簡易檢索 / 詳目顯示

研究生: 鍾宛倫
Wan-lun Chung
論文名稱: 由元素矽水解法合成無機二氧化矽奈米顆粒及以RAFT活自由基聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂具核殼型結構之高分子接枝二氧化矽奈米顆粒及高分子接枝蒙特那石黏土之抗收縮劑及增韌劑
Synthesis of nano-scale colloidal silica from elemental silicon by hydrolysis, and synthesis of polymer-grafted silica nanoparticle and polymer-grafted monomorillonite clay with core-shell structure as low-profile additives and tougheners for unsaturated polyester, vinyl ester, and epoxy resins by RAFT living free radical solution polymerizations
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 陳崇賢
Chorng-Shyan Chern
邱文英
Wen-Yen Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 211
中文關鍵詞: 無機/有機核殼型顆粒(CSP)抗收縮劑 (LPA)增韌劑可逆加成-斷裂鏈轉移聚合法(RAFT)乙烯基酯樹脂(VER)体積收縮機械性質聚合固化樣品之微觀型態結構掃瞄式電子顯微術(SEM)穿透式電子顯微術(TEM)
外文關鍵詞: inorganic/organic core-shell particle (CSP); low
相關次數: 點閱:616下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討用作熱固性樹脂抗收縮劑及增韌劑之奈米級無機/有機核殼型顆粒(CSP)的合成,其對低收縮乙烯基酯樹脂在聚合固化後之樣品微觀型態結構、体積收縮特性及機械性質的影響。這些核殼型顆粒(CSP),以SiO2-polymer標示之,係以二氧化矽奈米顆粒(SNP)為核心及有機高分子為外殼,以Z支撐的可逆加成-斷裂鏈轉移聚合法(RAFT),利用二氧化矽支撐的3-(benzylsulfanylthiocarbonylsulfanyl) propionic acid (Si-BSPA)作為鏈轉移試劑合成而得。其中,直徑15 nm的二氧化矽奈米顆粒是以可控制顆粒尺寸的矽元素水解法合成,而SiO2-polymer核殼型顆粒的高分子外殼為聚丙烯酸甲酯(PMA)、丙烯酸甲酯(MA)與甲基丙烯酸環丙氧烷酯(GMA)的共聚合物(poly(MA-co-GMA))、丙烯酸丁酯與丙烯酸甲酯之團聯共聚合物(PBA-b-PMA)、或聚丙烯酸丁酯與丙烯酸甲酯(MA)及甲基丙烯酸環丙氧烷酯(GMA)的共聚合物之團聯共聚合物(PBA-b- poly(MA-co-GMA))。
    依所使用之乙烯基酯VER樹脂基材的分子量、核殼型顆粒CSP的添加量、及CSP的外殼高分子組成, CSP可使VER樹脂在聚合固化過程中的環化反應減少,在聚合固化過程中所產生的微膠体結構因之較不排列緊密,進而有利於聚合固化後之本質聚合收縮的減少。吾人發現,適度調整VER 樹脂基材的分子量,以防止苯乙烯(St)/乙烯基酯(VER)/SiO2-polymer三成份系在聚合固化反應前之相分離的發生,添加較高含量的SiO2-polymer作為抗收縮劑LPA,可以導致聚合固化後較小的体積收縮率。添加10%重量比的15nm粒徑的SiO2- polymer可使体積收縮率較之純VER樹脂系減少80%。同時,添加10%重量比的15nm粒徑的SiO2- polymer可使耐衝擊強度及楊氏模數,較之純VER樹脂系,分別增加80%及25%,但會使抗張強度減少30%。


    Synthesis of nano-scale inorganic/organic core-shell particle (CSP) as low-profile additives (LPA) and toughenors for thermoset resins, and their effects on the cured sample morphology, volume shrinkage characteristics and mechanical properties for low-shrink vinyl ester resins (VER) during the cure were investigated. These CSP designated as SiO2-polymer, which contained silica nanoparticle (SNP) as the core and organic polymer as the shell, were synthesized by the Z supported reversible addition-fragmentation chain transfer (RAFT) graft polymerization using silica-supported 3-(benzylsulfanylthiocarbonylsulf- anl) propionic acid (Si-BSPA) as the chain transfer agent (CTA). The silica nanoparticle with a diameter of 15 nm was synthesized by size-controllable hydrolysis of elemental silicon, whereas the grafted polymer as the shell of the SiO2-polymer was made from poly(methyl acrylate) (PMA), copolymer of MA and glycidyl methacrylate (poly(MA-co-GMA)), poly(butyl acrylate)-block-poly(methyl acrylate) (PBA-b-PMA) or PBA-block-poly(MA-co-GMA).

    Depending on the molecular weight of the VER resin matrix employed, the content of CSP, and the shell composition of CSP, the CSP could lead to a reduction of cyclization reaction for VER resins during the cure, and the microgel structure during the cure would be less compact, and, in turn, be favorable for the decrease of intrinsic polymerization shrinkage after the cure. It was found that with the adjustment of VER molecular weight to prevent the phase separation of the St/VER/SiO2-polymer ternary system prior to cure, adding a higher content of SiO2-polymer as an LPA in the VER resin may result in a lower volume shrinkage after cure, and adding 10% of 15 nm size of SiO2- polymer can lead to a decrease of volume shrinkage by 80%. Also, adding 10% of 15 nm size of SiO2- polymer can result in an increase of impact strength and Young’s modulus, by 80% and 25%, respectively, but a decrease of tensile strength by 30%.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 I 表目錄 VII 第一章 緒論 1 1-1 二氧化矽 1 1-2 高分子複合材料 1 1-3 不飽和聚酯 (Unsaturated polyester, UP) 2 1-4 環氧樹脂 (Epoxy Resin ) [19-24] 3 1-5 乙烯基酯樹脂 (Vinyl Ester Resin, VER) 6 1-6 抗收縮劑 (Low Profile Additive, LPA) 7 1-7 增韌劑 7 1-8石墨烯/高分子奈米複合材料 9 1-9 研究範疇 14 第二章 文獻回顧 16 2-1 二氧化矽 16 2-1-1 二氧化矽的製備 17 2-2 自由基聚合法 19 2-3 溶液聚合法(Solution Polymerization) 22 2-4 活性自由基聚合法 23 2-4-1 原子轉移自由基聚合法(ATRP) 24 2-4-2 穩定自由基聚合法(SFRP) 26 2-4-3可逆加成-斷裂鏈轉移聚合法(RAFT) 27 2-5不飽和聚酯與苯乙烯之交聯共聚合反應 30 2-6蒙特納石黏土(Montmorillonite, MMT)及蒙特納石黏土/高分子奈米複合材料 33 2-7 石墨烯/高分子奈米複合材料之研究 37 2-8氧化石墨(GO)及熱還原氧化石墨(TRGO)的製備 37 第三章 實驗方法及設備 39 3-1 實驗藥品 39 3-1-2 乙烯基酯樹脂(Vinyl Ester Resin, VER) 45 3-2 實驗儀器與操作步驟 47 3-2-1動態光散射儀(DLS) 47 3-2-2核磁共振光譜儀(NMR) 47 3-2-3傅立葉轉換紅外線光譜儀(FT-IR) 48 3-2-4熱重分析儀(TGA) 49 3-2-5膠體滲透層析儀(GPC) 50 3-2-6 動態DSC 50 3-2-7 拉伸測試 51 3-2-8 耐衝擊測試 52 3-2-9 掃描式電子顯微鏡(SEM) 53 3-2-10 穿透式電子顯微鏡(TEM) 53 3-3 實驗方法 55 3-3-1元素矽水解法合成二氧化矽(Silica) 55 3-3-2活化二氧化矽顆粒 57 3-3-3 鏈轉移試劑(BSPA)之合成 58 3-3-4 二氧化矽接枝鏈轉移試劑(SiO2-BSPA)之合成 61 3-3-5二氧化矽接枝聚合物(SiO2-Polymer)之合成 63 3-3-5-1 單體純化 63 3-3-5-2 冷凍抽氣解凍循環(Freeze-pump-thaw cycles) 63 3-3-5-3 二氧化矽外殼接枝高分子 64 3-3-5-4 二氧化矽外殼接枝雙區段共聚合物(SiO2-PBA-b-PMA, SiO2-PBA-b-P(MA-co-GMA)) 67 3-3-5-5 胺解斷鏈接枝聚合物鏈 70 3-3-6 St/VER(n=2)/無機有機核殼型顆粒(CSP)三成分系統之固化試片製作 71 3-3-7 體積變化量測-密度法 73 3-3-8 St/VER(n=2)/無機有機核殼型顆粒(CSP) 三成分系統未反應前之相分離實驗 73 第四章 結果與討論 74 4-1 二氧化矽之合成 75 4-1-1 元素矽水解法合成膠體二氧化矽奈米顆粒 75 4-1-2 製備二氧化矽粉末 80 4-1-3 活化前後二氧化矽顆粒之FTIR鑑定 81 4-1-4 活化前後二氧化矽顆粒之TGA鑑定 89 4-2鏈轉移劑3-(benzylsulfanylthiocarbonylsufanyl) propionic acid (BSPA)之合成 91 4-2-1探討鏈轉移劑(BSPA)之實驗步驟 92 4-2-2 鏈轉移試劑(BSPA)之FTIR鑑定 93 4-2-3 鏈轉移試劑(BSPA)之NMR鑑定 96 4-3二氧化矽接枝鏈轉移試劑(SiO2-BSPA)之合成 102 4-3-1二氧化矽接枝4-氯甲基苯基三甲氧矽烷(SiO2-Cl)之FTIR鑑定 102 4-3-2二氧化矽接枝鏈轉移試劑(SiO2-BSPA)之FTIR鑑定 104 4-4 接枝高分子之二氧化矽奈米顆粒 (SiO2-Polymer)之合成與分析 107 4-4-1 GPC鑑定溶液中自由相高分子(free polymer)、固相接枝高分子(grafted polymer)之分子量及其分佈 108 4-4-2二氧化矽接枝高分子(SiO2-Polymer)之TGA鑑定 116 4-4-3溶液中自由相高分子(free polymer)之NMR鑑定 127 4-4-4 DSC鑑定接枝於二氧化矽奈米顆粒高分子之玻璃轉移溫度(Tg) 142 4-4-5 RAFT溶液聚合法合成二氧化矽接枝高分子之反應探討 145 4-5 St/VER(n=2)/CSP 三成份系統之相容性與相分離結果 147 4-5-1 純樹脂VER(n=2) 以基團貢獻法計算之偶極矩 148 4-5-2 SiO2-PMA以基團貢獻法計算之偶極矩 150 4-5-3 SiO2-P(MA-co-GMA10)以基團貢獻法計算之偶極矩 151 4-5-4 SiO2-P(MA-co-GMA20)以基團貢獻法計算之偶極矩 152 4-5-5 St/VER(n=2)/CSP 三成分系統相分離結果 154 4-6 SEM 微觀型結構 155 4-6-1 St/VER(n=2)/SiO2-PBA-b-PMA 三成分系統 155 4-6-2 St/VER(n=2)/SiO2-PBA-b-P(MA-co-GMA10)三成分系統 160 4-6-3 St/VER(n=2)/SiO2-PBA-b-P(MA-co-GMA20)三成分系統 164 4-7 TEM 微觀型結構 168 4-7-1 St/VER(n=2)/SiO2-PBA-b-PMA 三成分系統 168 4-7-2 St/VER(n=2)/SiO2-PBA-b-P(MA-co-GMA10)三成分系統 174 4-7-3 St/VER(n=2)/SiO2-PBA-b-P(MA-co-GMA20)三成分系統 178 4-8 體積收縮特性 182 4-8-1 St/VER(n=2)/SiO2-PBA-b-PMA三成分系統其聚合固化後之體積收縮特性 183 4-8-2 St/VER(n=2)/SiO2-PBA-b-P(MA-co-GMA10)三成分系統其聚合固化後之體積收縮特性 184 4-8-3 St/VER(n=2)/SiO2-PBA-b-P(MA-co-GMA20)三成分系統其聚合固化後之體積收縮特性 185 4-9 機械性質研究 186 4-9-1 St/VER(n=2)/SiO2-PBA-b-PMA三成分系統 186 4-9-1-1 St/VER(n=2)/SiO2-PBA-b-PMA三成分系統之耐衝擊強度 186 4-9-1-2 St/VER(n=2)/SiO2-PBA-b-PMA三成分系統之楊氏模數 188 4-9-1-3 St/VER(n=2)/SiO2-PBA-b-PMA三成分系統之抗張強度 190 4-9-2 St/VER(n=2)/SiO2-PBA-b-P(MA-co-GMA10)三成分系統 192 4-9-2-1 St/VER(n=2)/ SiO2-PBA-b-P(MA-co-GMA10)三成分系統之耐衝擊強度 192 4-9-2-2 St/VER(n=2)/ SiO2-PBA-b-P(MA-co-GMA10)三成分系統之楊氏模數 194 4-9-2-3 St/VER(n=2)/ SiO2-PBA-b-P(MA-co-GMA10)三成分系統之抗張強度 196 4-9-3 St/VER(n=2)/SiO2-PBA-b-P(MA-co-GMA20)三成分系統 198 4-9-3-1 St/VER(n=2)/ SiO2-PBA-b-P(MA-co-GMA20)三成分系統之耐衝擊強度 198 4-9-3-2 St/VER(n=2)/ SiO2-PBA-b-P(MA-co-GMA20)三成分系統之楊氏模數 200 4-9-3-3 St/VER(n=2)/ SiO2-PBA-b-P(MA-co-GMA20)三成分系統之抗張強度 202 第五章 結論 204 第六章 建議與未來工作 207 第七章 參考文獻 208

    [1] R. K. Iler, The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry, Wiley, New York 1979.
    [2] R. B. Burns, "Polyester molding compounds", Marcel Dekker, New York, 1982.
    [3] K. E. Atkins, H. G. Kia, Sheet Molding Compounds: Science and Technology, Ch. 4, H.G. Kia, Hanser, New York 1993.
    [4] Y. J. Huang, C. M. Liang, Polymer 1996, 37, 401.
    [5] Y. J. Huang, C. J. Chu, J. P. Dong, Journal of applied polymer science 2000, 78, 543.
    [6] Y.J. Huang, T.S. Chen, J.G. Huang, F. H. Lee, "Polym. Mater. Sci. Eng. 83, 493 ", 2000.
    [7] Y.J. Huang, J.P. Dong, J.J. Yang, J.H. Lee, D. H. Lai, Polym. Mater. Sci. Eng. 85, 497 2001.
    [8] The B.F. Goodriche Co, WO93/21274, Oct. 28.1993.
    [9] E. Martuscelli, P. Musto, G. Ragosta, G. Scarinzi, E. Bertotti, Journal of Polymer Science Part B: Polymer Physics 1993, 31, 619.
    [10] S. B. Pandit, V. M. Nadkarni, Industrial & engineering chemistry research 1994, 33, 2778.
    [11] D. S. Kim, K. Cho, J. H. An, C. E. Park, Journal of materials science 1994, 29, 1854.
    [12] J. S. Ullett, R. P. Chartoff, Polymer Engineering & Science 1995, 35, 1086.
    [13] M. Abbate, E. Martuscelli, P. Musto, G. Ragosta, G. Scarinzi, Journal of applied polymer science 1995, 58, 1825.
    [14] M. L. L. Maspoch, A. B. Martinez, Polymer Engineering & Science 1998, 38, 290.
    [15] N. A. Miller, C. D. Stirling, Polym. Polym. Comps. 9, 31 2001.
    [16] R. E. Young, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976.
    [17] M. E. Kelly, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976, 370.
    [18] F. Fekete, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976, 28.
    [19] B. Ellis, "Chemistry and Technology of Epoxy Resins", London: Blackie Academic and Professional 1993.
    [20] 陳東課, 環氧樹脂在基層板之應用, 化工技術第四卷第五期, 1996.
    [21] 賴耿陽, 環氧樹脂應用實務, 復漢出版社, 台灣, 1999.
    [22] 賴家聲, 環氧樹脂與硬化劑(上), 復漢出版社, 台灣, 1999.
    [23] S. V. Levchik, G. Camino, M. P. Luda, L. Costa, G. Muller, B. Costes, Polymer degradation and stability 1998, 60, 169.
    [24] 黃滄閔, 國立成功大學 碩士論文 2001.
    [25] T. Mitani, H. Shiraishi, K. Honda, G. E. Owen, 44th Annual Conference Composite Institute, the Society of the Plastics Industry, session RF (Reb3-9) 1989.
    [26] W. Li, L. J. Lee, Polymer 1998, 39, 5677.
    [27] M. Kinkelaar, S. Muzumdar, L. J. Lee, Polymer Engineering & Science 1995, 35, 823.
    [28] R. R. Hill, S. V. Muzumdar, L. J. Lee, Polymer Engineering & Science 1995, 35, 852.
    [29] W. Crc for Polymers Pty. Ltd., WO97,43339 Nov 20,1997.
    [30] J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, Macromolecules 1998, 31, 5559.
    [31] G. M. T. P. Le, S. H. T. E. Rizzardo, PCT Int. Appl. WO9801478 A1980115 1998.
    [32] D. J. Keddie, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 2012, 45, 5321.
    [33] H. Kim, A. A. Abdala, C. W. Macosko, Macromolecules 2010, 43, 6515.
    [34] J. Guo, X. Liu, Y. Cheng, Y. Li, G. Xu, P. Cui, Journal of colloid and interface science 2008, 326, 138.
    [35] M. H. Stenzel, T. P. Davis, A. G. Fane, Journal of Materials Chemistry 2003, 13, 2090.
    [36] D. L. Patton, R. C. Advincula, Macromolecules 2006, 39, 8674.
    [37] R. P. W. Scott, "Silica gel and bonded phases", Wiley, New York, 1993.
    [38] K. Ohno, T. Morinaga, K. Koh, Y. Tsujii, T. Fukuda, Macromolecules 2005, 38, 2137.
    [39] W. Stober, A. Fink, E. Bohn, Journal of colloid and interface science 1968, 26, 62.
    [40] 合成二氧化矽的特性與用途, 高分子工業 1998.
    [41] 彭俊昇, 國立台灣科技大學 碩士論文 2000.
    [42] H. R. Allcock, F. W. Lampe, "Contemporary Polymer Chemistre, 2nd Ed." Prentice-Hall, New Jersey, 1990, 50.
    [43] S. L. Rosen, "Fundamental principles of polymeric materials, 2nd Ed." Wiley, New York, 1993.
    [44] "張容瑋, 國立台灣科技大學 碩士論文", 2008.
    [45] M. Szwarc, Nature, 178, 1168, London, 1956.
    [46] T. Otsu, M. Yoshida, Makromol Chem Rapid Commun. 1982, 3, 127, 542.
    [47] K. Matyjaszewski, J. Xia, Chemical Reviews 2001, 101, 2921.
    [48] J. S. Wang, K. Matyjaszewski, Journal of the American Chemical Society 1995, 117, 5614.
    [49] M. Kamigaito, T. Ando, M. Sawamoto, Chemical Reviews 2001, 101, 3689.
    [50] D. H. Solomon, E. Rizzardo, P. Cacioli, US Patent, 4, 581, 429, 1985.
    [51] M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, G. K. Hamer, Macromolecules 1993, 26, 2987.
    [52] R. Francis, D. Taton, J. L. Logan, P. Masse, Y. Gnanou, R. S. Duran, Macromolecules 2003, 36, 8253.
    [53] P. Takolpuckdee, C. A. Mars, S. Perrier, Organic letters 2005, 7, 3449.
    [54] Y. Tsujii, M. Ejaz, K. Sato, A. Goto, T. Fukuda, Macromolecules 2001, 34, 8872.
    [55] R. Narain, S. P. Armes, Macromolecules 2003, 36, 4675.
    [56] Y. S. Yang, L. J. Lee, Polymer 1988, 29, 1793.
    [57] K. Horie, I. Mita, H. Kambe, Journal of Polymer Science Part A: Polymer Chemistry 1969, 7, 2561.
    [58] 江文慶, 國立台灣科技大學 碩士論文, 1996.
    [59] Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito, Journal of Polymer Science Part A: Polymer Chemistry 1993, 31, 983.
    [60] 韋光華、林鴻明, "PU/矽酸鹽層奈米複材之合成與分析、金屬及陶瓷奈米微粒之合成與應用",經濟部工業局九十年度工業技術人才培訓計畫上課講義,財團法人自強工業科學基金會,2001年9月18日
    [61] 白世榮、蕭守道, "Applications of X-ray Scattering: Nanostructure Characterization in Frontier Polymer Research," Lecture Hand-out, 中興大學化工系,2002年6月26日.
    [62] Z. Wang, T. J. Pinnavaia, Chemistry of Materials 1998, 10, 3769.
    [63] I. N. Jan, T. M. Lee, K. C. Chiou, J. J. Lin, Industrial & engineering chemistry research 2005, 44, 2086.
    [64] J. J. Lin, I. J. Cheng, R. Wang, R. J. Lee, Macromolecules 2001, 34, 8832.
    [65] D. M. Moore, R. C. Reynolds, "X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed", Oxford university press: New York, 1997.
    [66] X. Kornmann, L. A. Berglund, J. Sterte, E. P. Giannelis, Polymer Engineering & Science 1998, 38, 1351.
    [67] S. J. Park, B. J. Kim, D. I. Seo, K. Y. Rhee, Y. Y. Lyu, Materials Science and Engineering: A, 2009, 526, 74.
    [68] S. Sen, Polymer Composites, 2010, 31, 482.
    [69] M. K. Dean, S. A. Bateman, R. Simons, Polymer, 2007, 48, 2231.
    [70] H. Kim, Y. Miura, C. W. Macosko, Chemistry of Materials 2010, 22, 3441.
    [71] H. Kim, C. W. Macosko, Macromolecules 2008, 41, 3317.
    [72] W. Huang, X. Ouyang, L. J. Lee, ACS Nano, 6, 10178, 2012.
    [73] S. Ganguli, A. K. Roy, D. P. Anderson, Carbon 2008, 46, 806.
    [74] J. Z. Xu, C. Chen, Y. Wang, H. Tang, Z. M. Li, B. S. Hsiao, Macromolecules, 2011, 44, 2808.
    [75] S. Wang, M. Tambraparni, J. Qiu, J. Tipton, D. Dean, Macromolecules, 2009, 42, 5251.
    [76] M. Martin-Gallego, R. Verdejo, M. A. Lopez-Manchado, M. Sangermano, Polymer 2011, 52, 4664.
    [77] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558.
    [78] W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339.
    [79] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, I. A. Aksay, The Journal of Physical Chemistry B 2006, 110, 8535.
    [80] Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, H. Zhao, Langmuir 2009, 25, 11808.
    [81] F. Beckert, C. Friedrich, R. Thomann, R. Mulhaupt, Macromolecules 2012, 45, 7083.
    [82] H. Zheng, D. Zhang, W. Y. Wang, Y. Q. Fan, J. Li, H. P. Han, Microchimica Acta 2007, 157, 7.
    [83] J. i. Zhu, X. h. Zhang, H. Cheng, Y. o. Li, S. u. Cheng, R. i. Zhuo, Journal of Polymer Science Part A: Polymer Chemistry 2007, 45, 5354.
    [84] 謝宇軒, 國立台灣科技大學 碩士論文 2009.
    [85] 林建辰, 國立台灣科技大學 碩士論文 2010.
    [86] 劉家豪, 國立台灣科技大學 碩士論文 2011.
    [87] 陳彥廷, 國立台灣科技大學 碩士論文 2012.
    [88] 余雅婷, 國立台灣科技大學 碩士論文 2013.
    [89] Y. Zhao, S. Perrier, Macromolecules 2007, 40, 9116.
    [90] X. Jiang, W. Tian, C. Zhao, H. Zhang, M. Liu, Talanta 2007, 72, 119.
    [91] Y. Zhao, S. Perrier, Macromolecules 2006, 39, 8603.
    [92] R. Mueller, H. K. Kammler, K. Wegner, S. E. Pratsinis, Langmuir 2003, 19, 160.
    [93] D. Liu, H. J. Sue, Z. J. Thompson, F. S. Bates, M. A. Hillmyer, M. Dettloff, G. Jacob, N. Verghese, H. Pham, Polym. Mater. Sci. Eng. 85, 497 2010, 103, 543.
    [94] A. Lazzeri, C. B. Bucknall, Journal of materials science 1993, 28, 6799.
    [95] M. S. e. Juang, I. M. Krieger, Journal of Polymer Science: Polymer Chemistry Edition 1976, 14, 2089.
    [96] 饒瑞博, 國立台灣科技大學 碩士論文 2013.

    QR CODE