簡易檢索 / 詳目顯示

研究生: 林依修
Yi-Show Lin
論文名稱: 添加共晶 Ag-97.5 wt. %Bi 於 Sn-3.0 wt. % Ag-0.5 wt. % Cu 形成複合銲料之性質研究
The Properties of Composite Solders of Sn-3.0 wt. % Ag-0.5 wt. % Cu alloy Added with Eutectic Ag-97.5 wt. %Bi alloy
指導教授: 顏怡文
Yee-Wen Yen
莊鑫毅
Hsin-Yi Chuang
口試委員: 朱瑾
Jinn Chu
陳志銘
Chih-Ming Cheng
高振宏
C. Robert Kao
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 121
中文關鍵詞: 無鉛銲料複合銲料顯微結構溶解性質熱分析潤濕性質共晶銀鉍合金錫銀銅合金
外文關鍵詞: lead-free solder, composite solder, microstructure, dissolution properties, thermal analysis, wetting properties, SAC305, eutectic Ag-97.5 wt. % Bi
相關次數: 點閱:235下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 IV Abstract VI 誌謝 IX 目錄 XI 圖目錄 XIII 表目錄 XVIII 第一章、前言 1 第二章、文獻回顧 3 2-1 電子構裝技術 3 2-1.1 電子構裝簡介 3 2-1.2 回銲技術 5 2-2 無鉛銲料 7 2-2.1 無鉛銲料介紹 7 2-2.2 錫(Sn) 9 2-2.3 銀-鉍(Ag-Bi) 9 2-2.4 錫-銀-銅(Sn-Ag-Cu) 9 2-3 複合銲料相關研究文獻 15 2-4 複合銲料性質分析 18 2-4.1 顯微結構 18 2-4.2 溶解性質 19 2-4.3 熱分析 20 2-4.4 潤濕性質 23 第三章、實驗方法 27 3-1 銲料製備 27 3-2 金相處理 28 3-3 複合銲料顯微結構觀察與分析 29 3-4 溶解分析 29 3-5 熱分析 30 3-6 潤濕性質分析 32 第四章、結果與討論 35 4-1 不同回銲次數下顯微結構觀察與分析 35 4-2 溶解實驗金相觀察 57 4-3 熱分析 76 4-4 潤濕性質分析 87 4-4.1 潤濕性質分析和計算 87 4-4.2 不同比例複合銲料潤濕性質 89 第五章、結論 96 第六章、參考文獻 98

    [1] 徐祥禎,「2009-3電子構裝結構分析」,(2009)。
    [2] C. M. L. Wu, D. Q. Yu, C. M. T. Law, L. Wang, “Properties of lead-free solder
    alloys with rare earth element additions,” Materials Science and Engineering: R:
    Reports, 44 (2004) 1-44.
    [3] “WEEE Regulations” EU-Directive 96/EC, (2002).
    [4] “RoHS Regulations” EU-Directive 95/EC, (2002).
    [5] K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, C. A.
    Handwerker, “Experimental and thermodynamic assessment of Sn-Ag-Cu solder
    alloys,” Journal of electronic materials, 29 (2000) 1122-1136.
    [6] Michael Osterman.Abhijit Dasgupta, “Life expectancies of Pb-free SAC solder
    interconnects in electronic hardware,” Journal of Electronic Materials, 18 (2007) 229-236.
    [7] D. P. Seraphim, R. C. Lasky, C. Y. Li, “Principles of electronic packaging,”
    McGraw-Hill College, New York, (1989).
    [8] R. R. Tummala, E. J. Rymaszewski, published by Van Nostrand Reinhold, New York
    (1989).
    [9] J. H. Lau, C. P. Wong, W. Nakayama, J. L. “Prince, electronic packaging: design,
    materials, process, and reliability,” McGraw-Hill, New York, (1998).
    [10] 謝宗雍,「電子構裝技術簡介」, 電子月刊第三卷第七期,(1997)。
    [11] 林定皓,「電子構裝技術概論」,臺灣電路板協會,(2010)。
    [12] 田民波/著、顏怡文/教訂,「半導體電子元件構裝技術」,五南圖書出版社,
    台北 (2005)。
    [13] Lattice Semiconductor, “Solder Reflow Guide for Surface Mount Devices, ” FPGA-TN-02041 Version 3.8, (2017).
    [14] 黃育智、楊青峰、陳信文,「軟銲」,科學發展期刊,416期,(2007)。
    [15] N. C. Lee, “Getting ready for lead-free solders,” Soldering & surface mount
    technology, 9 (1997) 65-69.
    [16] 魏弘堯,「在 BGA 製程中以銦作為 UBM 層對接點界面型態與機械性質之探討」,碩士論文,國立台灣科技大學材料究所,(2006)。
    [17] A. A. El-Daly, A. M. El-Taher, S. Gouda, “Development of new multicomponent Sn-Ag-Cu-Bi lead-free solders for low-cost commercial electronic assembly,” Journal of Alloys and Compounds 627 (2015) 268-275.
    [18] W. R. Osório, D. R. Leiva, L. C. Peixoto, L. R. Garcia, A. Garcia, “Mechanical properties of Sn-Ag lead-free solder alloys based on the dendritic array and Ag3Sn morphology,” Journal of Alloys and Compounds 562 (2013) 194-204.
    [19] M. Abtew, G. Selvaduray, “Lead-free solders in microelectronics,” Materials Science and Engineering: R: Reports, 27 (2000) 95-141.
    [20] K. N. Tu, J. C. M. Li, “Spontaneous whisker growth on lead-free solder finishes,”
    Materials Science and Engineering: A, 409 (2005) 131-139.
    [21] J. N. Lalena, N. F. Dean and M. W. Weiser, “Experimental Investigation of Ge-Doped Bi-11Ag as a New Pb-Free Solder Alloy for Power Die Attachment,” Journal of Electronic Materials, 31 (2002) 1244-1249.
    [22] S. K. Kang, D. Y. Shih, D. Leonard, D. W. Henderson, T. Gosselin, S. I. Cho, W.
    K. Choi, “Controlling Ag3Sn plate formation in near-ternary-eutectic Sn-Ag-Cu solder by minor Zn alloying,” JOM, 56 (2004) 34-38.
    [23] I. E. Anderson, “Development of Sn-Ag-Cu and Sn-Ag-Cu-X alloys for Pb-free
    electronic solder applications,” Journal of Materials Science: Materials in Electronics, 18 (2007) 55-76.
    [24] I. Karakaya, W. T. Thompson, “ASM Handbook vol. 3 Alloy Phase Diagrams,”
    edited by H. Baker, ASM International, Materials Park, Ohio, (1987).
    [25] N. Saunders, A. P. Miodownik, “ASM Handbook vol. 3 Alloy Phase Diagrams,”
    edited by H. Baker, Materials Park, Ohio: ASM International, (1990).
    [26] K. S. Kim, S. H. Huh and K. Suganuma, “Materials Science and Engineering,” 333 (2002) 106-114.
    [27] F. Guo, “Composite-lead free electronic solders,” Journal of Materials Science: Materials in Electronics, 18 (2007) 129-145.
    [28] S. Y. Hwang, J. W. Lee, Z.H. Lee, “Microstructure of a lead-free composite solder produced by an in-situ process,” Journal of Electronic Materials, 31 (2002) 1304-1308.
    [29] D. C. Lin, T. S. Srivatsan, G. X. Wang, R. Kovacevic, “Microstructural development of a rapidly cooled eutectic Sn-3.5% Ag solder reinforced with copper powder,” Powder Technology, 166 (2006) 38-46.
    [30] P. Babaghorbani, S. M. L. Nai, M. Gupta, “Reinforcements at nanometer length scale and the electrical resistivity of lead-free solders,” Journal of Alloys and Compounds, 478 (2009) 458-461.
    [31] H. T. Lee, Y. H. Lee, “Adhesive strength and tensile fracture of Ni particles enhanced Sn-Ag composite solder joint,” Materials Science and Engineering: A, 419 (2006) 172-180.
    [32] M. He, N. D. Leon, V. L. Acoff, “Effect of Bi on the microstructure and tensile behavior of Sn-3.7Ag solders,” Soldering & Surface Mount Technology, 22 (2010) 4-9.
    [33] M. Celikin, M. Maalekian and M. Pekguleryuz, “Effect of Bi Additions on the Creep Behaviour of SAC Solder Alloys,” The Minerals, Metals & Materials Society, 47 (2018) 5842-5849.
    [34] A. M. Erer, S. Oguz, Y. Türen, “Influence of Bi addition on wetting characteristics of SAC305 solder alloy on Cu substrate,” Engineering Science and Technology, an International Journal, 21 (2018) 1159-1163.
    [35] E. Hodúlová, H. Li, B. Šimeková, I. Kovaříková, “Structural analysis of SAC solder with Bi addition,” International Institute of Welding, 62 (2018) 1311-1322.
    [36] P. T. Vianco and J. A. Rejent, “Properties of Ternary Sn-Ag-Bi Solder Alloys: Part I-Thermal Properties and Microstructural Analysis,” Journal of Electronic Materials, 28 (1999) 1127-1137.
    [37] J. N. Lalena, N. F. Dean and M. W. Weiser, “Experimental Investigation of Ge-Doped Bi-11Ag as a New Pb-Free Solder Alloy for Power Die Attachment,” Journal of Electronic Materials, 31 (2002) 1244-1249.
    [38] B. An, C. M. L. Wu, “Evaluation of wettability of composite solder alloy reinforced with silver and copper particles,” International Conference on Electronic Packaging Technology (ICEPT), (2007) 1-6.
    [39] S. M. L. Nai, J. Wei, M. Gupta, “Multi-walled carbon nanotubes reinforced lead free solder composites,” SIMTech technical report, 9 (2008) 195-199.
    [40] L. Zhang, W. Tao, J. Liu, Y. Zhang, Z. Cheng, C. Andersson, Y. Gao, Q. Zhai, “Manufacture, microstructure and microhardness analysis of Sn-Bi lead-free solder reinforced with Sn-Ag-Cu nano-particles,” International Conference on Electronic Packaging Technology& High Density Packaging (ICEPT-HDP), (2008) 1-5.
    [41] M. M. Billah, K. M. Shorowordi, A. Sharif, “Effect of micron size Ni particle addition in Sn-8Zn-3Bi lead-free solder alloy on the microstructure, thermal and mechanical properties,” Journal of Alloys and Compounds, 585 (2014) 32-39.
    [42] P. Liu, P. Yao, J. Liu, “Evolution of the interface and shear strength between SnAgCu-xNi solder and Cu substrate during isothermal aging at 150°C,” Journal of Alloys and Compounds, 486 (2009) 474-479.
    [43] M. M. Arafat, A. S. M. A. Haseeb, “Interfacial reaction and dissolution behavior of Cu substrate in molten Sn-3.8Ag-0.7Cu-nano Mo composite solder,” Electronics Packaging Technology Conference (EPTC) (2009) 953-956.
    [44] M. M. Arafat, A. S. M. A. Haseeb, M. R. Johan, “Interfacial reaction and dissolution behavior of Cu substrate in molten Sn-3.8Ag-0.7Cu in the presence of Mo nanoparticles,” Soldering & Surface Mount Technology, 23 (2011) 140-149.
    [45] K. M. Kumar, V. Kripesh, A. A.O. Tay, “Single-wall carbon nanotube (SWCNT) functionalized Sn-Ag-Cu lead-free composite solders,” Journal of Alloys and Compounds, 450 (2008) 229-237.
    [46] C. P Peng, J. Shen, W. D. Xie, J. Chen, C. P. Wu, X. C. Wang, “Influence of minor Ag nano-particles additions on the microstructure of Sn30Bi0.5Cu solder reacted with a Cu substrate,” Journal of Materials Science Materials in Electronics, 22 (2011) 797-806.
    [47] Y. A. Shen, S. Zhou, J. Li, C. H. Yang, S. Huang, S. K. Lin, H. Nishikawa, “Sn-3.0Ag-0.5Cu/Sn-58Bi composite solder joint assembled using a low-temperature reflow process for PoP technology,” Materialsand Design 183 (2019) 108144.
    [48] J. M. Song, H. Y. Chuang and Z. M. Wu, “Substrate Dissolution and Shear Properties of the Joints between Bi-Ag Alloys and Cu Substrates for High-Temperature Soldering Applications,” Journal of Electronic Materials, 36 (2007) 1516-1523.
    [49] A. Sharif , Y. C. Chan, “Dissolution kinetics of BGA Sn–Pb and Sn–Ag solders with Cu substrates during reflow,” Materials Science and Engineering: B, 106 (2004) 126-131.
    [50] A. Nadia, A. S. M. A. Haseeb, “Effect of addition of copper particles of different size to Sn-3.5Ag solder,” Journal of Materials Science Materials in Electronics, 23 (2012) 86-93.
    [51] K. Bukat, M. Koscielski, J. Sitek, M. Jakubowska, A. Mlozniak, der, “Silver nanoparticles effect on the wettability of Sn-Ag-Cu sol pastes and solder joints microstructure on copper,” Soldering & Surface Mount Technology, 23 (2011) 150-160.
    [52] F. G. Yost, “The Metal Science of Joining,” edited by M. J. Cieslak (1992).
    [53] J. Y. Park, C. S. Kang, J. P. Jung, “The analysis of the withdrawal force curve of the wetting curve using 63Sn-37Pb and 96.5Sn-3.5Ag eutectic solders,” Journal of Electronic Materials, 28 (1999) 1256-1262.
    [54] Z. Li, Z. Cao, S. Knott, A. Mikula, Y. Du, Z. Qiao “Thermodynamic investigation of the Ag-Bi-Sn ternary system,” Computer Coupling of Phase Diagrams and Thermochemistry 32 (2008) 152-163.
    [55] K. Wang, F. Wang, Y. Huang, K. Qi, “Comprehensive Properties of a Novel Quaternary Sn-Bi-Sb-Ag Solder: Wettability, Interfacial Structure and Mechanical Properties,” School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China (2019).
    [56] F. Wang, H. Chen, Y. Huang, L. Liu, Z. Zhang, “Recent progress on the development of Sn-Bi based low-temperature Pb-free solders,” Journal of Materials Science: Materials in Electronics, 30 (2019) 3222-3243.
    [57] A. Sharma, A. K. Srivastava, K. Lee, B. Ahn, “Impact of Non‑Reactive Ceria Nanoparticles on the Wettability and Reaction Kinetics Between Lead‑Free Sn-58Bi and Cu Pad,” The Korean Institute of Metals and Materials, 25 (2019) 1027-1038.
    [58] P. T. Vianco and J. A. Rejent, “Properties of Ternary Sn-Ag-Bi Solder Alloys: Part II-Wettability and Mechanical Properties Analyses,” Journal of Electronic Materials, 28 (1999) 1138-1143.
    [59] X. Chen, F. Xue, J. Zhou, Y. Yao, “Effect of In on microstructure, thermodynamic characteristic and mechanical properties of Sn-Bi based lead-free solder,” Journal of Alloys and Compounds 633 (2015) 377-383.
    [60] L. Yang, L. Zhu, Y. C. Zhang, P. Liu, N. Zhang, S. Y. Zhou, L. C. Jiang, “Microstructure and reliability of Mo nanoparticle reinforced Sn-58Bi-based lead free solder joints,” Journal Materials Science and Technology, 34 (2018) 992-1002.
    [61] W. X. Dong, Y. W. Shi, Z. D. Xia, Y. P. Lei, F. Guo, “Effects of trace amounts of rare earth additions on microstructure and properties of Sn-Bi-based solder alloy,” Journal of Electronic Materials, 37 (2008) 982-991.
    [62] Y. Liu, H. Zhang, F. L. Sun, “Solderability of SnBi-nano Cu solder pastes and microstructure of the solder joints,” Journal of Electronic Materials, 27 (2016) 2235-2241.
    [63] L. Yang, J. Dai, Y. C. Zhang, Y. F. Jing, J. G. Ge, H. X. Liu, “Influence of BaTiO3 nanoparticle addition on microstructure and mechanical properties of Sn-58Bi solder,” Journal of Electronic Materials, 44 (2015) 2473-2478.
    [64] C. B. Lee, S. B. Jung, Y. E. Shin, C. C. Shur, “The Effect of Bi Concentration on Wettability of Cu Substrate by Sn-Bi Solders,” Materials Transactions, 42 (2001) 751-755.
    [65] J. Shen, C. Wu, S. Li, “Effects of rare earth additions on the microstructural evolution and microhardness of Sn30Bi0.5Cu and Sn35Bi1Ag solder all,” Journal of Electronic Materials, 23 (2012) 156-163.
    [66] 傅淑玫,「添加多壁奈米碳管於 Sn-3.0Ag-0.5Cu 無鉛銲料之性質研究」,碩士論文,國立臺灣科技大學材料究所,(2011)。

    無法下載圖示 全文公開日期 2025/07/28 (校內網路)
    全文公開日期 2025/07/28 (校外網路)
    全文公開日期 2025/07/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE