簡易檢索 / 詳目顯示

研究生: 林楷洋
Kai-Yang Lin
論文名稱: 矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對環氧樹脂之聚合固化反應動力、玻璃轉移溫度、X光散射特性、聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響
Synthesis of silane-grafted graphene oxide (sg-GO) and silane-grafted thermally reduced graphene oxide (sg-TRGO), and their effects on the cure kinetics, glass transition temperatures, X-ray scattering characteristics, cured sample morphologies, volume shrinkage, mechanical properties, and thermal and electrical conductivities for epoxy resins
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 黃延吉
Yan-Jyi Huang
陳崇賢
Chorng-Shyan Chern
邱文英
Wen-Yen Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 145
中文關鍵詞: 氧化石墨烯熱脫層氧化石墨烯矽烷接枝之氧化石墨烯矽烷接枝之 熱脫層氧化石墨烯抗收縮劑環氧樹脂聚合固化聚合固化反應動力微分掃描熱分析儀玻璃轉移溫度動態機械分析儀X光散射特性微觀型態結構掃描式電子顯微鏡體積收縮機械性質熱傳導性質導電性質
外文關鍵詞: graphene oxide, silane-grafted graphene oxide, thermally reduced graphene oxide, low-profile additive, epoxy resins, curing, curing kinetics, DSC, glass transition temperature, DMA, X-ray scattering characteristics, SAXS, mechanical properties, SEM, volume shrinkage, thermal conductivity, electrical property
相關次數: 點閱:366下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討添加氧化石墨烯 (GO)、矽烷接枝氧化石墨 (GPS-GO) 和熱脫層氧化石墨 (TRGO) 對環氧樹脂(epoxy)/4, 4'-二胺基二苯甲烷(DDM)系統的體積收縮、固化反應動力、X光散射特性、機械性質、玻璃轉移溫度、熱傳導性質及導電性質的影響。GO是使用改良的Hummers法合成出,TRGO則是GO在1050℃ 高溫還原,矽烷接枝氧化石墨是用 (3-縮水甘油氧基丙基) 三甲氧基矽烷作改質,並使用廣角度散射儀 (WAXS) 和熱重分析 (TGA) 鑑定,鑑定結果確實成功合成出;加入所合成的特殊添加劑進環氧樹脂/4, 4'-二胺基二苯甲烷系統探討其對體積收縮、機械性質、玻璃轉移溫度、熱傳導性質及導電性質的影響,並用掃描電子顯微鏡(SEM)和穿透式電子顯微鏡 (TEM) 觀測其微觀型態結構並解釋前述所得之結果,最後使用差示掃描量熱儀 (DSC) 和傅立葉遠紅外光譜儀(FTIR)研究其固化反應動力。


    The effects of graphene oxide (GO), silane-grafted graphene oxide (sg-GO) , thermally reduced graphene oxide (TRGO) as special additives on the cured sample on the cure kinetics, glass transition temperature, X-ray scattering characteristics, morphology, volume shrinkage characteristics, thermal conductivity and electrical properties of the Epoxy/DDM/Additive ternary system cured after a stepwise isthermal process of 100℃/180℃ were investigated. The thermally reduced graphene oxide (TRGO) was produced by placing graphene oxide (GO) in a high-temperature furnace kept at 1050℃, which was synthesized from natural graphites with average particle size of 75μm by a modified Hummers method. The silane-grafted GO (sg-GO) was synthesized by using the silane coupling agent bearing epoxy functional group, namely, γ-glycidyloxy propyl trimethoxy silane (GPS), as a surface modifier for the surface treatment of GO. Moreover, the reaction kinetics for the Epoxy/DDM/Additive ternary system during the cure was measured by differential scanning calorimetry (DSC) and Fourier Transform Infrared Spectroscopy(FTIR). Finally, based on the Takayanagi mechanical models, the glass transition temperature in each region of the cured samples for Epoxy/DDM/special additive ternary system has been measured by dynamic mechanical analysis (DMA). Finally, the effects of additives synthesized, such as, GO, sg-GO, and TRGO, on the volume shrinkage, mechanical properties, thermal and electrical conductivities for the Epoxy/DDM/Additive ternary systems after the cure have also been investigated.

    第一章 緒論.......................................................................... 1 第二章 文獻回顧................................................................ 3 2-1 二氧化矽......................................................................... 3 2-2 石墨烯、氧化石墨與熱脫層氧化石墨................................ 4 2-3 矽烷偶合劑.................................................................. 7 2-4 自由基聚合反應.............................................................. 9 2-5 乙烯基樹脂............................................................... 11 2-6 環氧樹脂....................................................................... 11 第三章 實驗方法與設備..................................................... 13 3-1 實驗原料.................................................................... 13 3-2 實驗藥品................................................................... 14 3-3 實驗耗材和儀器設備.................................................... 18 3-4 實驗步驟...................................................................... 26 3-5 性質測定與分析方法............................................. 36 第四章 結果與討論.................................................................. 41 4-1 二氧化矽合成及鑑定........................................................... 41 4-2 熱重分析鑑定...................................................... 46 4-2-1 SiO2熱重分析鑑定................................................ 46 4-2-2 氧化石墨、熱還原氧化石墨熱重分析鑑定.................................... 48 4-3 小角度X光散射儀鑑定樣品...................................... 49 4-3-1 鑑定石墨、氧化石墨和熱還原氧化石墨........................................ 49 4-3-2 鑑定EPR (n=0.15)/DDM/GO複合材料.......................................... 52 4-3-3 鑑定EPR (n=0.15)/DDM/TRGO-90複合材料............................... 54 4-4 拉曼光譜鑑定石墨、GO、TRGO-30和TRGO-90................................... 55 4-5 體積收縮量測........................................... 56 4-5-1 St/VER (n=2)雙成分系統................................ 56 4-5-2 EPR (n=0.15)/DDM雙成分系統................................... 58 4-5-3 EPR (n=0.15)/DDM/GO三成分系統.............................................. 59 4-5-4 EPR (n=0.15)/DDM/GPS-GO三成分系統..................................... 62 4-5-5 EPR (n=0.15)/DDM/TRGO-90三成分系統.................................... 63 4-6 DSC 量測反應動力........................................... 65 4-6-1 St/VER (n=2) 雙成分系統............................................. 65 4-6-2 不同當量比(ER)之EPR/DDM雙成份系統................................... 66 4-6-3 EPR/DDM/TRGO-90三成份系統.................................................. 71 4-7 AFM量測GO懸浮於DMF後之厚度..................................................... 75 4-8 SEM微觀型態分析.................................... 79 4-8-1 GO和TRGO微觀型態結構........................................................ 79 4-8-2 EPR (n = 0.15)/DDM 雙成份系統............................................... 82 4-8-3 EPR (n = 0.15)/DDM/GO三成份系統.......................................... 83 4-8-4 EPR (n = 0.15)/DDM/GPS-GO...................................... 87 4-8-5 EPR (n = 0.15)/DDM/TRGO-90三成份系統................................ 90 4- 9 TEM微觀型態分析.................................................... 94 4-9-1 EPR/DDM雙成份系統..................................... 94 4-9-2 EPR/DDM/TRGO90三成份系統.................................................. 94 4-10 以DMA量測玻璃轉移溫度........................................... 97 4-10-1 EPR/DDM雙成份系統........................................... 97 4-10-2 EPR/DDM/TRGO-90三成份系統............................................. 101 4-11 熱傳導係數的測定.................................................... 105 4-11-1 EPR/DDM雙成份的熱傳導係數.............................................. 105 4-11-2 EPR/DDM/GO三成份的熱傳導係數....................................... 106 4-11-3 EPR/DDM/GPS-GO三成份的熱傳導係數............................... 109 4-11-4 EPR/DDM/TRGO-90三成份的熱傳導係數............................. 111 4-12 導電係數的測定...................................................... 113 4-12-1 EPR/DDM/TRGO-90三成份系統............................................. 113 4-13 FTIR校正曲線測定.............................................. 115 4-13-1 環氧樹脂.............................................. 116 4-13-2 4, 4'-二胺基二苯甲烷(DDM)................................... 119 4-14 FTIR測定反應動力.............................................. 122 4-14-1 EPR/DDM雙成份系統.......................................... 122 4-14-2 EPR/DDM/TRGGO-90三成份系統.......................................... 130 第五章結論........................................................ 133 第六章未來工作................................................. 136 第七章附錄............................................................. 137 7-1 EPR/DDM雙成份系統機械試片................................ 137 7-2 EPR/DDM/GPS-GO三成份系統機械試片......................................... 137 7-3 EPR/DDM雙成份系統機械試片拉伸量測............................................. 138 7-4 EPR/DDM雙成份系統機械試片耐衝擊量測............................................ 141 第八章 參考文獻............................................................... 142

    1.W. Stober, A. Fink, and E. Bohn (1968), Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range, Journal of Colloid and Interface Science, 26, 62-69.
    2.J.H. Balthis, P. Mendenhall, Preparation of sols from finely divided silicon, USP 2614994, 1952.
    3.Y.Z. Zhang, Preparation of nonfreezing silicon sols, CNP 86100503A, 1987.
    4.J. Guo, X. Liu, Y. Cheng, Y. Li, G. Xu, P. Cui (2008), Size-controllable synthesis of monodispersed colloidal silica nanoparticles via hydrolysis of elemental silicon, Journal of Colloid and Interface Science, 26, 62-69.
    5.H. Kim, A. A. Abdala, and C. W. Macosko, Macromolecules 2010 43 (16), 6515-6530.
    6.A. K. Geim and K. S. Novoselov (2007), The rise of graphene, Nat. Mater., 6(3), 183–191.
    7.C. Lee 1, X. Wei, J. W Kysar, J. Hone (2008), Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385-388.
    8.Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. (2008), Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett, 8, 3, 902-907.
    9.X. Du, I. Skachko, A. Barker & E. Y. Andrei (2008), Approaching ballistic transport in suspended graphene, Nature Nanotechnology, 3, 491-495.
    10.X. Wang, H. You, F. Liu, M. Li, Li Wan, S. Li, Q. Li, Y. Xu, R. Tian, Z. Yu, D. Xiang, J. Cheng (2009), Large-Scale Synthesis of Few-Layer Graphene using CVD, Chemical Vapor Disposition, 15, 53-56.
    11.N. Li, Z. Wang and Z.n Shi (2009), Synthesis of Graphenes with Arc-Discharge Method, Carbon, 48, 255-259.
    12.F. Beckert, C. Friedrich, R. Thomann, and R. Mulhaupt, (2012), Sulfur-Functionalized Graphenes as Macro-Chain-Transfer and RAFT Agents for Producing Graphene Polymer Brushes and Polystyrene Nanocomposites, Macromolecules, 45, 17, 7083-7090.
    13.W. S. Hummers Jr. and R. E. Offeman (1958), Preparation of Graphitic Oxide, Journal of the American Chemical Society, 80, 6, 1339.
    14.周雅欣 (2020),矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對不飽和聚酯樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質之影響,碩士論文,台灣科技大學。
    15.E. P. Plueddemann (1991), Silane Coupling Agents, New York: A Division of Plenum Publishing Corporation.
    16.E. R. Pohl. SPI, 38th Ann. Tech. Conf. Reinf. Plast. 4-B (1983).
    17.E. R. Pohl and F. O. Osterholz. In Silane, Surfaces and Interfaces, Vol. 1, D. E, Leyden, Ed., pp. 481-500, Gordon & Breach, Amsterdam (1986).
    18.J. Song, M. Xu, W. Liu, X. Wang, P. Xu, F. Huang, Y. Pan, "Thermoplastic Rubber (TPR) Modified by a Silane Coupling Agent and Its Influence on the Mechanical Properties of Oil Well Cement Pastes", Advances in Materials Science and Engineering, vol. 2019, Article ID 3587081, 11 pages, 2019.
    19.C. S. Brazel, S. L. Rosen, Fundamental principles of polymeric materials, 3rd ed. 2012: John Wiley & Sons, Inc.
    20.S. Paz-Abuin, M. P. Pellin, M. Paz-Pazos, A. Lopez-Quintela, Influence of the reactivity of amine hydrogens and the evaporation of monomers on the cure kinetics of epoxy-amine: kinetic questions, Polymer, Volume 38, Issue 15, 1997, Pages 3795-3804.
    21.Ma J, Meng Q, Michelmore A, Kawashima N, Izzuddin Z, Bengtsson C, et al. Covalently bonded interfaces for polymer/graphene composites. J Mater Chem A 2013;1(13):4255.
    22.Wan, Y-J., Gong, L-X., Tang, L-C., Wu, L-B., Jiang, J-X., Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide, Composites: Part A (2014), doi: http://dx.doi.org/ 10.1016/j.compositesa.2014.04.023
    23.陳昱翔 (2023),以乳化聚合法合成核殼型橡膠與反應型微膠顆粒及以Pickering乳化聚合法製備高分子/氧化石墨烯與高分子/熱還原氧化石墨烯之核殼型顆粒,並探討其對乙烯基酯樹脂之聚合固化樣品微觀型態結構、体積收縮、機械性質、及熱傳導與導電性質的影響研究,碩士論文,台灣科技大學。
    24.H. C Schniepp, JL. Li et al. (2006), Functionalized single graphene sheets derived from splitting graphite oxide, JPhys Chem B, 110(17), 8335-9.
    25.Ryong-Joon Roe (2000), Method of X-Ray and Neutron Scattering in Polymer Science, New York: Oxford University Press.
    26.Y.J Huang and J. S. Leu, Polymer, Curing of unsaturated polyester resin. Effects of temperature and initator: 1. Low temperature reactions, Polymer, Volume 34, Issue 2, 1993, Pages 295-304.
    27.Z. Wu, S. Li, M. Liu, Z. Wang* and X. Liu, Liquid oxygen compatible epoxy resin: modification and characterization, RSC Adv., 2015, 5, 11325.
    28.Brian C. Smith, Organic Nitrogen Compounds II: Primary Amines, Spectroscopy, Spectroscopy-03-01-2019, Volume 34, Issue 3, 22-25.
    29.Iler, Ralph K. (1979). THE CHEMISTRY OF SILICA. United State: JOHN WILEY & SONS.
    30.林建辰 (2010),由元素矽水解法合成無機二氧化矽奈米顆粒及以RAFT活自基聚合法合成用於不飽和聚脂、乙烯基脂及環氧樹脂之奈米級吳基二氧化矽有機高分子核殼型顆粒添加劑,碩士論文,台灣科技大學。
    31.楊芝寧 (2021),矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對環氧樹脂之聚合反應固化動力、玻璃轉移溫度、及X光散射特性、聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響,碩士論文,台灣科技大學。
    32.R. Mueller, H. K. Kammler, K. Wegner, and S. E. Pratsinis (2003), OH Surface Density of SiO2 and TiO2 by Thermogravimetric Analysis, Langmuir, 19, 160-165.
    33.吳晨瑜 (2016),由元素矽水解法合成無機二氧化矽奈米顆粒及探討奈米級及次微米級核殼型橡膠添加劑、無機二氧化矽顆粒、矽烷接枝及高分子接枝之氧化石墨烯及熱脫層氧化石墨烯、及反應性微膠顆粒對乙烯基脂樹脂之聚合反應固化動力、玻璃轉移溫度、及X光散射特性之影響,碩士論文,台灣科技大學。
    34.黃敏如 (2020),由元素矽水解法合成無機二氧化矽奈米顆粒及探討矽烷接枝二氧化矽顆粒、反應性微膠顆粒、與矽烷接枝及高分子接枝之氧化石墨烯及熱脫層氧化石墨烯對不飽和聚酯樹脂之聚合反應固化動力、玻璃轉移溫度及X光散射特性之影響,碩士論文,台灣科技大學。
    35.林暐靜 (2019),由元素矽水解法合成無機二氧化矽奈米顆粒及探討矽烷接枝二氧化矽顆粒、反應性微膠顆粒與矽烷接枝及高分子接枝之氧化石墨烯及熱脫層氧化石墨烯對乙烯基樹脂之聚合反應固化動力、玻璃轉移溫度及X光散射特性之影響,碩士論文,台灣科技大學。
    36.林禹辰 (2019),矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對乙烯基酯樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響,碩士論文,台灣科技大學。
    37.詹承穎 (2018),以乳化聚合法合成用於乙烯基酯樹脂及環氧樹脂之奈米級及次微米級高分子核殼型橡膠及反應型微膠顆粒之抗收縮劑及增韌劑,碩士論文,台灣科技大學。
    38.張庭豐 (2019),以 RAFT活自由基溶液聚合法合成高分子接枝之氧化石墨烯及熱脫層氧化石墨烯及探討其對乙烯基酯樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響,碩士論文,台灣科技大學。
    39.陳彥博 (2019),以乳化聚合法合成用於乙烯基酯樹脂及不飽和聚酯樹脂之奈米級及次微米級反應性微膠顆粒之抗收縮劑及增韌劑,碩士論文,台灣科技大學。
    40.E. Girard-Reydet, C. C. Riccardi, H. Sautereau, and J. P. Pascault, Epoxy-Aromatic Diamine Kinetics. Part 1. Modeling and Influence of the Diamine Structure, Macromolecules 1995 28 (23), 7599-7607.
    41.J. I. ParedesJ. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon Langmuir 2008 24 (19), 10560-10564.
    42.S. Wang, M. Tambraparni, J. Qiu, J. Tipton, and D. Dean, Thermal Expansion of Graphene Composites, Macromolecules 2009 42 (14), 5251-5255.
    43.N. A. St John and G.e A. George, Cure kinetics and mechanisms of a tetraglycidyl-4,4'-diaminodiphenylmethane/ diaminodiphenylsulphone epoxy resin using near i.r. Spectroscopy, POLYMER, 1992, Volume 33, Number 13, 2679 - 2688.

    QR CODE