簡易檢索 / 詳目顯示

研究生: 彭世豐
Shih-Feng Peng
論文名稱: 鑽石-硼矽酸玻璃複合材料之界面反應與機械性質研究
Interfacial Reaction between Diamond and Borosilicate Glass of the Sintered Composite and Its Effects on the Mechanical Properties
指導教授: 林舜天
Shun-tian Lin
口試委員: 周賢鎧
Shyan-kay Jou
林寬泓
Kuan-hong Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 106
中文關鍵詞: 玻璃基鑽石砂輪磨耗比微結構
外文關鍵詞: vitrified bond, diamond grinding wheels
相關次數: 點閱:455下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討不同燒結參數對於硼矽玻璃-鑽石複合材料機械性能以及界面反應的影響,燒結後的試片除了進行硬度量測、收縮率量測與磨耗比測試以外,並以熱機械分析儀分析燒結過程中試片收縮量的變化情形,以及使用掃描式電子顯微鏡觀察燒結後鑽石的微結構與磨耗試驗後鑽石的表面狀態。另外以X光電子能譜儀(XPS)與拉曼光譜儀(Raman)對不同持溫時間的試片進行表面成分與鍵結分析。實驗結果顯示在燒結溫度為700 oC時,燒結持溫時間與基地相的硬度值及收縮率成比例關係,以及玻璃基材的玻璃轉換溫度Tg約為625 oC,高於此溫度試片的收縮速率隨升溫速率的增加而上升,在持溫期間試片的收縮率則隨著持溫時間增加而等速增加。磨耗比測試結果燒結溫度700 oC,持溫時間120 min的鑽石砂輪具有最高的磨耗比,此外在切削過程使用較高的切除率,會降低砂輪的磨耗比與使用壽命。拉曼光譜分析結果顯示燒結溫度700 oC、持溫時間120 min的玻璃-鑽石複合材料,除了在1332 cm-1位置出現鑽石的C-C sp3訊號以外,在1420~1460 cm-1位置亦觀察到聲子震動訊號,在XPS的光譜分析中C1s的能譜除了出現C-C sp3的訊號以外,也出現C=N雙鍵的鍵結訊號,這極可能是因為氮氣與試片的表面結構在高溫下產生反應並與鑽石表面不穩定的原子形成雙鍵C=N,不過此現象在持溫時間較短的試片中並不明顯,這些鍵結除了會提高玻璃-鑽石複合材料的硬度以外,對於材料的耐磨耗性能亦有所貢獻,在燒結過程中鑽石顆粒並沒有因為與氧化物玻璃結合而產生明顯之劣化,因此增加燒結持溫時間有助於鑽石與基材的結合性能,也能提高複合材料的使用壽命。


    Mechanical properties and interface reaction between diamond and borosilicate glass were studied in this thesis. The mechanical properties, including hardness, sample shrinkage, grinding performance and thermal mechanical analysis(TMA) were also investigated in this study. Surface topography and diamond-Borosilicate glass interface were observed using SEM. Chemical bonding between diamond grits and glass was measured by XPS(X-ray photoelectron spectrum) and Raman spectrum. The results show that shrinkage was proportional to the duration time at the sintering temperature of 700℃. Shrinkage rate was increased substantially at sintering temperature higher than the glass transition temperature(Tg). Raman spectrum results show that borosilicate glasses react with diamond grits at 700℃, as C=N and C-C vibration modes were observed. Chemical shifts of XPS spectrum show C-C and C=N bonding and Si-C boning in this composite. In addition, surface atoms react with nitrogen gas and form C=N bonding. These chemical bonds could enhance grinding performance and binding ability between diamond grits and glass matrix. Increasing sintering duration time enhances binding ability, therefore, increases composite lifetime.

    摘 要 I ABSTRACT III 誌 謝 IV 目 錄 V 表 錄 VII 圖 錄 VIII 第一章 實驗動機與目的 1 第二章 導 論 3 2.1 引言 3 第三章 基礎理論與文獻回顧 8 3.1鑽石晶體 8 3.1.1 鑽石的製造方法 9 3.1.2 鑽石的物理性質 13 3.2 拉曼光譜儀原理 15 3.2.1 拉曼光譜儀分析鑽石結構變化 16 3.3鑽石砂輪的構成要素 18 3.4鑽石砂輪的結合基材 22 3.5玻璃結合鑽石砂輪的特性 26 第四章 實驗步驟 32 4.1 實驗流程 32 4.2試片製作 35 4.3 燒結過程 37 4.4 分析方法 38 (1)砂輪收縮率 38 (2)基地相硬度量測 38 (3)摩差係數量測 38 (4)磨耗試驗 38 (5)熱分析儀 39 (6)XRD 分析 39 (7)鑽石結構分析 39 第五章 結果與討論 40 5.1 熱分析儀之分析 40 5.2 高分子PBMA添加物對結構組織的影響 44 5.3 燒結氣氛的影響 48 5.4 製程溫度與製程持溫時間的影響 51 5.4.1 拉曼光譜分析(Raman Spectroscopy) 51 5.4.2 X-光電子能譜 (X-ray photoelectron spectroscopy, XPS)分析 54 5.4.3不同燒結溫度與持溫時間之顯微結構分析 58 5.4.4製程溫度與持溫時間對硬度值與收縮率之影響 66 5.4.5持溫時間對磨擦係數之影響分析 71 5.4.6持溫時間對磨耗性能之影響分析結果 73 5.5 添加金屬化合物對材料微結構與介面組織之影響 79 5.5.1 X光繞射儀之分析結果 81 5.5.3 添加金屬化合物之 X-光電子能譜 (X-ray photoelectron spectroscopy, XPS)分析 82 第六章 結論 86 參考文獻 89

    [1] 汪建民, 陶瓷技術手冊, 中華民國粉末冶金協會, 民國88年8月再版, p876-908, p1171-1179.
    [2] 宋建民, 超硬材料, 全華科技圖書有限公司, 民國89年10月初版, p2-4, 2-27.
    [3] Anon, “Global Cutting Tools Sales to Reach US $25 Billion in 2005”, Metal Powder Report, Vol.51, No.6, p10-12, 1996.

    [4] http://www.carbo.com.tw/big5/newpro_c.htm

    [5] http://www.abrasive-tech.com/Pages/DentalTS2000.html

    [6] T. Kane, “Superabrasive Tools & Materials for Aerospace”, (Paper Present at Intertech 2000, Vancouver BC, Canada, 2000, July 17-21).

    [7] http://www.superabrasives.com/

    [8] Y.S. Liao and S.Y. Luo, “Effect of Matrix Characteristics on Diamond”, Journal of Materials Science, Vol. 28,p1245-1251,1993.

    [9] X.F. Liu and Y.Z. Li, ”The Microanalysis of the Bonding Condition Between Coated Diamond and Matrix”, International Journal of Refractory Metals and Hard Materials, Vol.21, No.1, p119-123, 2003.
    [10] Y. Kuroshima, Y. Kondo and S. Okada, “Development of Vitrified Diamond Grinding Wheel for Engineering Ceramics”, Journal of the Ceramic Society of Japan, Vol.93, No. 9, p587-589,1985.

    [11] M.J. Jackson, N. Barlow and B. Mills, “The Effect of Bond Composition on the Strength of Partially Bonded Vitrified Ceramic Abrasives”, Journal of Materials Science Letter, Vol.13, p1287-1289,1994.

    [12] http://www.factdiamond.com

    [13] 宋建民, 鑽石合成, 全華科技圖書有限公司, 民國89年07月初版, p1-33, 2-24,4-14.

    [14] http://www.carbo.com.tw/big5/knowledge_c.htm

    [15] http://www.superabrasives.com/

    [16] http://www.noritake.co.jp/eng/abrasive/tech/tech_prod_06.html

    [17] S. George, ”New Bonds Prolong Active Life”, Machinery and Production Engineering, Vol.142, No. 3657, p18-22,1984.

    [18] http://www.mindrum.com/tech.html

    [19] Y. Zhou, M. Atwood, D. Golini, M.Smith and P.D. Funkenbusch, “Wear and Self-Sharpening of Vitrified Bond Diamond Wheel During Sapphire Grinding”, Wear, Vol.219, p42-45,1998.

    [20] P. Verholen, “Vitrified bond CBN Wheels”, Industrial Diamond Review, Vol.46, No.517, p269-270,1986.

    [21] Z. Zhong and N.P. Hung, “Grinding of Alumina/Aluminum
    Composites”, Journal of Materials Processing Technology, Vol.123, p13-17,2002.

    [22] T.J. Clark and J.S. Reed, “A Novel Technique for Producing a Glass-Ceramic Bond in a Alumina Abrasives”, American Ceramic Society Bulletin, Vol.65, No.11, p1506-1512, 1986.

    [23] W.C. Li, L. Cheng, S.T. Lin, “Interfacial segregation of Ti in the brazing of diamond grits onto a steel substrate using a Cu-Sn-Ti brazing alloy”, Metallurgical and Materials Transactions A, Vol.33, No.7,p2163-2172, 2002.

    [24] T. Tanaka, N. Ikawa, N. Ueno and S. Okada, “A Ceramic Aspect of Vitrified Bond for Diamond Grinding Wheel”, Bulletin of the Japan Society of Precision Engineering, Vol.19, No.3, p221-222, 1985.

    [25] S. Ogawa and T. Okamoto, “The Effect of Vitrified Bond Composition on Wheel Life”, Bulletin of the Japan of Society of Precision Engineering, Vol.20, No.4, p264-271, 1986.

    [26] I. Kenji, “Vitrified Abrasive Solid Mass Reinforced by Impregnation with Synthetic Resin, and Method of Manufacturing the Same”, U.S. Patent, No.6,093, 225, 2000.

    [27] Qi Dongxin and R.S. Lundberg, “Low Temperature Bond for Abrasive Tools”, U.S. Patent, No.5,863,308, 1999.

    [28] M.J. Jackson and B. Mills, “Interfacial Bonding Between Corundum and Glass”, Journal of Materials Science Letter, Vol.19, p915-917, 2000.

    [29] R. Li, “Vitreous Grinding Tool Containing Metal Coated Abrasive”, U.S. Patent. No.5,607,489, 1997.

    [30] M. Wu, “Method for Making High Permeability Grinding Wheels”, U.S. Patent, No.5,738,696, 1998.

    [31] G.A. Rossetti Jr., S.E. Fox, M. J. M. Marc, “Bonded Abrasive Articles Filled With Oil/Wax Mixture”, U.S. Patent, No. 6,086,648, 2000.

    [32] J. Wagner, M. Ramsteiner, C. Wild, P. Koidl, “Resonant Raman Scattering of Amorphous Carbon and Polycrystalline Diamond Films”, Physical Review B No.40-3, P1817-1823, 1989.

    [33] Fu-Hsing Lu, Hong-Ying Chen, “XPS analyses of TiN films on Cu substrates after annealing in the controlled atmosphere” , Thin solid Films, No.355-356, p374-379, 1999.

    [34] S. Bhattacharyya, J. Hong, G. Truban, “Determination of The Structure of Amorphous Nitrogenated Carbon Films by Combined Raman and X-ray Photoemission Spectroscopy” ,Journal of Applied Physics, Vol.83, p3917-3919, 1998.

    [35] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder and G.E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Physical Electrical Division, Eden Prairie, Minnesota, p45,173,279,1979.

    [36] P. Petrov, D.B. Dimitrov, D. Papadimitriou, G. Beshkov , V. Krastev Ch. Georgiev, Applied Surface Science Vol.151, p233-238,1999.

    [37] R.M. German, ”Sintering Theory and Practice”, John Wiley & Sons, Inc., New York, p80-82, 1996.

    [38] T. Tanaka , S E Saki , K. Nishida , T. Nakajima and K. Ueno ”Development and Application of Porous Vitrified-Bonded Wheel with Ultra-Fine Diamond Abrasive”, Vol. 257-258,
    p251-256, 2004.

    [39] W.C. Li, L. Cheng, S.T. Lin, “Interfacial Segregation of Ti in the Brazing of Diamond Grits onto a Steel Substrate Using a Cu-Sn-Ti Brazing Alloy”, Metallurgical and Materials Transactions A, Vol.33, No.7,p2163-2172, 2002.

    [40] Q.L. Dai, C.B. Luo, X.P. Xu and Y.C. Wang, “Effect of Rare Earth and Sintering Temperature on the Transverse Rupture Strength of Fe-Based Diamond Composites”, Journal of Materials Processing Technology, Vol.129, p427-430, 2002.

    [41] D. A. Mortimer and M. Nicholas, “Wetting of Carbon and Carbides by Copper Alloys”, Journal of Materials Science, Vol.8, No.5, p640-648, 1973.

    [42] R. L. Sands and C. R. Shakespeare, Powder Metallurgy: Practice and Applications, Newnes, London, p154-158, 1966.

    [43] Y. Zhu, B. Zheng, W. Yao, L. Cao, “Interface Diffusion and Chemical Reaction between a Ti layer and a Diamond Substrate”, Diamond and Related Materials, Vol.8, No.6, p1073-1078, 1999.

    QR CODE