簡易檢索 / 詳目顯示

研究生: 陳聖元
Sheng-Yuan Chen
論文名稱: 開發聚偏二氟乙烯/還原氧化石墨烯/聚醚酰亞胺為基質之薄膜做為藥物傳遞之應用
Development of poly(vinylidene fluoride-co-hexafluoropropylene)/reduced graphene oxide/polyetherimide-based films for drug delivery applications
指導教授: 鄭詠馨
Yung-Hsin Cheng
口試委員: 鄭詠馨
Yung-Hsin Cheng
蕭育生
Yu-Sheng Hsiao
楊凱強
Kai-Chiang Yang
アルブレヒト 建
Albrecht Ken
王冬
Wang Dong
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 88
中文關鍵詞: 聚偏二氟乙烯刺激響應之藥物傳遞系統貼片治療
外文關鍵詞: poly(vinylidene fluoride-co-hexa-fluoropropylene), stimuli-responsive drug delivery, patch treatment
相關次數: 點閱:208下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 刺激響應之藥物傳遞系統 (Stimuli-responsive drug delivery systems) 是一種新穎的藥物遞送方式,此種方法可以藉由外在的刺激來控制藥物釋放的情形。其中壓電材料被視為一種可以藉由外力刺激產生電訊號回饋而最終促進藥物載體釋放藥物的材料。在本研究中,我們使用以還原氧化石墨烯 (reduced graphene oxide) 及聚醚酰亞胺 (polyetherimide) 改質的聚偏二氟乙烯 (poly(vinylidene fluoride-co-hexafluoropropylene)) 以旋轉塗佈的方式製備成壓電多層薄膜,其中還原氧化石墨烯及聚醚酰亞胺的加入提升了薄膜的壓電性質以及修飾了其表面型態。接著將壓電多層薄膜以滴注的方式重複製作層狀的聚烯丙基胺鹽酸鹽 (poly(allylamine hydrochloride)) 以及聚乙二胺樹枝狀高分子 (poly(amido amine)) 作為藥物載體,另外使用4,4'-二疊氮-磺酸二鈉鹽四水合物 (4,4’-diazido- 2,2’-stilbenedisulfonic acid disodium) 進行光交聯反應,以增加薄膜的穩定性。最後在材料最外層以電紡絲的方式製作聚甲基丙烯酸羥基乙酯 (poly(2-hydroxyethyl methacrylate)) 微米薄膜以增加材料對身體組織的貼附性。實驗結果表示,這種新型貼片具有高達 68% 的 β 相比率和均勻的表面。與滴落塗佈的傳統方法相比,旋轉塗佈製作的貼片表現出高靈敏度之壓電響應。它可以在 20 mmHg 的外力下產生壓電輸出。材料製備完成後,我們對材料進行細胞毒性測試,結果顯示材料具有良好的生物相容性,可以運用在不同的病症和疾病。


    Stimuli-responsive drug delivery system is a novel strategy that allows for the controlled release of drugs through external stimuli. Among these systems, piezoelectric materials are reported to be able generate electrical stimulation in response to external forces, thereby promoting the release of drugs from the drug carrier. In this study, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) which is one of the piezoelectric materials was mixed with reduced graphene oxide-polyetherimide (rGO-PEI) and prepared by spin-coating method as the substrate. The rGO-PEI could enhance the piezoelectric property and improve the surface roughness. The substrate was coated layer-by-layer with poly(allylamine hydrochloride) (PAH) and poly(amido amine) (PAMAM) as a drug reservoir, then 4,4’-diazido- 2,2’-stilbenedisulfonic acid disodium (DAS) was used for photo-crosslinking to enhance stability. Poly(2-hydroxyethyl methacrylate) (p[HEMA]) microfibers, which was prepared by electrospinning, was designed as the contacting layer to enhance the mucoadhesion. The results revealed that this novel patch with the high β phase ratio of 68% and a homogeneous surface. The spin-coated patch showed a high sensitivity response than the patch that prepared drop-casting method. The developed patch could generate the piezoelectric response at 20 mmHg. After the material preparation was completed, in vitro biocompatibility of developed patches was evaluated by cell viability. Based on the results, the developed composite patch with piezoelectric response properties could be applied in various biomedical fields due to it well biocompatibility.

    中文摘要 I Abstract II Acknowledgments III Content IV List of figures VII List of tables X Chapter 1 Introduction 1 1.1 Foreword 1 1.2 Motivation and purpose 1 Chapter 2 Literature review and theory 3 2.1 Enhance drug release by piezoelectricity 3 2.2 Piezoelectricity 4 2.2.1 Direct piezoelectric effect 4 2.2.2 Inverse piezoelectric effect 5 2.3 Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) 6 2.4 Thin film techniques 8 2.4.1 Blade-coating 9 2.4.2 Drop-casting 9 2.4.3 Spin-coating 11 2.5 Electrospinning technology 12 2.6 Poly(hydroxyethyl methacrylate) (p[HEMA]) 14 2.7 Layer-by-layer (LbL) technique 15 Chapter 3 Experimental section 17 3.1 Materials 17 3.2 Instruments 19 3.3 Experimental procedure 21 3.4 Preparation of the rGPP piezoelectric multilayers 22 3.4.1 Synthesis of rGO-PEI 22 3.4.2 Preparation of rGPP solution 22 3.4.3 Substrate cleaning process 23 3.4.4 Manufacture rGPP piezoelectric multilayers 23 3.5 Preparation of the LbL PAH/PAMAM multilayers 24 3.5.1 Preparation of PAH and PAMAM solution 24 3.5.2 PAH/PAMAM LbL multilayer assembly 25 3.6 Preparation of electrospun p[HEMA] 26 3.6.1 Preparation p[HEMA] solution 26 3.6.2 Prepare of p[HEMA] microfiber 26 3.7 Prepartion of rGPP piezoelectric patch 27 3.8 Characterization 28 3.8.1 Contact angle measurement 28 3.8.2 Fourier-transform infrared spectroscopy analysis 28 3.8.3 Calculation of PEI loss 29 3.8.4 Piezoelectric response analysis 29 3.8.5 β-phase fraction analysis 30 3.8.6 UV-Vis spectrophotometer 31 3.8.7 Morphology 32 3.8.8 Thickness measurement 33 3.8.9 Swelling test 33 3.8.10 Tensile test 34 3.9 Cell culture 35 3.10 In vitro bioavailability 36 3.11 Statistical analysis 37 Chapter 4 Results and discussion 38 4.1 Contact angle 38 4.2 Synthetic result of rGO-PEI 39 4.2.1 Fourier-transform infrared spectroscopy analysis 39 4.2.2 Calculation of PEI loss 41 4.3 Piezoelectric response analysis 42 4.4 UV-vis spectra of the assembly of 8-S-rGPP multilayers 50 4.5 β-phase fraction analysis 51 4.6 Morphology of rGPP films and multilayers 52 4.7 Morphology of p[HEMA] microfiber 54 4.8 Thickness measurement 56 4.9 Swelling test 57 4.10 UV-vis spectra of the assembly of (PAH/PAMAM)10.5 multilayers 59 4.11 Tensile test 61 4.12 In vitro bioavailability 63 Chapter 5 Conclusion 65 References 67

    [1] S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery, Nature materials 12(11) (2013) 991-1003.
    [2] B. Tian, Y. Liu, J. Liu, Smart stimuli-responsive drug delivery systems based on cyclodextrin: A review, Carbohydrate polymers 251 (2021) 116871.
    [3] C.M. Wells, M. Harris, L. Choi, V.P. Murali, F.D. Guerra, J.A. Jennings, Stimuli-responsive drug release from smart polymers, Journal of functional biomaterials 10(3) (2019) 34.
    [4] T. Jariwala, G. Ico, Y. Tai, H. Park, N.V. Myung, J. Nam, Mechano-responsive piezoelectric nanofiber as an on-demand drug delivery vehicle, ACS applied bio materials 4(4) (2021) 3706-3715.
    [5] Z. Ma, Y. Zhang, Y. Zhang, Q. An, H. Dong, H. Fu, H. Zhang, S. Zhang, W. Tong, Bifunctional Self‐Powered Drug Delivery System to Promote the Release and Transdermal Delivery of Polar Molecules, ChemistrySelect 6(14) (2021) 3322-3330.
    [6] W. Gao, J.M. Chan, O.C. Farokhzad, pH-responsive nanoparticles for drug delivery, Molecular pharmaceutics 7(6) (2010) 1913-1920.
    [7] M. Kanamala, W.R. Wilson, M. Yang, B.D. Palmer, Z. Wu, Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review, Biomaterials 85 (2016) 152-167.
    [8] G. Saravanakumar, J. Kim, W.J. Kim, Reactive‐oxygen‐species‐responsive drug delivery systems: promises and challenges, Advanced Science 4(1) (2017) 1600124.
    [9] C.-Q. Luo, L. Xing, P.-F. Cui, J.-B. Qiao, Y.-J. He, B.-A. Chen, L. Jin, H.-L. Jiang, Curcumin-coordinated nanoparticles with improved stability for reactive oxygen species-responsive drug delivery in lung cancer therapy, International Journal of Nanomedicine (2017) 855-869.
    [10] X.-Z. Zhang, R.-X. Zhuo, J.-Z. Cui, J.-T. Zhang, A novel thermo-responsive drug delivery system with positive controlled release, International journal of pharmaceutics 235(1-2) (2002) 43-50.
    [11] A. Raza, U. Hayat, T. Rasheed, M. Bilal, H.M. Iqbal, “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review, Journal of Materials Research and Technology 8(1) (2019) 1497-1509.
    [12] K. Entzian, A. Aigner, Drug delivery by ultrasound-responsive nanocarriers for cancer treatment, Pharmaceutics 13(8) (2021) 1135.
    [13] M.S. Aw, J. Addai-Mensah, D. Losic, Magnetic-responsive delivery of drug-carriers using titania nanotube arrays, Journal of Materials Chemistry 22(14) (2012) 6561-6563.
    [14] Y. Zhang, Q. An, W. Tong, H. Li, Z. Ma, Y. Zhou, T. Huang, Y. Zhang, A new way to promote molecular drug release during medical treatment: a polyelectrolyte matrix on a piezoelectric–dielectric energy conversion substrate, Small 14(37) (2018) 1802136.
    [15] F. Duck, ‘The electrical expansion of quartz’by Jacques and Pierre Curie, Ultrasound 17(4) (2009) 197-203.
    [16] R.M. Martin, Piezoelectricity, Physical Review B 5(4) (1972) 1607.
    [17] F.-C. Kao, P.-Y. Chiu, T.-T. Tsai, Z.-H. Lin, The application of nanogenerators and piezoelectricity in osteogenesis, Science and Technology of Advanced Materials 20(1) (2019) 1103-1117.
    [18] R.F. Tinder, Third-and Fourth-Rank Tensor Properties—Symmetry Considerations, Tensor Properties of Solids: Phenomenological Development of the Tensor Properties of Crystals, Springer2007, pp. 95-122.
    [19] Y. Wu, Y. Ma, H. Zheng, S. Ramakrishna, Piezoelectric materials for flexible and wearable electronics: A review, Materials & Design 211 (2021) 110164.
    [20] S. Egusa, Z. Wang, N. Chocat, Z. Ruff, A. Stolyarov, D. Shemuly, F. Sorin, P. Rakich, J. Joannopoulos, Y. Fink, Multimaterial piezoelectric fibres, Nature materials 9(8) (2010) 643-648.
    [21] H. Parangusan, D. Ponnamma, M.A.A. Al-Maadeed, Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators, Scientific reports 8(1) (2018) 754.
    [22] J.E. Trevino, S. Mohan, A.E. Salinas, E. Cueva, K. Lozano, Piezoelectric properties of PVDF‐conjugated polymer nanofibers, Journal of Applied Polymer Science 138(28) (2021) 50665.
    [23] K. Polat, Energy harvesting from a thin polymeric film based on PVDF-HFP and PMMA blend, Applied Physics A 126 (2020) 1-8.
    [24] Y. Zhang, Z. Ma, Y. Zhang, B. Li, M. Feng, Y. Zhao, Q. An, Biofriendly molecular and protein release substrate with integrated piezoelectric motivation and anti-oxidative stress capabilities, Nanoscale 13(18) (2021) 8481-8489.
    [25] J. Cai, N. Hu, L. Wu, Y. Liu, Y. Li, H. Ning, X. Liu, L. Lin, Preparing carbon black/graphene/PVDF-HFP hybrid composite films of high piezoelectricity for energy harvesting technology, Composites Part A: Applied Science and Manufacturing 121 (2019) 223-231.
    [26] H.C. Bidsorkhi, A.G. D’Aloia, G. De Bellis, A. Proietti, A. Rinaldi, M. Fortunato, P. Ballirano, M.P. Bracciale, M.L. Santarelli, M.S. Sarto, Nucleation effect of unmodified graphene nanoplatelets on PVDF/GNP film composites, Materials Today Communications 11 (2017) 163-173.
    [27] A. Gayen, D. Mondal, D. Roy, P. Bandyopadhyay, S. Manna, R. Basu, S. Das, D. Bhar, B. Paul, P. Nandy, Improvisation of electrical properties of PVDF-HFP: use of novel metallic nanoparticles, Journal of Materials Science: Materials in Electronics 28(19) (2017) 14798-14808.
    [28] K. Huang, H. Ning, N. Hu, X. Wu, S. Wang, S. Weng, W. Yuan, L. Wu, Y. Liu, Synergistic effect of CB and MWCNT on the strain-induced DC and AC electrical properties of PVDF-HFP composites, Carbon 144 (2019) 509-518.
    [29] M.A. Rahman, G.-S. Chung, Synthesis of PVDF-graphene nanocomposites and their properties, Journal of Alloys and Compounds 581 (2013) 724-730.
    [30] K. Sabira, P. Saheeda, M. Divyasree, S. Jayalekshmi, Impressive nonlinear optical response exhibited by Poly (vinylidene fluoride)(PVDF)/reduced graphene oxide (RGO) nanocomposite films, Optics & Laser Technology 97 (2017) 77-83.
    [31] H.H. Singh, S. Singh, N. Khare, Design of flexible PVDF/NaNbO3/RGO nanogenerator and understanding the role of nanofillers in the output voltage signal, Composites Science and Technology 149 (2017) 127-133.
    [32] W. Tong, Y. Zhang, Q. Zhang, X. Luan, Y. Duan, S. Pan, F. Lv, Q. An, Achieving significantly enhanced dielectric performance of reduced graphene oxide/polymer composite by covalent modification of graphene oxide surface, Carbon 94 (2015) 590-598.
    [33] Y.-H. Chang, S.-R. Tseng, C.-Y. Chen, H.-F. Meng, E.-C. Chen, S.-F. Horng, C.-S. Hsu, Polymer solar cell by blade coating, Organic Electronics 10(5) (2009) 741-746.
    [34] P. Schilinsky, C. Waldauf, C.J. Brabec, Performance analysis of printed bulk heterojunction solar cells, Advanced Functional Materials 16(13) (2006) 1669-1672.
    [35] M. Eslamian, F. Soltani-Kordshuli, Development of multiple-droplet drop-casting method for the fabrication of coatings and thin solid films, Journal of Coatings Technology and Research 15(2) (2018) 271-280.
    [36] A. Kumar, M. Shkir, H. Somaily, K. Singh, B. Choudhary, S. Tripathi, A simple, low-cost modified drop-casting method to develop high-quality CH3NH3PbI3 perovskite thin films, Physica B: Condensed Matter 630 (2022) 413678.
    [37] M. Tyona, A theoritical study on spin coating technique, Advances in materials Research 2(4) (2013) 195.
    [38] N. Sahu, B. Parija, S. Panigrahi, Fundamental understanding and modeling of spin coating process: A review, Indian Journal of Physics 83(4) (2009) 493-502.
    [39] H.A.M. Mustafa, D.A. Jameel, Modeling and the main stages of spin coating process: A review, Journal of Applied Science and Technology Trends 2(03) (2021) 91-95.
    [40] D.S. Coelho, B. Veleirinho, T. Alberti, A. Maestri, R. Yunes, P.F. Dias, M. Maraschin, Electrospinning technology: designing nanofibers toward wound healing application, Nanomaterials-Toxicity, Human Health and Environment (2018) 1-19.
    [41] M. Dubský, Š. Kubinová, J. Širc, L. Voska, R. Zajíček, A. Zajícová, P. Lesný, A. Jirkovská, J. Michálek, M. Munzarová, Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing, Journal of Materials Science: Materials in Medicine 23 (2012) 931-941.
    [42] A. Keirouz, M. Chung, J. Kwon, G. Fortunato, N. Radacsi, 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 12(4) (2020) e1626.
    [43] W. Lu, J. Sun, X. Jiang, Recent advances in electrospinning technology and biomedical applications of electrospun fibers, Journal of Materials Chemistry B 2(17) (2014) 2369-2380.
    [44] N. Ditaranto, F. Basoli, M. Trombetta, N. Cioffi, A. Rainer, Electrospun nanomaterials implementing antibacterial inorganic nanophases, Applied Sciences 8(9) (2018) 1643.
    [45] N.S. Abd Halim, M.D.H. Wirzal, S.M. Hizam, M.R. Bilad, N.A.H.M. Nordin, N.S. Sambudi, Z.A. Putra, A.R.M. Yusoff, Recent development on electrospun nanofiber membrane for produced water treatment: a review, Journal of Environmental Chemical Engineering 9(1) (2021) 104613.
    [46] C.J. Mortimer, C.J. Wright, The fabrication of iron oxide nanoparticle‐nanofiber composites by electrospinning and their applications in tissue engineering, Biotechnology journal 12(7) (2017) 1600693.
    [47] K.S. Ogueri, C.T. Laurencin, Nanofiber technology for regenerative engineering, ACS nano 14(8) (2020) 9347-9363.
    [48] A.J. Cadotte, T.B. DeMarse, Poly-HEMA as a drug delivery device for in vitro neural networks on micro-electrode arrays, Journal of neural engineering 2(4) (2005) 114.
    [49] N. Ramalingam, T. Natarajan, S. Rajiv, Preparation and characterization of electrospun curcumin loaded poly (2‐hydroxyethyl methacrylate) nanofiber—A biomaterial for multidrug resistant organisms, Journal of Biomedical Materials Research Part A 103(1) (2015) 16-24.
    [50] S. Mansouri, F.M. Winnik, M. Tabrizian, Modulating the release kinetics through the control of the permeability of the layer-by-layer assembly: a review, Expert Opinion on Drug Delivery 6(6) (2009) 585-597.
    [51] M.-X. Chen, B.-K. Li, D.-K. Yin, J. Liang, S.-S. Li, D.-Y. Peng, Layer-by-layer assembly of chitosan stabilized multilayered liposomes for paclitaxel delivery, Carbohydrate polymers 111 (2014) 298-304.
    [52] Q. Wang, B.-m.Z. Newby, Layer-by-layer polyelectrolyte coating of alginate microgels for sustained release of sodium benzoate and zosteric acid, Journal of drug delivery science and technology 46 (2018) 46-54.
    [53] L. Yang, L. Li, H. Li, T. Wang, X. Ren, Y. Cheng, Y. Li, Q. Huang, Layer‐by‐Layer Assembled Smart Antibacterial Coatings via Mussel‐Inspired Polymerization and Dynamic Covalent Chemistry, Advanced Healthcare Materials 11(12) (2022) 2200112.
    [54] X. Hu, J. Ji, Covalent layer-by-layer assembly of hyperbranched polyether and polyethyleneimine: multilayer films providing possibilities for surface functionalization and local drug delivery, Biomacromolecules 12(12) (2011) 4264-4271.
    [55] Y. Wang, Q. An, Y. Zhou, Y. Niu, R. Akram, Y. Zhang, F. Shi, Post-infiltration and subsequent photo-crosslinking strategy for layer-by-layer fabrication of stable dendrimers enabling repeated loading and release of hydrophobic molecules, Journal of Materials Chemistry B 3(4) (2014) 562-569.
    [56] J. Zhu, X. Shi, Dendrimer-based nanodevices for targeted drug delivery applications, Journal of Materials Chemistry B 1(34) (2013) 4199-4211.
    [57] K. Sato, J.-i. Anzai, Dendrimers in layer-by-layer assemblies: Synthesis and applications, Molecules 18(7) (2013) 8440-8460.
    [58] P. Martins, A. Lopes, S. Lanceros-Mendez, Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications, Progress in polymer science 39(4) (2014) 683-706.
    [59] H. Shaik, S. Rachith, K. Rudresh, A.S. Sheik, K. Thulasi Raman, P. Kondaiah, G. Mohan Rao, Towards β-phase formation probability in spin coated PVDF thin films, Journal of Polymer Research 24 (2017) 1-6.
    [60] Q. An, K. Nie, Y. Zhang, Y. Wang, Y. Hu, V. Dutschk, X. Luan, PAH/DAS covalently cross-linked layer-by-layer multilayers: A “nano-net” superstratum immobilizes nanoparticles and remains permeable to small molecules, Soft Matter 11(34) (2015) 6859-6865.
    [61] F. Ji, Y. Zhang, Y. Geng, Y. Zong, L. Wang, Fabrication of covalently linked PAH/PVS layer-by-layer assembled multilayers via a post-photochemical cross-linking strategy, Chemical Research in Chinese Universities 32 (2016) 493-498.
    [62] C. Eouani, P. Piccerelle, P. Prinderre, E. Bourret, J. Joachim, In-vitro comparative study of buccal mucoadhesive performance of different polymeric films, European journal of pharmaceutics and biopharmaceutics 52(1) (2001) 45-55.
    [63] G.K. Abilova, D.B. Kaldybekov, E.K. Ozhmukhametova, A.Z. Saimova, D.S. Kazybayeva, G.S. Irmukhametova, V.V. Khutoryanskiy, Chitosan/poly (2-ethyl-2-oxazoline) films for ocular drug delivery: Formulation, miscibility, in vitro and in vivo studies, European Polymer Journal 116 (2019) 311-320.
    [64] T.A. Arica, M. Guzelgulgen, A.A. Yildiz, M.M. Demir, Electrospun GelMA fibers and p (HEMA) matrix composite for corneal tissue engineering, Materials Science and Engineering: C 120 (2021) 111720.
    [65] J. Che, L. Shen, Y. Xiao, A new approach to fabricate graphene nanosheets in organic medium: combination of reduction and dispersion, Journal of Materials Chemistry 20(9) (2010) 1722-1727.
    [66] L. Zhang, Z. Lu, Q. Zhao, J. Huang, H. Shen, Z. Zhang, Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI‐grafted graphene oxide, Small 7(4) (2011) 460-464.
    [67] C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets, ACS nano 4(4) (2010) 2429-2437.
    [68] M. Fortunato, D. Cavallini, G. De Bellis, F. Marra, A. Tamburrano, F. Sarto, M.S. Sarto, Phase inversion in PVDF films with enhanced piezoresponse through spin-coating and quenching, Polymers 11(7) (2019) 1096.

    無法下載圖示 全文公開日期 2033/08/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE