簡易檢索 / 詳目顯示

研究生: 楊子毅
Tzu-I Yang
論文名稱: 添加 Al0.5CoCrFeNi2Ti對ZK60顯微組織及機械性質的影響
Effect of adding Al0.5CoCrFeNi2Ti on the microstructure and mechanical properties of ZK60
指導教授: 丘群
Chun Chiu
口試委員: 丘群
Chun Chiu
陳士勛
SHI-XUN CHEN
黃崧任
SONG-REN HUANG
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 103
中文關鍵詞: ZK60鎂合金高熵合金攪拌鑄造機械性質
外文關鍵詞: ZK60 magnesium alloy, high entropy alloy, stir casting, mechanical properties
相關次數: 點閱:172下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以ZK60鎂合金做為基材,分別添加1.0 wt%、3.0 wt%、5.0 wt% Al0.5CoCrFeNi2Ti高熵合金,其製程以攪拌鑄造法來形成鎂基複合材料之鑄錠,並對其成份、顯微結構、機械性質做觀察分析,探討添加不同比例Al0.5CoCrFeNi2Ti之高熵合金對ZK60鎂合金有其影響。
    研究表明,與ZK60相比,添加高熵合金具有晶粒細化的效果。晶粒尺寸從121.3 μm降低到96.4 μm。由於MgZn2的存在,ZK60添加高熵合金後硬度值顯著提高,從原先的HV0.1 78.4增加至HV0.1 113.9。拉伸試驗結果顯示,極限抗拉強度從156.3 MPa增至235.2 MPa,延伸率從2.12%增至4.43%。斷口分析表明,ZK60含有河流狀和韌窩狀組織,而加入高熵合金後之斷口呈現微小的杯錐狀破裂形貌。綜合以上結果,添加5 wt.%的Al0.5CoCrFeNi2Ti對於ZK60具有最佳的機械性能。


    In this research, ZK60 magnesium alloy was used as the base material, and 1.0 wt.%, 3.0 wt.% and 5.0 wt.% of Al0.5CoCrFeNi2Ti high entropy alloy was added to form magnesium-based composites of ingots by stir casting method in the process, and the composition, microstructure, and mechanical properties were analyzed for the purpose of exploring the effect of the high entropy alloys of adding different proportions of Al0.5CoCrFeNi2Ti on the casting of ZK60 magnesium alloy. entropy alloy with different proportions of Al0.5CoCrFeNi2Ti has its effect on ZK60 magnesium alloy.
    The study shows that the addition of high entropy alloy has the effect of grain refinement compared with ZK60. The grain size decreases from 121.3 μm to 96.4 μm. Due to the presence of MgZn2, the hardness value of ZK60 increases significantly after the addition of high-entropy alloy from the original HV0.1 78.4 to HV0.1 113.9. The tensile test results show that the ultimate tensile strength increases from 156.3 MPa to 235.2 MPa, and the elongation increases from 2.12% to 4.43%. The elongation increased from 2.12% to 4.43%. The fracture analysis shows that ZK60 contains river-like and ligamentous organization, and the fracture of ZK60 with the addition of high entropy alloy shows a tiny cup-and-cone rupture morphology. Summarizing the above results, the addition of 5wt.% of Al0.5CoCrFeNi2Ti has the best mechanical properties for ZK60.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第1章 前言 1 第2章 文獻回顧 3 2.1鎂與鎂合金的介紹 3 2.1.1 鎂的介紹 3 2.1.2 鎂合金的介紹 3 2.1.3 鎂合金的應用與製造加工 4 2.2 鎂與其它元素 7 2.2.1 元素添加對鎂合金之影響 7 2.2.2 添加鋁(Al)之鎂合金 7 2.2.3 添加鋅(Zn)之鎂合金 9 2.2.4 添加鋯(Zr)之鎂合金 9 2.2.5 添加鈣(Ca)之鎂合金 11 2.2.6 添加稀土(Rare Earth,RE)元素之鎂合金 12 2.2.7 鎂合金命名規則 13 2.2.8 鎂合金ZK60 14 2.3 鎂基複合材料 15 2.3.1 添加奈米碳管(CNTs)之鎂基複合材料 15 2.3.2 添加SiC之鎂基複合材料 16 2.3.3 添加高熵合金(HEA)之鎂基複合材料 16 2.4高熵合金的介紹與四大效應 18 2.4.1高熵合金介紹 18 2.4.2高熵合金四大效應 20 2.4.3 Al0.5CoCrFeNi2Ti 高熵合金 24 2.5.1 細晶粒尺寸強化 25 2.5.2 析出硬化 27 2.5.3 固溶強化 29 2.5.4 散佈強化 30 2.5.5 應變硬化 31 2.5.6 荷載轉移效應 31 2.5.7 熱膨脹係數差異 32 2.6 研究動機 33 第3章 實驗方法 34 3.1實驗材料 34 3.2實驗流程 35 3.3熔煉設備 36 3.4鎂基複合材料製備步驟 36 3.5 試片製備 37 3.6分析儀器 39 3.6.1 光學顯微鏡 39 3.6.2 X光繞射儀 40 3.6.3 高解析度場發射掃描式電子顯微鏡 42 3.6.4 密度測量與孔隙率計算 44 3.6.5微小維克氏硬度計 44 3.6.6 奈米壓痕分析儀 46 3.6.7拉伸試驗機 47 第4章 結果與討論 50 4.1原材顯微結構與相分析 50 4.1.1 ZK60鑄錠 50 4.1.2 ZK60鎂基複合材料分析 55 4.2 機械性質 69 4.2.1 硬度分析 69 4.2.2 拉伸試驗 75 4.2.3破斷面觀察 77 4.3討論 79 第5章 結論 81 參考文獻 82

    [1] Mordike, B. L.; Ebert, T. Magnesium. Mater. Sci. Eng. A 2001, 302 (1), 37–45
    [2] Aghion, E.; Bronfin, B.; Eliezer, D. The Role of the Magnesium Industry in Protecting the Environment. J. Mater. Process. Technol. 2001, 117 (3), 381–385. https://doi.org/10.1016/S0924-0136(01)00779-8.
    [3] Qi, F.; Zhang, D.; Zhang, X.; Xu, X. Effects of Mn Addition and X-Phase on the Microstructure and Mechanical Properties of High-Strength Mg–Zn-Y-Mn Alloys. Mater. Sci. Eng. A 2014,593,70-78. https://doi.org/10.1016/j.msea.2013.11.043.
    [4] Tsai, M.-H.; Yeh, J.-W. High-Entropy Alloys: A Critical Review. Mater. Res.Lett.2014,2 (3107-123. https://doi.org/10.1080/21663831.2014.912690.
    [5] Liu, L. Introduction to the Welding and Joining of Magnesium. In Welding and Joining of Magnesium Alloys; Elsevier, 2010; p. 3–8. https://doi.org/10.1533/9780857090423.1.3.
    [6] Sonar, T.; Ivanov, M.; Trofimov, E.; Tingaev, A.; Suleymanova, I. An Overview of Microstructure, Mechanical Properties and Processing of High Entropy Alloys and Its Future Perspectives in Aeroengine Applications. Mater. Sci. Energy Technol. 2023, S258929912300040X. https://doi.org/10.1016/j.mset.2023.07.004.
    [7] Kulekci, M. K. Magnesium and Its Alloys Applications in Automotive Industry. Int. J. Adv. Manuf. Technol. 2008, 39 (9–10), 851–865. https://doi.org/10.1007/s00170-007-1279-2.
    [8] Jayasathyakawin, S.; Ravichandran, M.; Baskar, N.; Anand Chairman, C.; Balasundaram, R. Mechanical Properties and Applications of Magnesium Alloy –Review. Mater. Today Proc. 2020, 27, 909–913. https://doi.org/10.1016/j.matpr.2020.01.255.
    [9] Chen, J.; Tan, L.; Yu, X.; Etim, I. P.; Ibrahim, M.; Yang, K. Mechanical Properties of Magnesium Alloys for Medical Application: A Review. J. Mech. Behav. Biomed. Mater.2018,87,68-79. https://doi.org/10.1016/j.jmbbm.2018.07.022.
    [10] Miao, J.; Sun, W.; Klarner, A. D.; Luo, A. A. Interphase Boundary Segregation of Silver and Enhanced Precipitation of Mg17Al12 Phase in a Mg-Al-Sn-Ag Alloy. Scr.Mater.2018,154,192-196. https://doi.org/10.1016/j.scriptamat.2018.05.047.
    [11] Yang, S.-Q.; Li, C.-B.; Du, J.; Zhao, Y.-J. Theoretical Study of Active Ca Element on Grain Refining of Carbon-Inoculated Mg-Al Alloy. Mater.Des.2020,192 108664. https://doi.org/10.1016/j.matdes.2020.108664.
    [12] Meshinchi Asl, K.; Tari, A.; Khomamizadeh, F. The Effect of Different Content of Al, RE and Si Element on the Microstructure, Mechanical and Creep Properties of Mg-Al Alloys. Mater. Sci. Eng. A 2009, 523 (1–2), 1–6. https://doi.org/10.1016/j.msea.2009.06.048.
    [13] Polmear, I. J. Magnesium Alloys and Applications. Mater. Sci. Technol. 1994, 10 (1), 1–16. https://doi.org/10.1179/mst.1994.10.1.1.
    [14] Ding, C.; Hu, X.; Shi, H.; Gan, W.; Wu, K.; Wang, X. Development and Strengthening Mechanisms of a Hybrid CNTs@SiCp/Mg-6Zn Composite Fabricated by a Novel Method. J. Magnes. Alloys 2021, 9 (4), 1363–1372. https://doi.org/10.1016/j.jma.2020.05.012.
    [15] Poddar, P.; Srivastava, V. C.; De, P. K.; Sahoo, K. L. Processing and Mechanical Properties of SiC Reinforced Cast Magnesium Matrix Composites by Stir Casting Process. Mater. Sci. Eng. A 2007, 460–461, 357–364. https://doi.org/10.1016/j.msea.2007.01.052.
    [16] Yang, S.-Q.; Li, C.-B.; Du, J.; Zhao, Y.-J. Theoretical Study of Active Ca Element on Grain Refining of Carbon-Inoculated Mg-Al Alloy. Mater. Des. 2020, 192, 108664. https://doi.org/10.1016/j.matdes.2020.108664.
    [17] Hua, X.; Yang, Q.; Zhang, D.; Meng, F.; Chen, C.; You, Z.; Zhang, J.; Lv, S.; Meng, J. Microstructures and Mechanical Properties of a Newly Developed High-Pressure Die Casting Mg-Zn-RE Alloy. J. Mater. Sci. Technol. 2020, 53, 174–184. https://doi.org/10.1016/j.jmst.2020.04.030.
    [18] Bayani, H.; Saebnoori, E. Effect of Rare Earth Elements Addition on Thermal Fatigue Behaviors of AZ91 Magnesium Alloy. J. Rare Earths 2009, 27 (2), 255–258. https://doi.org/10.1016/S1002-0721(08)60230-6.
    [19] Zhang, L.; Zhang, J.; Xu, C.; Liu, S.; Jiao, Y.; Xu, L.; Wang, Y.; Meng, J.; Wu, R.; Zhang, M. Investigation of High-Strength and Super plastic Mg–Y–Gd–Zn Alloy.Mater.Des.2014,61,168–176. https://doi.org/10.1016/j.matdes.2014.04.071.
    [20] Makar, G. L.; Kruger, J. Corrosion of Magnesium. Int. Mater. Rev. 1993, 38 (3), 138–153. https://doi.org/10.1179/imr.1993.38.3.138.
    [21] Meshinchi Asl, K.; Tari, A.; Khomamizadeh, F. The Effect of Different Content of Al, RE and Si Element on the Microstructure, Mechanical and Creep Properties of Mg–Al Alloys. Mater. Sci. Eng. A 2009, 523 (1–2), 1–6. https://doi.org/10.1016/j.msea.2009.06.048.
    [22] Kumar, A.; Kumar, S.; Mukhopadhyay, N. K. Introduction to Magnesium Alloy Processing Technology and Development of Low-Cost Stir Casting Process for Magnesium Alloy and Its Composites. J. Magnes. Alloys 2018, 6 (3), 245–254. https://doi.org/10.1016/j.jma.2018.05.006.
    [23] Unigovski, Y. B.; Gutman, E. M. Corrosion Creep and Fatigue Behavior of Magnesium (Mg) Alloys. In Corrosion of Magnesium Alloys; Elsevier, 2011; p. 365–402. https://doi.org/10.1533/9780857091413.3.365.
    [24] Li, Y.; Zhang, Z.; Xue, Y. Influence of Aging on Microstructure and Mechanical Properties of AZ80 and ZK60 Magnesium Alloys. Trans. Nonferrous Met. Soc.China 2011, 21 (4) ,739–744. https://doi.org/10.1016/S1003-6326(11)60774-7.
    [25] Karakulak, E. A Review: Past, Present and Future of Grain Refining of Magnesium Castings. J. Magnes. Alloys 2019, 7 (3), 355–369. https://doi.org/10.1016/j.jma.2019.05.001.
    [26] Zhu, X.; Yang, H.; Dong, X.; Ji, S. The Effects of Varying Mg and Si Levels on the Microstructural Inhomogeneity and Eutectic Mg2Si Morphology in Die-Cast Al–Mg–Si Alloys. J. Mater. Sci. 2019, 54 (7), 5773–5787. https://doi.org/10.1007/s10853-018-03198-6.
    [27] Ding, C.; Hu, X.; Shi, H.; Gan, W.; Wu, K.; Wang, X. Development and Strengthening Mechanisms of a Hybrid CNTs@SiCp/Mg-6Zn Composite Fabricated by a Novel Method. J. Magnes. Alloys 2021, 9 (4), 1363–1372. https://doi.org/10.1016/j.jma.2020.05.012.
    [28] Ding, C.; Hu, X.; Shi, H.; Gan, W.; Wu, K.; Wang, X. Development and Strengthening Mechanisms of a Hybrid CNTs@SiCp/Mg-6Zn Composite Fabricated by a Novel Method. J. Magnes. Alloys 2021, 9 (4), 1363–1372. https://doi.org/10.1016/j.jma.2020.05.012.
    [29] Poddar, P.; Srivastava, V. C.; De, P. K.; Sahoo, K. L. Processing and Mechanical Properties of SiC Reinforced Cast Magnesium Matrix Composites by Stir Casting Process. Mater. Sci. Eng. A 2007, 460–461, 357–364. https://doi.org/10.1016/j.msea.2007.01.052.
    [30] Yuan, Z.; Liu, H.; Ma, Z.; Ma, X.; Wang, K.; Zhang, X. Microstructure and Properties of High Entropy Alloy Reinforced Titanium Matrix Composites.Mater.Charact.2022,187,111856. https://doi.org/10.1016/j.matchar.2022.111856.
    [31] Zhang, L. S.; Ma, G. L.; Fu, L. C.; Tian, J. Y. Recent Progress in High-Entropy Alloys. Adv. Mater. Res. 2013, 631–632, 227–232. https://doi.org/10.4028/www.scientific.net/AMR.631-632.227.
    [32] Marques, F. H.; Guirardello, R. Gibbs Energy Minimization with Cubic Equation of State and Henry’s Law to Calculate Thermodynamic Equilibrium of Fischer-Tropsch Synthesis. Fluid Phase Equilibria 2019, 502, 112290. https://doi.org/10.1016/j.fluid.2019.112290.
    [33] Li, C.; Li, J. C.; Zhao, M.; Jiang, Q. Effect of Alloying Elements on Microstructure and Properties of Multiprincipal Elements High-Entropy Alloys.J.AlloysCompd.2009,475 (1–2).752–757. https://doi.org/10.1016/j.jallcom.2008.07.124.
    [34] Pickering, E. J.; Jones, N. G. High-Entropy Alloys: A Critical Assessment of Their Founding Principles and Future Prospects. Int. Mater. Rev.2016,61 (3), 183–202. https://doi.org/10.1080/09506608.2016.1180020.
    [35] He, Q.; Yang, Y. On Lattice Distortion in High Entropy Alloys. Front. Mater. 2018, 5, 42. https://doi.org/10.3389/fmats.2018.00042.
    [36] Dąbrowa, J.; Danielewski, M. State-of-the-Art Diffusion Studies in the High Entropy Alloys. Metals 2020.10 (3),347. https://doi.org/10.3390/met10030347.
    [37] Yeh, J.-W. Physical Metallurgy of High-Entropy Alloys. JOM 2015, 67 (10), 2254–2261. https://doi.org/10.1007/s11837-015-1583-5.
    [38] High-Entropy Alloys; Gao, M. C., Yeh, J.-W., Liaw, P. K., Zhang, Y., Eds. Springer International Publishing : Cham2016. https://doi.org/10.1007/978-3-319-27013-5.
    [39] Chiu, C.; Chang, H.-H. Al0.5CoCrFeNi2 High Entropy Alloy Particle Reinforced AZ91 Magnesium Alloy-Based Composite Processed by Spark Plasma Sintering. Materials 2021,14(21),6520. https://doi.org/10.3390/ma14216520.
    [40] Cao, L.; Wang, X.; Wang, Y.; Zhang, L.; Yang, Y.; Liu, F.; Cui, Y. Microstructural Evolution, Phase Formation and Mechanical Properties of Multi-Component AlCoCrFeNix Alloys. Appl. Phys. A 2019, 125 (10), 699. https://doi.org/10.1007/s00339-019-2959-0.
    [41] Tian, Q. W.; Zhang, G. J.; Yin, K. X.; Cheng, W. L.; Wang, Y. N.; Huang, J. C. Effect of Ni Content on the Phase Formation, Tensile Properties and Deformation Mechanisms of the Ni-Rich AlCoCrFeNix (x = 2, 3, 4) High Entropy Alloys. Mater. Charact. 2021, 176, 111148. https://doi.org/10.1016/j.matchar.2021.111148.
    [42] Soare, V.; Mitrica, D.; Constantin, I.; Badilita, V.; Stoiciu, F.; Popescu, A.-M. J.; Carcea, I. Influence of Remelting on Microstructure, Hardness and Corrosion Behaviour of AlCoCrFeNiTi High Entropy Alloy. Mater. Sci.Technol.2015,31(10),1194–1200. https://doi.org/10.1179/1743284715Y.0000000029.
    [43] Cao, L.; Wang, X.; Wang, Y.; Zhang, L.; Yang, Y.; Liu, F.; Cui, Y. Microstructural Evolution, Phase Formation and Mechanical Properties of Multi-Component AlCoCrFeNix Alloys. Appl. Phys. A 2019, 125 (10), 699. https://doi.org/10.1007/s00339-019-2959-0.
    [44] Wang, Y.; Ma, S.; Chen, X.; Shi, J.; Zhang, Y.; Qiao, J. Optimizing Mechanical Properties of AlCoCrFeNiTix High-Entropy Alloys by Tailoring Microstructures. Acta Metall. Sin. Engl. Lett. 2013, 26 (3), 277–284. https://doi.org/10.1007/s40195-012-0174-5.
    [45] Yuan, W.; Panigrahi, S. K.; Su, J.-Q.; Mishra, R. S. Influence of Grain Size and Texture on Hall–Petch Relationship for a Magnesium Alloy. Scr.Mater.2011,65 (11),994–997. https://doi.org/10.1016/j.scriptamat.2011.08.028.
    [46] Xu, M.; Yang, W.; Liang, J.; Meng, Y.; Zheng, L. Experimental Study on the Correlation between Intermediate Temperature Embrittlement and Equi-Cohesive Temperature. J. Alloys Compd. 2014, 610, 288–293. https://doi.org/10.1016/j.jallcom.2014.05.037.
    [47] Hansen, N. Hall–Petch Relation and Boundary Strengthening. Scr. Mater. 2004, 51 (8), 801–806. https://doi.org/10.1016/j.scriptamat.2004.06.002.
    [48] Lu, W.; Luo, X.; Wang, Y.; Huang, B.; Wang, Z.; Yang, Y. Γ Phase Transformation, Precipitation Hardening, Hetero-Deformation Induced Hardening and Deformation Mechanisms in a Nb-Alloyed Medium-Entropy Alloy.Mater.Des.2023,225,111477. https://doi.org/10.1016/j.matdes.2022.111477.
    [49] Wang, H.; Shuro, I.; Umemoto, M.; Ho-Hung, K.; Todaka, Y. Annealing Behavior of Nano-Crystalline Austenitic SUS316L Produced by HPT. Mater. Sci. Eng. A 2012556,906–910. https://doi.org/10.1016/j.msea.2012.07.089.
    [50] Shantharaman, P. P.; Anandakrishnan, V.; Sathish, S.; Ravichandran, M.; Naveenkumar, R.; Jayasathyakawin, S.; Rajesh, S. Investigations on the Microstructure and Properties of Yttria and Silicon Carbide Reinforced Aluminium Composites. 2023, 9 (4),e15462. https://doi.org/10.1016/j.heliyon.2023.e15462.
    [51] Habibnejad-Korayem, M.; Mahmudi, R.; Poole, W. J. Enhanced Properties of Mg-Based Nano-Composites Reinforced with Al2O3 Nano-Particles. Mater. Sci. Eng. A 2009, 519 (1–2), 198–203. https://doi.org/10.1016/j.msea.2009.05.001.
    [52] Epp, J. X-Ray Diffraction (XRD) Techniques for Materials Characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Elsevier, 2016; pp 81–124. https://doi.org/10.1016/B978-0-08-100040-3.00004-3.
    [53] Zhang, X.; Wu, P.; Liang, F.; Liu, F. Achieve High Plasticity and Strength in 6016 Alloy by High-Pressure Torsion Combined with Post-Aging Treatments. J. Mater. Res. Technol. 2023, 22, 2967–2982. https://doi.org/10.1016/j.jmrt.2022.12.150.
    [54] Abdullah, Y.; Husain, H.; Hak, C. R. C.; Alias, N. H.; Yusof, M. R.; Kasim, N. A.; Zali, N. M.; Mohamed, A. A. A Short Note on Physical Properties to Irradiated Nuclear Fuel by Means of X-Ray Diffraction and Neutron Scattering Techniques; Skudai, Johor, Malaysia, 2015; p 040010. https://doi.org/10.1063/1.4916870.
    [55] Vinila, V. S.; Jacob, R.; Mony, A.; Nair, H. G.; Issac, S.; Rajan, S.; Nair, A. S.; Isac, J. XRD Studies on Nano Crystalline Ceramic Superconductor PbSrCaCuO at Different Treating Temperatures. Cryst. Struct. Theory Appl. 2014, 03 (01), 1–9. https://doi.org/10.4236/csta.2014.31001.
    [56] El Garchani, F. E.; Lgaz, H.; Kaya, S.; Lee, H.-S.; Ibrahim, S. M.; Chafiq, M.; Ko, Y. G.; Kabiri, M. R. Effects of Heat Treatment on the Corrosion Behavior and Mechanical Properties of Aluminum Alloy 2024. J. Mater.Res.Technol.2023,25,1355–1363. https://doi.org/10.1016/j.jmrt.2023.05.278.
    [57] Yang, Q.; Bu, F.; Qiu, X.; Li, Y.; Li, W.; Sun, W.; Liu, X.; Meng, J. Strengthening Effect of Nano-Scale Precipitates in a Die-Cast Mg–4Al–5.6 Sm–0.3 Mn Alloy. J. Alloys Compd. 2016, 665, 240–250. https://doi.org/10.1016/j.jallcom.2016.01.048.
    [58] Yang, Q.; Bu, F.; Qiu, X.; Li, Y.; Li, W.; Sun, W.; Liu, X.; Meng, J. Strengthening Effect of Nano-Scale Precipitates in a Die-Cast Mg–4Al–5.6 Sm–0.3 Mn Alloy. J. Alloys Compd. 2016, 665, 240–250. https://doi.org/10.1016/j.jallcom.2016.01.048.
    [59] Naghdi, F.; Mahmudi, R.; Kang, J. Y.; Kim, H. S. Contributions of Different Strengthening Mechanisms to the Shear Strength of an Extruded Mg–4Zn–0.5Ca Alloy. Philos. Mag. 2015, 95 (31), 3452–3466. https://doi.org/10.1080/14786435.2015.1083134.
    [60] Aikin, R. M.; Christodoulou, L. The Role of Equiaxed Particles on the Yield Stress of Composites. Scr. Metall. Mater. 1991, 25 (1), 9–14. https://doi.org/10.1016/0956-716X (91) 90345-2.
    [61] Dalla Torre, F.; Van Swygenhoven, H.; Schäublin, R.; Spätig, P.; Victoria, M. Mechanical Behaviour of Nanocrystalline Electro deposited Ni above Room Temperature. Scr.Mater.2005,53 (1) ,23-27. https://doi.org/10.1016/j.scriptamat.2005.03.026.
    [62] Nie,K.B.;Wang,X.J.;Hu,X.S.;Xu,L.;Wu,K.;Zheng,M. Y. Microstructure and Mechanical Properties of SiC Nanoparticles Reinforced Magnesium Matrix Composites Fabricated by Ultrasonic Vibration. Mater. Sci. Eng. A 2011,528 (15) ,5278-5282. https://doi.org/10.1016/j.msea.2011.03.061.
    [63] Song, X.; Bayati, P.; Gupta, M.; Elahinia, M.; Haghshenas, M. Fracture of Magnesium Matrix Nanocomposites - A Review. Int. J. Lightweight Mater. Manuf. 2021, 4 (1), 67–98. https://doi.org/10.1016/j.ijlmm.2020.07.002.
    [64] 何俊豪 , 熱處理對ZK60- Al0.5CoCrFeNi2Ti複合材料機械性質的影 響 , 國立臺灣科技大學工學院機械工程學系碩士論文 ,2021
    [65] 林子棠 , 探討Ti元素添加對於Al0.5CoCrFeNi2高熵合金粉末與熱塗層性質之影響 , 國立臺灣科技大學工學院機械工程學系碩士論文 ,2020
    [66] X. Li, G. Ma, P. Jin, L. Zhao, J. Wang, S. Li, “Microstructure and mechanical properties of the ultra-fine grained ZK60 reinforced with low content of nano-diamond by powder metallurgy”, Journal of Alloys and Compounds, Vol. 778, p. 309-317, 2019.
    [67] S.M. He, L.M. Peng, X.Q. Zeng, W.J. Ding, Y.P. Zhu, “Comparison of the microstructure and mechanical properties of a ZK60 alloy with and without 1.3 wt.% gadolinium addition”, Materials Science & Engineering: A, Vol. 433, p.175-181, 2006.

    無法下載圖示 全文公開日期 2025/08/28 (校內網路)
    全文公開日期 2025/08/28 (校外網路)
    全文公開日期 2025/08/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE