additives, including (1) nano-scale and submicron-scale core-shell rubber additive (CSR), (2) silane-grafted silica noanoparticle (SNP), (3) functionalized graphene oxide (GO), and (4) functionalized thermally reduced graphene oxide (TRGO), on the cure kinetics, glass transition temperature and X-ray scattering characteristics for the Styrene(St)/Vinyl ester resin(VER)/special additives ternary systems after the cure have been investigated.
    The scattering intensity of vinyl ester resin (VER) with different structure in dilute styrene solution was measured by the method of small angle X-ray scattering (SAXS), and the radius of gyration of VER can then be calculated by using the Guinier law. Measuring the X-ray scattered intensity profile of the cured specimens for St/VER/GO (or TRGO) ternary system by using wide angle X-ray scattering (WAXS) allows one to investigate the change of d-spacing and the degree of dispersion of the substrate of functionalized graphene oxide (GO) or functionalized thermally reduced graphene oxide (TRGO) nanoplatelet. The structure of intercalated or exfoliated nanocomposites for the cured St/VER/GO (or TRGO) ternary system can then be identified. In the meanwhile, the chemical structures of functionalized graphene oxide (GO) and functionalized thermally reduced graphene (TRGO) were also characterized with Raman Spectroscope (RS)
    Moreover, the reaction kinetics for the St/VER/special additive ternary system during the cure was measured by differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR). Finally, based on the Takayanagi mechanical models, the glass transition temperature in each region of the cured samples for St/VER/special additive ternary system has been measured by dynamic mechanical analysis (DMA).

    摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1-1 不飽和聚酯樹脂(UP Resin) 1-2 乙烯基酯樹脂(Vinyl Ester Resin, VER) 1-3 二氧化矽(Silica, SiO2) 1-4 增韌劑(Toughener) 1-5 抗體積收縮劑(Low-Profile Additives, LPA) 1-6 蒙特納石黏土及其高分子奈米複合材料 1-7 石墨烯/高分子奈米複合材料 1-8 研究範疇 第二章 文獻回顧 2-1 自由基聚合反應 2-2 不飽和聚酯(UP)樹脂合成 2-3 不飽和聚酯(UP)樹脂和苯乙烯(St)之交聯共聚合反應 2-4 苯乙烯(St)/不飽和聚酯(UP)/抗收縮劑(LPA)三成分系統之相容性研究 2-5 不飽聚酯(UP)樹脂之聚合固化後微觀結構之研究 2-6 不飽和聚酯(UP)樹脂之抗收縮補償機制 2-7 不飽和聚酯(UP)樹脂之反應動力學模式之研究 2-8 核殼型橡膠(CSR)增韌劑 2-9 蒙特納石黏土-不飽和聚酯高分子奈米複合材料研究 2-10 高分子稀薄溶液之環動半徑研究 2-11 不飽和聚酯(UP)樹脂玻璃轉移溫度之研究 2-12 石墨烯/高分子奈米複合材料之研究 2-13 氧化石墨(GO)及熱還原氧化石墨(TRGO)的製備 2-14 苯乙烯(St)/乙烯基酯數脂(VER)反應動力 第三章 實驗方法與設備 3-1 實驗原料 3-1-1 乙烯基酯樹脂(VER) 3-1-2 通用型核殼型橡膠(General Purpose Core-Shell Rubber, gp-CSR) 3-1-3 活化二氧化矽顆粒(Silica, SiO2) 3-1-4 氧化石墨(Graphite Oxide, GO)與熱還原氧化石墨(Thermally Reduced Graphite Oxide, TRGO) 3-1-5 實驗藥品 3-2 實驗儀器 3-3 實驗步驟 3-3-1 Silane-treated Silica(MPS-SiO2)製備 3-3-2 St與VER莫耳聚合熱系統製備與測定 3-3-3 MMA單體溶液製備 3-3-4 St/MMA雙成份系統溶液製備 3-3-5 St/VER雙成份系統溶液製備 3-3-6 St/VER(n=2)/gp-CSR三成份系統溶液製備 3-3-7 St/VER(n=2)/MPS-SiO2三成份系統溶液製備 3-3-8 St/VER(n=2)/gp-CSR/MPS-SiO2四成份系統溶液製備 3-3-9 動態機械分析儀(DMA)固化試片製作 3-3-10 小角度X-ray散射儀(SAXS)測定環動半徑 3-3-11 微分掃描卡計(DSC)反應動力測定 3-3-12 傅立葉紅外線光譜儀(FTIR)校正曲線測定 3-3-13 傅立葉紅外線光譜儀(FTIR)反應動力測定 3-3-14 拉曼光譜儀(RS)測定樣品製備 3-4 性質測定與分析方法 3-4-1 拉曼光譜儀(RS)分析 3-4-2 微分掃描卡計(DSC)熱分析 3-4-3 St/VER系統之微分掃描卡計(DSC)數據校正 3-4-4 動態機械分析儀(DMA)理論 3-4-5 傅立葉紅外線光譜儀(FTIR)測定反應動力之理論與分析 3-4-5-1 Pure MMA與St/MMA系統反應動力分析 3-4-5-2 St/VER系統反應動力分析 3-4-6 X-ray散射儀之相關理論 3-4-6-1 X-ray簡介 3-4-6-2 X-ray的產生 3-4-6-3 X光與中子散射 3-4-7 利用SAXS測定環動半徑(Radius of Gyration, Rg) 第四章 結果與討論 4-1 DSC莫耳聚合熱測定 4-1-1 苯乙烯(St) 4-1-2 乙烯基酯樹脂(VER(n=0.16)) 4-1-3 乙烯基酯樹脂(VER(n=2)) 4-2 DSC反應動力 4-2-1 不同St對VER之C=C雙鍵莫耳比(MR)之St/VER(n=0.16)雙成份系統 4-2-2 不同St對VER之C=C雙鍵莫耳比(MR)之St/VER(n=2)雙成份系統 4-2-3 St/VER(n=2)/CSR(MMA-G3-500)三成份系統 4-2-4 St/VER(n=2)/MPS-SiO2(15nm)三成份系統 4-2-5 St/VER(n=2)/CSR(MMA-G3-500)/MPS-SiO2(15nm)四成份系統 4-3 玻璃轉移溫度(Tg)測定 4-3-1 不同St對VER之C=C雙鍵莫耳比(MR)之St/VER(n=2)雙成份系統 4-3-2 St/VER(n=2)/CSR(MMA-G3-500)三成分系統 4-3-3 St/VER(n=2)/MPS-SiO2三成份系統 4-3-4 St/VER(n=2)/CSR(MMA-G3-500)/MPS-SiO2四成份系統 4-4 FTIR鑑定 4-4-1 二氯甲烷 4-4-2 甲基丙烯酸甲酯(MMA) 4-5 FTIR校正曲線測定 4-6 FTIR反應動力 4-6-1 不同莫耳比St/VER(n=0.16)雙成份系統 4-6-2 不同莫耳比St/VER(n=2)雙成份系統 第五章 結論 第六章 建議與未來工作 第七章 參考文獻

    1. R.B. Burn, Polyester Molding Compounds,Marcel Dekker, Inc, New York, 1982.
    2. R.E. Young, in “Unsaturated Polyester Technology,“ ed. P.F. Bruins, Gordon and Breach Science Publishers, 1976.
    3. M.E. Kelly, in “Unsaturated Polyester Technology,“ ed. P.F. Bruins, Gordon and Breach Science Publishers, 1976, P370.
    4. F. Fekete, “Unsaturated Polyester Technology,“ ed. P.F. Bruins, Gordon and Breach Science Publishers, 1976, P28.
    5. E. Martuscelli, P. Musto, G.. Ragosta, G. Scarinzi, and E. Bertotti, J.Polym.Sci., Part B:Polym.Phys., 1993, 31, 619.
    6. S.B. Pandit and V.M. Nadkarni, Ind. Eng. Chem Res., 1994, 33, 2778.
    7. The B.F. Goodrich Co. WO93/21274 Oct. 28,1993.
    8. Crc for Polymers Pty. Ltd., WO97/43339 Nov. 20,1997.
    9. 吳嘉鴻, 碩士論文,台灣科技大學, 2003.
    10. 黃俊翰, 碩士論文,台灣科技大學, 2009.
    11. 戴孟祥, 碩士論文, 台灣科技大學, 2010.
    12. 陳曉蘭, 碩士論文,台灣科技大學, 2010.
    13. 許毓倫, 碩士論文,台灣科技大學, 2011.
    14. 葉冠良, 碩士論文, 台灣科技大學, 2015
    15. E.J. Bartkus and C.H Kroekel, Appl.Polym.Symp., 1970, 15, 113.
    16. K.E.Atkins, in”Sheet Molding Compound :Science and Technology”Ed., H.G. Kia, Hanser Publishers, 1993. Ch4.
    17. V.A. Pattison, R.R. Hindersinn, and W.T. Schwartz,J. , Appl.Polym.Sci., 1974.
    18. V.A. Pattison, R.R. Hindersinn, and W.T. Schwartz,J. , Appl.Polym.Sci., 1975, 19, 3045.
    19. L. Suspene, D. Fourquier, and Y. S. Yang, Polymer, 1991, 32, 1593.
    20. Y. J. Huang and C. M. Liang, Polymer, 1996, 37, 401.
    21. L. J. Lee, W. Li, and K.H. Hsu, Polymer, 2000, 41, 711.
    22. C.B. Bucknall, I.K. Partridge, and M.J. Phillips, Polymer, 1991, 32, 636.
    23. Y. J. Huang, T. S. Chen, J. G. Huang, and F. H. Lee, J. Appl. Polym. Sci., 2003, 89, 3336.
    24. J.P. Dong , J.H. Lee , D.H. Lai, and Y. J. Huang, Appl. Polym.Sci., 2005, 98, 264.
    25. C.P. Hsu, M. Kinkelaar, P. Hu, and L.J. Lee., Polym.Eng.Sci., 1991, 31, 1450.
    26. Y.J. Huang, C.J. Chu, and J.P. Dong, J. Appl. Polym. Sci., 2000, 78, 543.
    27. Y.J. Huang and C.C. Su, J. Appl. Polym. Sci., 1995, 55, 323.
    28. J.P. Dong, J.G. Huang, F.H. Lee, J.W. Roan and Y.J. Huang, J.Appl.Polym.Sci., 2004, 91, 3388.
    29. Y.J. Huang and W.C. Jiang, Polymer, 1998, 39, 6631.
    30. B. M. Novak, Adv. Mater., 1993, 5, 422.
    31. X. Kornmann, L. A. Berghund, J. Sterte, and E. P. Giannelis, Polym. Eng. Sci., 1998, 38, 1351.
    32. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and Kamigaito, J.Polym.Sci. Part A: Polym.Chem, 1993. 31, 983.
    33. E. P. Giannelis, Adv. Mater., 1996, 8, 29.
    34. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, A. Fujushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 1993, 8, 1179.
    35. P. B. Messersmith and E. P. Giannelis, Chem. Mater., 1994, 6, 1719.
    36. W. Gilman and T. Kashiwagi, SAMPE Journal, 1997, 33, 42.
    37. H. Kim, A.A. Abdada, and C.W. Macosko, Macromolecules, 43, 6515 (2010)
    38. R.J. Roe, Methods of X-ray and Neutron Scattering in Polymer Science, Oxford University Press, New York, 2000. Ch5.
    39. J. Als-Nielsen and D. McMorrow, ”Elements of Modern X-ray Physics”, 2nd Ed., Wiley, New York, 2011, P14.
    40. 盧天智, 碩士論文,台灣科技大學, 1991.
    41. H.R. Allcock and F.W. Lampe, ”Contemporary Polymer Chemistry”, 2nd Ed., Prentice Hall, Englewood Cliffs, 1990, 50.
    42. Y.S. Yang and L.J. Lee, Polymer, 1988, 29, 1793.
    43. K. Horie, I. Mita, and H. Kambe, J.Polym.Sci.PartA-1:Polym. Chem., 1969, 7, 2561.
    44. 江文慶, 碩士論文,台灣科技大學, 1996.
    45. Y.J. Huang and C.C. Su, J. Appl. Polym. Sci., 1995, 55, 305.
    46. Y.J. Huang and J.C. Horng, Polymer, 1998, 39, 3683.
    47. Y.J. Huang and L.D. Chen, Polymer, 1998, 39, 7049.
    48. Y.J. Huang and C.C. Su, Polymer, 1994, 35, 2397.
    49. 蘇進成, 碩士論文,台灣科技大學, 1992.
    50. 林立翔, 碩士論文,台灣科技大學, 1992.
    51. M.R. Kamal, S. Slurour.,and M. Ryan, SPE. ANTEC Papers. 19, 1973, 187.
    52. S.Y. Pusatcioglu, A.L.Fricke., and J.C. Hasseler, J. Appl. Polym. Sci., 1979, 24, 937.
    53. C. D. Han, and K. W. Lem, J. Appl. Polym. Sci., 1983, 28, 749.
    54. J. F. Stevenson, Polym. Eng. Sci., 1989, 26(11), 746.
    55. J. F. Stevenson, SPE. ANTEC. Papers, 1980, 26, 452.
    56. L. J. Lee, Polym. Eng. Sci.,1981, 21, 483.
    57. Y. J. Huang, and L. J. Lee, AIChE. J., 1985, 31, 1585.
    58. C. D. Han, and D. S. Lee, J. Appl. Polym. Sci., 1987, 37, 2859.
    59. C. S. Chern, and D. C. Sundberg, ACS. Polym. PREP, 1985, 26(1), 296.
    60. G. L. Batch, and C. W. Mocosko, SPE. ANTEC Paper, 1987, 974.
    61. Y. J. Huang, J. D. Fan, and L. J. Lee, Polym. Eng. Sci., 1990, 30(11), 684.
    62. D.S. Kim, K. Cho, J.H. An, and C.E. Park, J. Mater. Sci., 1994, 29, 1854.
    63. J.S. Ullett and R.P. Chartoff, Polym. Eng. Sci., 1995, 35, 1086.
    64. M. Abbate, E. Martuscelli, P. Musto, G. Ragosta, and G. Scarinzi, J.Appl. Polym. Sci., 1995, 58, 1825.
    65. M.L.L. Maspochand and A.B. Matinez, Polym.Eng. Sci., 1998, 38, 290.
    66. N. A. Miller and C. D. Stirling, Polym. Comps., 2001, 9, 31.
    67. K. F. Lin and Y.D. Shieh, J. Appl. Polym. Sci., 1998, 69, 2069.
    68. K.F. Lin and Y.D. Shieh, J. Appl. Polym. Sci., 1998, 70, 2313.
    69. P. Hazot, C. Pichot, and A. Maazouz,, Macromol Chem. Phys., 2000. 201, 632.
    70. B.J.P. Jansen, S. Rastogi, H.E.H. Meijer, and P.J.Lemstra, Macromolecules, 2001, 34, 3998.
    71. H.J. Sue, E.I. Garciameitin, and D.M. Picklman, in Polymer Toughening, Ch. 5, ed., C.B. Arends, Marcel Dekker, 1996.
    72. The Dow Chemical Company US Patent 4,778,851 Oct. 18 1998.
    73. J.Y. Qian, R.A.Pearson, V.L. Dimonie, and M.S. El-Aasser, J. Appl. Polym. Sci., 1995, 58, 439.
    74. D. J. Suh, Y. T. Lim, and O. O. Park, Polymer, 2000, 41, 8557.
    75. R. K. Bharadwaj, A. R. Mehrabi, C. Hamilton, C. Trujillo, M. Murga, R. Fun, A. Chavira, and A. K. Thompsor, Polymer, 2002, 43, 3669.
    76. The Dow Chemical Company US Patent 6, 287, 922 Sep.11, 2001.
    77. A. Al-khanabashi, M. El-Gamal, and A. Moet, J. Appl. Polym. Sci., 2005, 98, 767.
    78. 梁繼文, 礦物學(下), 1984.
    79. T. Lan and T.J Dinnavaia, Chem. Mater, 1994. 6, 2216.
    80. K. Ishizu, K. I. Tsubaki and T. Ono, Polymer, 1998, 39, 2935.
    81. T. J. Prosa, B. J. Bauer, E. J. Amis, D. A. Tomalia, R. Scherrenberg, J. Polym. Sci. : Part B: Polymer Physics, 1997, 35, 2913.
    82. T. Konishi, T. Yoshizaki, T. Saito, Y. Einaga, and H. Yamakawa, Macromolecules, 1990, 23, 290.
    83. L.H. Sperling, “Introduction to Physical Polymer Science,” 3rd Ed. Wiley, New York, 2001, P.85~90.
    84. M. Osa, T. Yoshizaki, and H. Yamakawa, Macromolecules 2000, 33, 4828.
    85. W. D. Cook and O. Delaycki, J. Polym. Sci., Part B: Polym. Phys., 1974, 12, 2111
    86. J. C. Lucas, J. Borrajo and R. J. J. Williams, Polymer, 1993, 34, 3216.
    87. C. B. Bucknall, I. K. Partridge and M. J. Phillips, Polymer, 1991, 32, 786.
    88. P. W. K. Lam, Polym. Eng. Sci., 1989, 29,609.
    89. H. Kim, Y. Miura, and C.W. Macosko, Chem. Mater., 22, 3441 (2010).
    90. H. Kim and C.W. Macosko, Macromolecules, 41, 3317 (2008).
    91. W. Huang, X. Ouyang, and L.J. Lee, ACS Nano, 6, 10178 (2012).
    92. J.Z. Xu, C. Chen, Y. Wang, H. Tang, Z.M. Li, and B.S. Hsiao, Macromolecules, 44, 2808 (2011).
    93. J.R. Potts, O. Shankar, L. Du, and R.S. Ruoff, Macromolecules, 45, 6045 (2012).
    94. S. Wang, M. Tambraparni, J. Qiu, J. Tipton, and . Dean, Macromolecules, 42, 5251 (2009).
    95. S. Ganguli, A.K. Roy, D.P. Anderson, Carbon, 46, 806 (2008).
    96. M. Martin-Gallego, R. Verdejo, M.A. Lopez-Manchado, and M. Sangermanno, Polymer, 52, 4664 (2011).
    97. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Carbon, 45, 1558 (2007).
    98. W.S. Hummers, and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).
    99. H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrere-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, R.A. Savile, and I.A. Aksay, J. Phys. Chem. B, 110, 8535 (2006).
    100. Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, and H,. Zhao, Langmuir, 25, 11808 (2009).
    101. F. Beckert, C. Friedrich, R. Thomann, and R. Mulhaupt, Macromolecules, 45, 7083 (2012).
    102. S. ZIAEE, G. R. PALMESE, Journal of Polymer Science: Part B: Polymer Physics, 37, 725–744 (1999)
    103. Yuliana Tassia, 碩士論文, 台灣科技大學, 2013.
    104. 黃豪寬, 碩士論文, 台灣科技大學, 2015.
    105. 曾建誠, 碩士論文, 台灣科技大學, 2015.
    106. K. Horie, I. Mita, and H. Kambe, J. Polym. Sci.: Part A1:Polym. Chem, 1970, 8, 2839.
    107. 江昆達, 碩士論文, 台灣科技大學, 2008.
    108. S. L. Rosen, Fundamental Principles of Polymeric Materials, 2ed, Wiley, New York, 1993, 321-337.
    109. Timothy F. Scott, Wayne D. Cook and John S. Forsythe, European Polymer Journal, 38 (2002) 705–716
    110. 饒瑞博, 碩士論文, 台灣科技大學, 2013.

    QR CODE