簡易檢索 / 詳目顯示

研究生: 蔣力
Li - Chiang
論文名稱: 人工椎體椎籠之介面拉出強度之最佳化設計:考慮不同滑脫方向
Design optimization on the interface pullout strength of the vertebral body cage: Considering various kinds of loosening directions
指導教授: 趙振綱
Ching-Kong Chao
徐慶琪
Ching-Chi Hsu
口試委員: 徐錫靖
HSI- CHING HSU
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 81
中文關鍵詞: 人工椎體椎籠介面強度有限元素分析田口品質工程法類神經網路遺傳演算法
外文關鍵詞: Vertebral Body Cage, Pullout Strength, Finite Element Analysis, Taguchi method, Artificial Neural Network, Genetic Algorithm
相關次數: 點閱:326下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脊椎是人體中最重要的構造之一,當人體脊椎因為一些意外事件而造成脊椎錯位、脊椎椎體骨折或因脊椎病變產生腫瘤或感染時,將病變椎體置換成脊椎椎體椎籠為骨科醫師常用於治療上述類型之脊椎椎體疾病的方法。人工椎籠置換手術(Vertebral Body Replacement Cage)可以解除脊椎疼痛並能保留脊椎活動範圍,而在治療的過程中植入物會有下陷和滑脫等不穩定的情形,這些情況會造成骨折固定失效的問題,影響患者康復的情形。本研究是使用電腦數值模擬法來進行椎體椎籠介面鬆脫的研究,在這方面的問題,一般會施加一個固定方向(常見的是前後方向)並與脊柱相互垂直的負荷或位移,來探討椎體椎籠的介面咬合強度,但是椎體椎籠在植入體內後,會承受不同平面的負載,這些負載可能會造成椎體椎籠產生不同方向的滑脫,因此本研究希望能找一個在每個方向都能提供良好介面強度的設計。
    本研究的方法是依照田口直交表(Orthogonal Array)規律的分配每一個模型的參數水準,然後,利用SolidWorks 2008建立立體模型,將其利用parasolid檔案轉進ANSYS Workbench 11中進行有限元素分析模擬,之後,將數據輸入進類神經網路程式中得到輸入參數與輸出介面強度的關係,並利用遺傳演算法找出人工椎籠在各種方向滑脫時的最佳化的範圍。
    經遺傳演算法的最佳化演算後,單方向介面強度最佳化的端面齒型高度為2㎜、齒型寬度為1.866㎜、端面齒型的斜度則是1,而齒排數為15、內徑為10mm;而考慮不同方向介面強度最佳化的端面齒型高度同樣為2㎜、齒型寬度則為1㎜、端面齒型的斜度為0.16,而齒排數為16、內徑為10mm;本研究結果顯示,單獨考慮單一方向的介面強度而言,較寬的的端面齒型配上較斜的傾斜程度能提供較好的介面強度,若針對多方向的介面強度而言,較窄的端面齒型搭配上沒有傾斜的齒型反而是比較好的設計。

    關鍵字: 人工椎體椎籠、介面強度、有限元素分析、田口品質工程法、 類神經網路、遺傳演算法


    Spine is one of the most important structures of the human body. Orthopedists usually use cage to treat the vertebral body illness, such as the slipped disk and the collapsed vertebral caused by unexpected accident or some tumor and infection caused by vertebral lesions. Vertebral Body Replacement Cage could ease the pain of the spine and maintain the spine act as usual. However, there are some unstable conditions like the subsidence and the loosening of the implant would happen after we implant the cage into the body. These conditions might invalidate the fracture fixation then react on sufferer’s recovery. In this study, we adopt FEM to analyze the loosening of the vertebral body cage. Generally, we would discuss the pullout strength of vertebral body cage by exerting a single direction (normally forward and backward) loading or displacement which is vertical to the spine. However, the vertebral body cage would take the loading from different directions after its implantation into body. These loading would result the vertebral body cage loosening from different directions. By this research, we hope we could find out a design which could provide the well pullout strength in every direction.
    This study adopted Orthogonal Array to regularly allocate various levels to each model. After that, we used SolidWorks 2008 to build solid models then transferred the parasolid file into ANSYS Workbench 11 to finite element analyzed. Next step, we inputted the data to artificial neural network (ANN) program to get the relation between the input parameters and the output pullout strength. Moreover, we analyzed the relation by genetic algorithm (GA) to find out the optional range of the pullout strength of the vertebral body cage by every direction. After the optional calculation by GA, we got the optional parametric combination of the pullout strength in single direction, that the spike height is 2 mm, the spike width is 1.866 mm, the spike oblique is 1, spike row is 15 and the inner diameter is 10 mm. For the optional parametric combination of the pullout strength in every direction, the spike height is same as with single direction that is 2 mm, spike width is 1 mm, the spike oblique is 0.16, the spike row is 16, and the inner diameter is 10 mm. The outcome of this study is that wider and more gradient spike could offer better pullout strength when we only consider single direction. On the contrary, narrower and less gradient spike is a better design for pullout strength when we consider multi-direction.
    Key Works: Vertebral Body Cage、Pullout Strength、Finite Element Analysis、Taguchi method、Artificial Neural Network、Genetic Algorithm

    中文摘要.......................I ABSTRACT......................II 誌 謝.....................III 目 錄......................IV 符號索引......................VI 圖表索引....................VIII 第一章 緒論..................1 1.1研究動機、背景與目的........1 1.2脊椎構造簡介................4 1.3脊椎的運動方式..............6 1.4人工椎體椎籠之置換方式......7 1.5 文獻回顧...................9 1.5.1 臨床使用.................9 1.5.2機械測試與電腦數值模擬...10 1.6 本文架構..................11 第二章 材料與方法...........12 2.1有限元素法介紹.............12 2.2有限元素模型之建立.........14 2.2.1 田口直交表參數..........14 2.2.2 建立CAD模型.............18 2.3有限元素分析...............20 2.3.1 元素選擇................20 2.3.2 材料性質................23 2.3.3接觸介面與邊界條件.......24 2.3.4 收斂性分析..............26 2.3.5 靈敏性分析..............28 2.4 類神經網路................32 2.4.1 類神經網路簡介與目的....32 2.4.2 類神經網路模型架構......34 2.5 遺傳演算法................36 第三章 結果.................42 3.1 有限元素模擬結果..........42 3.1.1 收斂性分析..............42 3.1.2 靈敏性分析..............43 3.1.3拉出強度模擬結果.........46 3.2 椎體椎籠最佳化設計........49 3.2.1 類神經網路之結果........49 3.2.2 遺傳演算法之結果........51 第四章 討論.................67 第五章 結論與未來展望.......74 5.1結論.......................74 5.2未來展望...................75 參考文獻......................77 作者簡介......................81

    [1]Vahldiek M. J. and Panjabi M. M., "Stability potential of spinal instrumentations in tumor vertebral body replacement surgery," Spine, vol. 23, pp. 543-550, (1998).
    [2]Thongtyrangan I., Balabhadra R., Le H., Park J., and Kim D. H., "Vertebral body replacement with and expandable cage for reconstruction after spinal tumor resection," Neurosurg Focus, vol. 15(5), pp. 1-6, (2003).
    [3]Ernstberger T., Kogel M., Konig F., and Schultz W., "Expandable vertebral body replacement in patients with thoracolumbar spine tumors," Arch Orthop Trauma Surg, vol. 125, pp. 660-669, (2005).
    [4]Fayazi A. H., Ludwig S. C., Dabbah M., Butler R. B., and Gelb D. E., "Preliminary results of staged anterior debridement and reconstruction using titanium mesh cages in the treatment of thoracolumbar vertebral osteomyelitis," The Spine J, vol. 4, pp. 388-396, (2004).
    [5]Knop C., Lange U., Bastian L., Oeser M., and Blauth M., "Biomechanical compression tests with a new implant for thoracolumbar vertebral body replacement," Eur Spine J, vol. 10, pp. 30-37, (2001).
    [6]Pflugmacher R., Schleicher P., Schaefer J., Scholz M., Ludwig K., Khodadadyan-Klostermann C., Haas N. P., and Kandziora F., "Biomechanical comparison of expandable cages for vertebral body replacement in the thoracolumbar spine," Spine, vol. 29, pp. 1413-1419, (2004).
    [7]Sevki K., Mehmet T., Ufuk T., Azmi H., Mercan S., and Erkal B., "Results of surgical treatment for degenerative cervical myelopathy: Anterior cervical corpectomy and stabilization," Spine, vol. (29)22, pp. 2493-2500, (2004).
    [8]Acosta Jr F. L., Aryan H. E., Chou D., and Ames C. P., "Long-term biomechanical stability and clinical improvement after extended multilevel corpectomy and circumferential reconstruction of the cervical spine using titanium mesh cages," Journal of Spinal Disorders and Techniques, vol. 21, pp. 165-174, (2008).
    [9]Kluba T. and Giehl J. P., "Distractible vertebral body replacement in patients with malignant vertebral destruction or osteoporotic burst fractures," International Orthopaedics, vol. 28, pp. 106-109, (2004).
    [10]Chen Y., Chen D., Guo Y., Wang X., Lu X., He Z., and Yuan W., "Subsidence of titanium mesh cage: a study based on 300 cases," Journal of spinal disorders & techniques, vol. 21, pp. 489-492, (2008).
    [11]Dietl R. H. J., Krammer M., Kettler A., Wilke H. J., Claes L., and Lumenta C. B., "Pullout test with three lumbar interbody fusion cages," Spine, vol. 27(10), pp. 1029-1036, (2002).
    [12]Grob D., Daehn S., and Mannion A. F., "Titanium mesh cages (TMC) in spine surgery," Eur Spine J, vol. 14(3), pp. 211-221, (2005).
    [13]Hsu W. H., Chao C. K., Hsu H. C., Lin J., and Hsu C. C., "Parametric study on the interface pullout strength of the vertebral body replacement cage using FEM-based Taguchi methods," Med Eng Phys, vol. 31, pp. 287-294, (2009).
    [14]Hasegawa K., Abe M., Washio T., and Hara T., "An Experimental Study on the Interface Strength between Titanium Mesh Cage and Vertebra in Reference to Vertebral Bone Mineral Density.," Spine, vol. 26(8), pp. 957-963, (2001).
    [15]R.carola﹝原著﹞李玉菁編譯, "人體解剖學," 麥格羅希爾出版;文京代理, (2000).
    [16]Wilke H. J., Wenger K., and Claes L., "Testing criteria for spinal implants: Recommendations for the standardization of in vitro stability testing of spinal implants," European Spine Journal, vol. 7, pp. 148-154, (1998).
    [17]Vällfors B., "Acute, subacute and chronic low back pain: clinical symptoms, absenteeism and working environment," Scandinavian Journal of Rehabilitation Medicine, Supplement, vol. 11, pp. 1-98, (1985).
    [18]Cloward R. B., "The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. I. Indications, operative technique, after care," Clinical Orthopaedics and Related Research, vol. NO. 193, pp. 5-15, (1985).
    [19]IA.Jaslov, "Intercorporal bone graft in spinal fusion after a disc removal.," Surg Gynecol Obstet, (1946).
    [20]Mercier W., "Spondylolisthesis with a description of a new method of operative treatment and notes of ten cases.," Edinb Med J, (1936).
    [21]Dvorak M. F., Kwon B. K., Fisher C. G., Eiserloh H. L., Boyd M., and Wing P. C., "Effectiveness of titanium mesh cylindrical cages in anterior column reconstruction after thoracic and lumbar vertebral body resection," Spine, vol. 28(9), pp. 902-908, (2003).
    [22]Brantigan J. W., Steffee A. D., and Geiger J. M., "A carbon fiber implant to aid interbody lumbar fusion: Mechanical testing," Spine, vol. 16, (1991).
    [23]Bagby G. W., "Arthrodesis by the distraction-compression method using a stainless steel implant," Orthopedics, vol. 11, pp. 931-934, (1988).
    [24]Kluba T. and Giehl J. P., "Distractible vertebral body replacement in patients with malignant vertebral destruction or osteoporotic burst fractures," Int Orthop, vol. 28, pp. 106-109, (2004).
    [25]Grant J. P., Oxland T. R., Dvorak M. F., and Fisher C. G., "The effects of bone density and disc degeneration on the structural property distributions in the lower lumbar vertebral endplates," J Orthop Res, vol. 20, pp. 1115-1120, (2002).
    [26]Jost B., Cripton P. A., Lund T., Oxland T. R., Lippuner K., Jaeger P., and Nolte L. P., "Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density," Eur Spine J, vol. 7(2), pp. 132-141, (1998).
    [27]Lim T. H., Kwon H., Jeon C. H., Kim J. G., Sokolowski M., Natarajan R., An H. S., and Andersson B. J., "Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion," Spine, vol. 26(8), pp. 951-956, (2001).
    [28]Goh J. C. H., Wong H. K., Thambyah A., and Yu C. S., "Influence of PLIF cage size on lumbar spine stability," Spine, vol. 25, pp. 35-40, (2000).
    [29]Tan J. S., Bailey C. S., Dvorak M. F., Fisher C. G., and Oxland T. R., "Interbody device shape and size are important to strengthen the vertebra-implant interface," Spine, vol. 30(6), pp. 638-644, (2005).
    [30]MOAUENI﹝原著﹞陳新郁、林政仁﹝譯﹞ S., "有限元素分析-理論與應用ANSYS," 高立出版, (2001).
    [31]蘇木春、張孝德, "機器學習:類神經網路、模糊系統以及基因演算法則," 全華科技圖書股份有限公司, (2006).
    [32]許文賢, "人工椎體支撐器之生物力學分析與機械測試," 國立台灣科技大學機械工程系博士論文, (2009).

    QR CODE