簡易檢索 / 詳目顯示

研究生: 蔡璨鴻
Tsan-Hung Tsai
論文名稱: 應用熱壓轉印技術於聚乳酸高分子微奈米結構製作之製程研究
A study of hot embossing process on polylactic acid polymer micro/nano structure fabrication
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 鍾俊輝
Chunhui Chung
張天立
Tien-Li Chang
劉家銘
Chia-Ming Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 94
中文關鍵詞: 聚乳酸熱壓機械性質微/奈米結構田口方法
外文關鍵詞: PLA, hot embossing, mechanical properties, micro/nano structure, Taguchi Method
相關次數: 點閱:290下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚乳酸(polylactic acid, PLA)是無毒、並具良好生醫可降解特性及生醫相容性的聚酯類高分子。其可廣泛使用於生醫元件及其他應用。本研究主要探討聚乳酸高分子於熱壓轉印過程中,製程程序及參數對材料性質及成形特性的影響。
    實驗利用維克氏硬度計、萬能材料試驗機、凝膠滲透層析儀(GPC)、示差掃描熱量分析儀(DSC)等設備,探討各種不同熱壓製程參數對材料性質的影響。實驗結果發現隨著熱壓溫度與熱壓時間增加,材料之楊氏係數逐漸變大,但斷裂伸長率反而變小,導致材料過於脆化。實驗結果發現將熱壓溫度控制於70℃到110℃之間、熱壓時間控制在4分鐘內,可獲得較理想的斷裂伸長率。未來以此熱壓轉印製程參數製作生醫元件,應可得到較佳的元件機械性質及材料特性。
    本研究進一步使用微/奈米結構模仁熱壓轉印成形聚乳酸高分子材料,並利用田口方法找出較佳之製程參數。分析結果指出脫模溫度40℃、熱壓溫度110℃、熱壓壓力9MPa、熱壓時間60s為較佳之製程參數。此結果與初始製程參數之轉寫率相比,可從79.9%提升至96.3%,不僅大幅的改善產品品質,並且也減少製程時間。


    Polylactide (PLA) is a widely used polymer for biomedical devices which has received much attention because of its originating from renewable resources and its potential biodegradability. The primary objective of this study was to measure the material and forming properties of PLA at hot embossing process.
    The properties of the PLA material have been investigated with different imprint temperature and imprint time by micro hardness tester, material test machine, gel permeation chromatograph (GPC), differential scanning calorimeter (DSC) and X-ray diffraction (XRD). As the results shown, if the imprint temperature or imprint time increases more, the mechanical properties may change significantly. The results show that this phenomenon mainly occurs due to the crystallization. However, the results show that if we control the imprint temperature between 70oC to 110 oC, imprint time within 3 minute, a good elongation at break will be obtained.
    In addition, the forming characters of PLA micro/nano structure with nanoimprint technology are studied by Taguchi method. According to experimental results the transfer rate has been improved from 79.9% to 96.3% with process parameters of demolding temperature 40oC, imprint temperature 110oC, imprint pressure 9MPa and imprint time 60s. The results show that this process can reduce the experiment and manufacturing time. This study will contribute to the biomedical devices fabrication with biodegradable polymers by hot embossing process.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 2 1.3論文架構 3 第二章 文獻回顧 4 2.1聚乳酸高分子簡介 4 2.2 聚乳酸發展史 6 2.3聚乳酸特性 8 2.3.1光學活性 8 2.3.2分子量 10 2.3.3結晶性 11 2.3.4機械性質 16 2.3.5生物可降解性質 16 2.4微/奈米轉印技術 18 2.4.1材料 19 2.4.2熱壓參數 20 2.4.3模仁 21 2.4.4設備 22 第三章 熱壓成形實驗規劃 24 3.1微/奈米熱壓轉印設備 25 3.2材料及實驗製備 26 3.2.1模仁 26 3.2.2材料 27 3.2.3保壓模具 28 3.2.4熱壓轉印流程 29 3.3田口法實驗設計規劃 30 3.3.1微/奈米結構轉寫率定義 31 3.3.2微/奈米結構量測點位置 31 3.3.3片材製作 32 3.3.4實驗參數設定 33 3.3.5田口法實驗設計[60] 34 3.4高分子材料試片測試與分析 40 3.5量測儀器 41 3.5.1掃描式電子顯微鏡(Scanning electron microscope, SEM) 41 3.5.2雷射共軛焦顯微鏡(Laser scanning confocal microscope) 42 3.5.3微小維克式硬度計(Micro Hardness Tester) 43 3.5.4萬能材料試驗機(Material Test Machine) 44 3.5.5凝膠滲透層析儀( Gel Permeation Chromatograph, GPC ) 45 3.5.6示差掃描熱量分析儀(Differential Scanning Calorimetry, DSC) 46 3.5.7廣角度X-ray繞射儀 (Wide-angle X-ray Diffraction, WAXD) 46 3.5.8光學顯微鏡 (Optical Microscope, OM) 47 第四章 結果與討論 48 4.1材料特性分析與機械性質量測 48 4.1.1硬度測試結果與分析 49 4.1.2拉伸測試結果與分析 53 4.1.3分子量量測結果與分析 58 4.1.4材料熱性質分析 61 4.1.5 X-ray繞射分析 67 4.2田口法實驗分析 70 4.3模仁與高分子材料量測 75 4.4驗證田口分析之最佳參數適用性 78 4.5奈米孔洞熱壓轉印實驗 85 第五章 結論與未來展望 86 5.1結論 86 5.2未來展望 88 參考文獻 89

    1.H. J. Lehermeier, J. R. Dorgan, J. D. Way, “Gas permeation properties of poly(lactic acid)”,Journal of Membrane Science, Vol.190 , pp.243-251, 2001.
    2.J. C. Bogaert, P. Coszach, “Poly(lactic acids): a potential solution to plastic waste dilemma”, Macromolecular Symposia, Vol.153, pp.287-303, 2000.
    3.M. H. Hartmann, N. Whiteman, ‘‘TAPPI Polymers, Laminations, & Coatings Conference’’, Chicago, IL, pp. 467-474, 2000.
    4.A. G. Richard, K. Bhanu, “Biodegradable Polymers for the Environment”, Science, Vol.297, pp.803-807, 2002.
    5.P. M. Pelouze, Annales de chimie et de physique, Vol.3, pp.257, 1845.
    6.J. U. Nef, Ann. Chem, Vol.54, pp.761, 1932.
    7.W. H. Carothers, G. L. Dorough, F. J. van Natta, “Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters”, Journal of the American Chemical Society, Vol.54, pp.761-772, 1932.
    8.Y. M. Trehu, Wilmington, Del, “Suture preparation”, US. Pat., 3531561, 1970.
    9.A. K. Schneider, Wilmington, Del., “Polylactide sutures”, US. Pat., 3636956, 1972.
    10.D. Wasserman, springfield ,A. J. Levy, Somerville, N. J., “Plasticized polyester sutures”, US. Pat., 3792010, 1974.
    11.D. Wasserman, springfield, C. C. Versfelt, Somerville, N. J., “Use of stannous octoate catalyst in the manufacture of L(-)Lactide-glycolide copolymer sutures”, US. Pat., 3839297, 1974.
    12.P. D. SANTIS, A. J. KOVACS, “Molecular Conformation of Poly (S-lactic Acid)”, Biopolymers, Vol. 6, PP. 299-306, 1968.
    13.H. R. Kricheldorf, I. Kreiser-Saunders, “Polylactides-Synthesis. Characterization and Medical Application”,Macromolecular Rapid Communications, Vol.103, pp.85-102, 1996.
    14.B. Kalb, A. J. Pennings, “General crystallization behaviour of poly(L-lactic acid)”, Polymer, Vol. 21, pp.607-612, 1980.
    15.R. Vasanthakumari, A. J. Pennings, “Crystallization kinetics of poly(L-lactic acid), Polymer”, Vol 24, pp.175-178, 1983.
    16.J. W. Leenslag, A. J. Pennings, “Synthesis of high-molecular-weight poly(clactide) initiated with tin 2-ethylhexanoate”, Macromolecular Chemistry and Physics, Vol.188 , pp.1809-1814, 1987.
    17.Y. Ikada, H. Tsuji, “Biodegradable polyesters for medical and ecological applications”, Macromolecular Rapid Communications , Vol.21, pp. 117-132, 2000.
    18.Y. Ikada, K. Jamshidi, H. Tsuji, S.H. Hyon, “Stereocomplex Formation between Enantiomeric Poly(lactides)”, Macromolecules, Vol.20, pp.904-906, 1986.
    19.T. Okihara, M. Tsuji, A. Kawaguchi, K. Katayama, “Crystal structure of stereocomplex of poly(L-lactide) and poly(D-lactide)”, Journal of Macromolecular Science, Part B: Physics, Vol.30 , pp.119-140, 1991.
    20.Gerald Scott, Dan Gilead, “Degradable polymers : principles and applications”, Chapman&Hall, 1995.
    21.R. Jain, N.H. Shah, A. W. Malick, C. T. Rhodes, “Controlled Drug Delivery by Biodegradable Poly(Ester) Devices: Different Preparative Approaches”, Drug Development and Industrial Pharmacy, Vol.24, pp.703-727, 1998.
    22.D. Hutmacher, M. Hürzeler, H. Schliephake, “A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications”, The International Journal of Oral & Maxillofacial Implants, Vol.11, pp.667-678, 1996.
    23.S. H. Hyon, K. Jamshidi, Y. Ikada, “Synthesis of polylactides with different molecular weights”, Biomateriols, Vol.18, pp.1503-1508, 1997.
    24.C. Micliaresi, D. Cohn, A. D. Lollis, L. Fambri, “Dynamic Mechanical and Calorimetric Analysis of Compression-Molded PLLA of Different Molecular Weights: Effect of Thermal Treatments”, Journal of Applied Polymer Science, Vol.43, pp.83-95, 1991.
    25.C. Migliaresi, L. Fambri, D. Cohn, “A study on the in vitro degradation of poly(lactic acid)”, Journal of Biomaterials Science, Vol.5, pp. 591-606, 1994.
    26.K. Jamshidi, S. H. Hyon, Y. Ikada, “Thermal characterization of polylactides”, Polymer , Vol.29, pp.2229-2234, 1988.
    27.D. Cam, S. H. Hyon, Y. Ikada, “Degradation of high molecular weight poly(L-lactide) in alkaline medium”, Biomoterials, Vol.16, pp.833-843, 1995.
    28.R. Steendama, M. J. van Steenbergen, W. E. Hennink, H.W. Frijlink, C.F. Lerk, “Effect of molecular weight and glass transition on relaxation and release behaviour of poly(DL-lactic acid) tablets”, Journal of Controlled Release, Vol.70, pp.71-82 , 2001.
    29.X. S. Wu, “Encyclopedic handbook of biomaterials and bioengineering ” ,Marcel Dekker ,Inc ,pp.5430-1200 ,1995.
    30.J. Kobayashi, T. Asahi, M. Ichiki, A. Oikawa, H. Suzuki, T. Watanabe, E. Fukada, Y. Shikinami, “Structural and optical properties of poly lactic acids”, Journal of Applied Physics, Vol. 77, pp. 2957-2973, 1995.
    31.B. Eling, S. Gogolewski, A. J. Pennings, “Biodegradable materials of poly(L-lactic acid):1. Melt-spun and solution-spun fibres”, Polymer, Vol. 23, pp.1587-1593, 1982.
    32.W. Hoogsteen, A. R. Postema, A. J. Pennings, G. T. Brinke, P. Zugenmaier, “Crystal structure, conformation and morphology of solution-spun poly(L-lactide) fibers”, Macromolecules , Vol. 23, pp.634-642, 1990.
    33.L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali, B. Lotz, “Epitaxial crystallization and crystalline polymorphism of polylactides”, Polymer, Vol. 41, pp. 8909-8919, 2000.
    34.M. L. Di Lorenzo, “Crystallization behavior of poly(L-lactic acid) ”, European Polymer Journal, Vol.41, pp.569-575, 2005.
    35.H. Yamane, K. Sasai, “Effect of the addition of poly(D-lactic acid) on the thermal property of poly(L-lactic acid) ”, Polymer , Vol.44, pp.2569-2575, 2003.
    36.M. L. Di Lorenzo, “Determination of spherulite growth rates of poly(l-lactic acid) using combined isothermal and non-isothermal procedures”, Polymer, Vol.42, pp.9441-9446, 2001.
    37.J. Zhang, Y. Duan, H Sato, H Tsuji, I Noda, S Yan, Y Ozaki, “Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy”, Macromolecules, Vol. 38, pp.8012-8021, 2005.
    38.H. Tsuji, Y. Ikada, “Properties and morphologies of poly(L-lactide):1.Annealing condition effects on properties and morphologies of poly(L-lactide)”, Polymer, Vol. 36, pp. 2709-2716, 1995.
    39.S. D. Park, M. Todo, K. Arakawa, M. Koganemaru, “Effect of crystallinity and loading-rate on mode I fracture behavior of poly(lactic acid)”, Polymer , Vol. 47, pp. 1357-1363, 2006.
    40.T. Miyata, T. Masuko, “Crystallization behaviour of poly(L-lactide) “, Polymer, Vol.39, pp. 5515-5521, 1998.
    41.H. Tsuji, A. Mizuno, Y. Ikada, “Properties and Morphology of Poly(L-lactide). III. Effects of Initial Crystallinity on Long-Term In Vitro Hydrolysis of High Molecular Weight Poly(L-lactide) Film in Phosphate-Buffered Solution”, Journal of Applied Polymer Science, Vol.77, pp.1452-1464, 1999.
    42.H. Tsuji, Y. Ikada, “Properties and morphology of poly(l-lactide)4. E€ects of structural parameters on long-term hydrolysis of poly(l-lactide) in phosphate-buffered solution ”, Polymer Degradation and Stability, Vol.67, pp.179-189, 2000.
    43.S. D. Park, M. Todo, K. Arakawa, “Effects of isothermal crystallization on fracture toughness and crack growth behavior of poly (lactic acid)”, Journal of Materials Science, Vol. 40, pp.1055-1058, 2005.
    44.任杰,「可降解與吸收材料」,化學工業出版社,2003。
    45.H. Tsuji, S. Miyauchi, “Poly(l-lactide): 7. Enzymatic hydrolysis of free and restricted amorphous regions in poly(l-lactide) films with different crystallinities and a fixed”, Polymer, Vol.42, pp.4463-4467, 2001.
    46.S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Nanoimprint lithography”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer, Vol. 14, pp.4129-4133, 1996.
    47.M. Heckele, W. Bacher, K.D. Muller, ”Hot Embossing-The Molding Technique for Plastic Microstructures”, Microsystem Technologies, Vol. 4, pp. 122-124, 1998.
    48.J. L. Charest, L. E. Bryant, A. J. Garcia, W.P. King, “Hot embossing for micropatterned cell substrates”, Biomaterials, Vol.25, pp.4767-4775, 2004.
    49.C. A. Mills, M. Navarro, E. Enge, E. Martinez, M. P. Ginebra, J. Planell, A. Errachid, J. Samitier, “Transparent micro- and nanopatterned poly(lactic acid) for biomedical applications”, Journal of Biomedical Materials Research Part A, Vol.76, pp.781-787, 2006.
    50.C. A. Mills, E. Martinez, F. Bessueille, G. Villanueva, J. Bausells, J. Samitier, A. Errachid, “Production of structures for microfluidics using polymer imprint techniques”, Microelectronic Engineering, Vol.78-79, pp.695-700, 2005.
    51.F. Gottschalch, T. Hoffmann, C. M. S. Torres, H. Schulz, H. C. Scheer, “Polymer issues in nanoimprinting technique”, Solid-State Electronics, Vol.43, pp.1079-1083, 1999.
    52.A. Lebib, Y. Chena, E. Cambril, P. Youinou, V. Studer, M. Natali, A. Pépin, H.M. Janssen, R.P. Sijbesm, “Room-temperature and low-pressure nanoimprint lithography”, Microelectronic Engineering, Vol.61, pp.371-377, 2002.
    53.J. M. Li, C. Liu, J. Peng, “Effect of hot embossing process parameters on polymer flow and microchannel accuracy produced without vacuum”, Journal of Materials Processing Technology, Vol.207, pp.163 -171, 2008.
    54.S. Lan, H. Lee, E. Kim, J. Ni, S. Lee, Xinmin Lai, J. H. Song, N. K. Lee, M. G. Lee, “A parameter study on the micro hot-embossing process of glassy polymer for pattern replication”, Microelectronic Engineering, Vol. 86, pp. 2369-2374, 2009.
    55.S. H. Hong, J. H. Lee, H. Lee, “Fabrication of 50 nm patterned nickel stamp with hot embossing and electroforming process”, Microelectronic Engineering, Vol.84, pp.977-979, 2007.
    56.S. Park, H. Schift, C. Padeste, B. Schnyder, R. Kötz, J. Gobrecht, “Anti-adhesive layers on nickel stamps for nanoimprint lithography”, Microelectronic Engineering, Vol.73-74, pp.196-201, 2004.
    57.H. Becker, U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures”, Sensors and Actuators, Vol. 83, pp.130-135, 2000.
    58.S. K. Hong, Y. M. Heo, J. Kang, “Replication of Polymeric Micro Patterns by Rapid Thermal Pressing with Induction Heating Apparatus”, The 3rd IEEE International Conference on Networked Embedded Systems for Every Application, Liverpool, pp.911-915, 2008
    59.張志聖,“快速微奈米熱壓轉印製程研究”,碩士論文,國立臺灣科技大學,2010。
    60.李輝煌,「田口方法:品質設計的原理與實務」,高立出版社,2008。
    61.M. Yasuniwa, S. Tsubakihara, K. Iura, Y. Ono,Y. Dan, K. Takahashi, “Crystallization behavior of poly(L-lactic acid)”, Polymer, Vol.47, pp.7554-7563, 2006.
    62.鄭詔元,「熱壓轉印製程製備鎂基塊狀金屬玻璃模仁」,碩士論文,國立臺灣科技大學,2011。

    QR CODE