簡易檢索 / 詳目顯示

研究生: 林孟彥
Meng-yan Lin
論文名稱: 聚甲醛/玻璃纖維複合材料多品質製程參數之最佳化
Optimization of Process Parameters for Multiple Qualities of POM/Glass Fiber Composites
指導教授: 黃昌群
Chang-Chiun Huang
口試委員: 邱士軒
Shih-Hsuan Chiu
郭中豐
Chung-Feng Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 75
中文關鍵詞: 聚甲醛玻璃纖維射出成型田口方法主成份分析法灰關聯分析法
外文關鍵詞: Polyoxymethlene, Glass Fiber, Injection Molding, Taguchi Method, Principal Component Analysis, Grey Relation Analysis
相關次數: 點閱:271下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究以玻璃纖維(Glass Fiber)強化聚甲醛(POM)之複合材料為對象,與探討在不同射出成型(Injection Molding)製程參數下,如熔融溫度、模具溫度、保壓壓力、射出速度與保壓時間對於機械性能之影響。藉由田口方法(Taguchi Method)中的直交表設計實驗,並以田口方法中的主效果分析與變異數分析理論得到單一品質的最佳化參數,並將實驗所得之各品質數據,經由主成份分析法(Principal Component Analysis)結合灰關聯分析法(Grey Relation Analysis)找出多品質最佳製程參數水準之組合。研究結果顯示,若同時考量拉伸強度、硬度、衝擊強度與彎曲強度四項多品質特性時,其最佳條件為玻璃纖維添加20 wt.%、熔融溫度230℃、模具溫度60 ℃、保壓壓力50 MPa、射出速度60 mm/s與保壓時間1.5 s,最後證實本研究所規劃之實驗能對材料之多品質有效的提升與有良好的再現性。


    This study investigates the influence of injection molding process parameters on mechanical properties of glass fiber reinforced polyoxymethlene (POM/GF) composites. The process parameters include melt temperature, mold temperature, packing pressure, injection speed and packing time. The taguchi orthogonal array table is used to design the experiment. The factor effect analysis and analysis of variance are conducted on quality data in order to determine the optimal parameters for single quality. The quality data are processed by principal component analysis and grey relation analysis to determine the optimal parameters of four qualities. The four qualities considered in this study are the tensile strength, hardness, impact strength and bending strength. The resulting optimal injection molding process conditions are 20 wt.% glass fiber addition, melt temperature 230 ℃, mold temperature 60 ℃, packing pressure 50 MPa, injection speed 60 mm/s and packing time 1.5 secends. This study effectively enhances multiple qualities of the composite materials and has good reproducibility.

    摘要 I ABSTRACT II 目錄 III 圖索引 VI 表索引 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻探討 4 1.3.1 聚甲醛複合材料 4 1.3.2 射出成型製程 6 1.3.3 多種品質最佳化 7 1.4 論文架構 9 1.5 研究流程 10 第二章 實驗材料與設備 11 2.1 實驗材料 11 2.2 射出成型機 13 2.3 材料分析 15 2.3.1 熱重損失分析儀 15 2.3.2 熱示差分析儀 16 2.3.3 萬能拉力試驗機 17 2.3.4 蕭氏硬度計 19 2.3.5 擺錘式衝擊試驗機 21 2.3.6 彎曲試驗機 23 第三章 多重品質製程最佳化理論 25 3.1田口實驗設計法 25 3.1.1 直交表 25 3.1.2 訊號雜訊比 27 3.1.3 變異數分析 29 3.1.4 信賴區間 32 3.2 主成份分析法 34 3.3 灰關聯分析法 37 第四章 實驗設計與規劃 40 4.1 實驗規劃 40 4.2 材料分析 41 4.3 直交表規劃 45 第五章 實驗結果與討論 47 5.1 田口實驗數據分析 47 5.1.1拉伸試驗數據分析 47 5.1.2硬度試驗數據分析 51 5.1.3衝擊試驗數據分析 53 5.1.4彎曲試驗數據分析 56 5.2 多品質特性分析 59 5.2.1 主成份分析法 59 5.2.2 灰關聯分析法 63 5.3 確認實驗 66 5.3.1 信賴區間 66 第六章 結論與未來方向 70 參考文獻 72

    [1]S. Hashemi, M. T. Gilbride and J. Hodgkinson,” Mechanical property relationships in glass-filled polyoxymethylene,” Journal of Materials Science , Vol. 31, pp. 5017-5025, 1996.
    [2]X. Ha and L. Jiang, ”Preparation and characterization of oil-containing POM/PU blends,” Journal of Synthetic Lubrication, Vol. 15, pp. 19-29, 1998.
    [3]J. Chen, Y. Chen and H. Li, ”An investigation on wear mechanism of POM/LLDPE blends,” Journal of Applied Polymer Science, Vol. 101, pp. 48-53, 2006.
    [4]K. Palanivelu, S. Balakrishnan and P. Rengasamy, “Thermoplastic polyurethane toughened polyacetal blends,” Polymer Testing, Vol. 19, pp. 75–83, 2000.
    [5]H. Benabdallah, ”Friction and wear of blended polyoxymethylene sliding against coated steel plates,” Wear, Vol. 254, pp. 1239-1246, 2003.
    [6]S. Hashemi, P. Elmes and S. Sandford, ”Hybrid effects on mechanical properties of polyoxymethylene,” Polymer Engineering and Science, Vol. 23, pp. 45-58, 1997.
    [7]J. He, L. Zhang, C. Li,B. Yan and R. Tang, ” The effects of copper and polytetrafluoroethylene (PTFE) on thermal conductivity and tribological behavior of polyoxymethylene (POM) composites,” Journal of Macromolecular Science, Vol. 50, pp. 2023-2033, 2011.
    [8]K. M. B. Jansen, D. J. Van Dijk and M. H. Husselman, ”Effect of processing conditions on shrinkage in injection molding,” Polymer Engineering and Science, Vol. 38, pp. 838-846 No. 5, 1998.
    [9]S. J. Liao, D. Y. Chang, H. J. Chen, L. S. Tsou, J. R. Ho, H.T. Yau and W. H. Hsieh, ”Optimal process conditions of shrinkage and warpage of thin-wall parts,” Polymer Engineering and Science, Vol. 44, pp. 917-928, No. 5, 2004.
    [10]J. C. Viana, N. Billon and A. M. Cunha, ”The thermomechanical environment and the mechanical properties of injection moldings,” Polymer Engineering and Science, Vol. 12, pp. 1522-1533, 2004.
    [11]A. Seigmann, A. Buchman and S. Kenig, “Residual stresses in polymer III : The influence of injection-molding process condition,” Polymer Engineering and Science, Vol. 22, No. 40, pp. 560, 1982.
    [12]M. H. Chung, ”Study on weld-line of ABS thin-wall injection molding parts,” Master Thesis, Department of Mechanical Engineering, Chung Yuan Christian University, 2001.
    [13]R. P. Koster, ”Importance of injection molding parameters for mechanical performance of cold flow weld lines,” Journal of Injection Molding Technology, Vol. 3, No. 3, pp. 154-158, 1999.
    [14]P. L. Su, ”Study on the Influence of Molding Conditions on the Properties of Injection Molded Nanocomposites of Nylon6/Fluoromica,” PhD. Dissertation, Department of Mechanical Engineering, Chung Yuan Christian University, 2004.
    [15]T. Erzurumlu and B. Ozcelik, ”Minimization of warpage and sink index in injection-molded thermoplastic parts using taguchi optimization method,” Materials and Design, Vol. 27, pp. 856-861, 2006.
    [16]L. I. Tong, C. T. Su and C. H. Wang , ”The optimization of mulit- response problems in the taguchi method,” International Journal of Quality and Reliability Management , Vol. 14, pp. 367-380, 1997.
    [17]C. I. Hsu, ”Optimization of injection molding process and mechanical properties of POM/GF Composites,” PhD. Dissertation, Department of Mechanical Engineering, National Central University, 2010.
    [18]C. T. Su and L. I. Tong, ”Multi-response robust design by principle component analysis,” Total Quality Management, Vol. 8, No. 6, pp. 409-416, 1997.
    [19]J. Antony, ”Multi-response optimization in industrial experiments using taguchi’s quality loss function and principal component analysis,” Quality and Reliability Engineering International, Vol. 16, pp. 3-8, 2000.
    [20]Y. S. Trang , S. C. Juang and C. H. Chang , ”The use of grey-based taguchi methods to determine submerged arc welding process parameters in hardfacing,” Journal of Materials Processing Technology, Vol. 128, No. 1-3, pp. 1-6, 2002.
    [21]C. L. Lin, ” Use of the taguchi method and grey relational analysis to optimize turning operations with multiple performance characteristics,” Materials and Manufacturing Processes, Vol. 19, No. 2, 2004.
    [22]吳復強編著,品質改善的冺器:產品穩健設計-田口方法之原理與應用,全威圖書股份有限公司,2005。
    [23]李輝煌編著,田口方法之品質設計的原理與實務,高立圖書有限公司,2008。
    [24]H. F. Hotelling, ”The application of electronic computers to factor analysis,” Educational and Psychological Measurement, Vol. 20, pp. 141-151, 1933.
    [25]鄧聚龍編著,灰色系統基本方法,華中理工大學出版社, 1987。

    無法下載圖示 全文公開日期 2018/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE