簡易檢索 / 詳目顯示

研究生: 蔡秉欣
Ping-Hsin Tsai
論文名稱: 金催化劑輔助VS成長氧化鋅奈米線暨微結構與元件特性分析
Au Catalyst-Assisted Vapor-Solid (VS) Growth, Microstructure Analysis and Device Characterization of Zinc Oxide Nanowires
指導教授: 王秋燕
Chiu-Yen Wang
口試委員: 葉炳宏
none
陳士勛
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 67
中文關鍵詞: 氧化鋅奈米線元件場效電晶體VS金催化成長
外文關鍵詞: ZnO, nanowires, device, FET, VS, Au catalyst, growth
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇研究中,利用熱蒸鍍法經由VLS及VS成長機制在爐管內擺放鍍上金膜的矽基板上成長氧化鋅奈米線,而氧化鋅粉混合碳粉當作前驅物。藉由控制成長溫度、前驅物溫度、成長壓力、前驅物的量、成長時間、成長位置、金膜厚度以及載流氣體,氧化鋅奈米線會長出多元的狀態。更重要的是金催化劑並沒有在氧化鋅奈米線的尾端底部被觀察到,進一步的細節分析發現了金催化劑原來在奈米線與基板的介面處。因此我們提出了一個氧化鋅奈米線成長機制為結合VLS成長與VS成長。氧化鋅外觀形貌利用場發射掃描式電子顯微鏡來做觀察,晶體結構則經由X光繞射和穿透式電子顯微鏡來做鑑定,光學性質從紫外光-可見光光譜儀以及陰極發光光譜儀得知。氧化鋅奈米線的振動模式則是透過拉曼分析來得知,最後電性質則是利用製作元件來量測,從量測的結果算出導電率介在導體的導電率範圍而不是半導體的範圍,原因是因為離子轟擊所造成的效應。


    In this study, ZnO nanowires were fabricated on Si coated with gold catalyst by thermal evaporation method via the vapor-liquid-solid (VLS) and vapor-solid (VS) mechanism in a furnace. Mixed zinc oxide powder and graphite powder was used as source. By controlling the growth temperature, source temperature, growth pressure, source amount, growth time, growth position, gold film and carrier gas, ZnO nanowires had been grown a variety of condition. More importantly, the gold catalyst was observed not at the tip ends of the ZnO nanowires. Based on the detailed analysis, we found the catalyst was at the interface between the nanowires and the underlying substrate. Therefore, we proposed a growth mechanism which is composed of VLS growth and VS growth. The morphology of ZnO nanowires were observed by field-emission scanning electron microscope (FE-SEM), and the crystal structure was characterized by x-ray diffractometer (XRD), and transmission electron microscope (TEM). The optical property of ZnO nanowires was obtained by ultraviolet-visible (UV-vis) reflectance spectrum and cathodoluminescenece (CL) spectrum. The vibration mode of ZnO nanowires was obtained by Raman analysis of ZnO nanowires. The electrical property was measured by making device at the last. The result of conductivity is at the range of conductor not semiconductor due to the effect of ion bombardment.

    摘要 I Abstract II Acknowledgments III List of Acronyms and Abbreviations VIII List of Tables IX List of Figures X Chapter 1: Introduction 1 1.1 Nanotechnology 1 1.1.1 Nanostructure 1 1.1.2 One-Dimensional (1D) Nanostructures 2 1.2 Growth Mechanisms and Synthesis Method of One Dimensional Nanostructures 3 1.2.1 Vapor-Liquid-Solid (VLS) Growth Mechanism 3 1.2.2 Vapor-Solid (VS) Growth Mechanism 4 1.3 ZnO Material Structure 5 1.4 Properties of ZnO Material 8 1.4.1 Optical Property of ZnO 8 1.4.2 Electrical Property of ZnO 10 1.5 Growth Method of ZnO Nanowires 11 1.5.1 Vapor Phase Transport (VPT) Method 11 1.5.2 Hydrothermal Method 12 Chapter 2:Experimental Procedures 13 2.1 Growth of ZnO Nanowires 13 2.2 Fabrication of ZnO Nanowires Field Effect Transistors 14 2.3 Scanning Electron Microscope (SEM) Observations 14 2.4 Transmission Electron Microscope (TEM) Observations 15 2.5 Energy Dispersive Spectrometer (EDS) Analysis 16 2.6 X-ray Diffraction (XRD) Analysis 16 2.7 Cathodoluminescence (CL) Measurement 17 2.8 Ultraviolet-visible (UV-vis) Reflectance Measurement 17 2.9 Raman Measurement 18 2.10 Electron Transport Properties Measurement 18 Chapter 3 Results and Discussion 20 3.1 The Influence of Growth Condition for ZnO Nanowires 20 3.1.1 Growth Temperature 20 3.1.2 Source Temperature 23 3.1.3 Source Amount 25 3.1.4 Growth Pressure 28 3.1.5 Growth Time 30 3.1.6 Gold Film 32 3.1.7 Position 34 3.1.8 Gas Flow 36 3.2 The Structure Analysis by XRD and TEM 38 3.2.1 XRD Analysis of ZnO Nanowires 38 3.2.2 TEM Analysis of ZnO Nanowires 39 3.2.3 Energy Dispersive Spectrometer (EDS) Analysis 41 3.3 The Optical Properties Analysis 42 3.3.1 Cathodoluminescence Analysis of ZnO Nanowires 42 3.3.2 Ultraviolet-visible Analysis of ZnO Nanowires 43 3.4 The Raman Analysis of ZnO Nanowires 44 3.5 The Discussion of the ZnO Nanowires Growth Mechanism 45 3.5.1 The Motivation of Investigating the Growth Mechanism 45 3.5.2 SEM Elements Mapping Analysis 46 3.5.3 TEM Elements Mapping Analysis 47 3.5.4 The Growth Mechanism of ZnO Nanowires 49 3.6 The Electrical Measurement of Single ZnO Nanowire 51 Chapter 4 Conclusion 56 Chapter 5 Future Works 58 Reference 59

    [1] R. P. Feynmen, “There’s plenty of room at the bottom,” the annual meeting of the American physical society on December 29th at the California institute of technology, 1959.
    [2] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, 1993, 363, 603.
    [3] Z. L. Wang, “Nanowires and nanobelts – materials, properties and devices; Vol-I: Metal and semiconductor nanowires,” Kluwer Academic Publisher, 2003.
    [4] P. Yang and C. M. Lieber, “Nanorod-superconductor composites: A pathway to materials with high critical current densities,” Science, 1996, 273, 1836.
    [5] Z. L. Wang, “Nanowires and nanobelts – materials, properties and devices; vol-II: Nanowires and nanobelts of functional materials,” Kluwer Academic Publisher, 2003.
    [6] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayer, B. Gates, Y. Yin, F. Kim and H. Ya, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater., 2003, 15, 353.
    [7] S. J. Tans, A. R. M. Verschueren and C. Dekker, “Room temperature transistor based on a single carbon nanotube,” Nature, 1998, 393, 49.
    [8] J. H. He, J. Liu, L. J. Chen and Z. L. Wang, “Piezoelectric gated diode of a single ZnO nanowire,” Adv. Mater., 2007, 19, 781.
    [9] S. T. Ho, C. Y. Wang, H. L. Liu and H. N. Lin, “Catalyst-free selective-area growth of vertically aligned zinc oxide nanowires,” Chem. Phys. Lett., 2008, 463, 141.
    [10] C. Y. Wang, N. W. Gong and L. J. Chen, “High sensitivity solid state Pb(core)/ZnO(shell) nano-thermometers fabricated with a facile galvanic displacement method,” Adv. Mater., 2008, 20, 4789.
    [11] R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett., 1964, 4, 89.
    [12] S. K. Behura, Q. Yang, A. Hirose, O. Jani and I. Mukhopadhyay, “Catalyst-free synthesis of silicon nanowires by oxidation and reduction process,” J. Mater. Sci., 2014, 49, 3592.
    [13] Y. J. Hsu and S. Y. Lu, “Vapor-solid growth of Sn nanowires: growth mechanism and superconductivity,“ J. Phys. Chem. B, 2005, 109, 4398.
    [14] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smithn and C. M. Lieber, “Growth of nanowires superlattice structures for nanoscale and electronics,” Nature, 2002, 415, 617.
    [15] G. Zhu, Y. Zhou, S. Wang, R. Yang, Y. Ding, X. Wang, Y. Bando and Z. L. Wang, “Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root,” Nanotechnology, 2012, 23, 055604.
    [16] U. Ozgur, I. A. Ya, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., 2005, 98, 041301.
    [17] A. El-Yadouni, A. Boudrioua, J. C. Loulergue, V. Sallet and R. Triboulet, “Growth and optical characterization of ZnO thin films deposited on sapphire substrate by MOCVD technique,” Opt. Mater., 2005, 27, 1391.
    [18] X. Y. Kong and Z. L. Wang, “Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts,” Nano Lett., 2003, 3, 1625.
    [19] W. Hughes and Z. L. Wang, “Formation of piezoelectric single-crystal nanorings and nanobows,” J. Am. Chem. Soc., 2004, 126, 6703.
    [20] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, 2003, 300, 1269.
    [21] S. Y. Lee, E. S. Shim, H. S. Kang, S. S. Pang and J. S. Kang, “Fabrication of ZnO thin film diode using laser annealing,” Thin Solid Films, 2005, 437, 31.
    [22] M. H. Huang, S. Mao, H. Feick, H. Q. Yang, Y. Y. Wu, H. Kind, E. weber, R. Russo and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science, 2001, 292, 1897.
    [23] J. H. Choy, E. S. Jang, J. H. Won, J. H. Chung, D. J. Jang and Y. W. Kim, “Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser,” Adv. Mater., 2003, 15, 1911.
    [24] J. H. He, C. L. Hisn, J. Liu, L. J. Chen and Z. L. Wang, “Piezoelectric gated diode of a single ZnO nanowire,” Adv. Mater., 2007, 19, 781.
    [25] Z. L. Wang and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science, 2006, 312, 242.
    [26] X. D. Wang, J. H. Song, J. Liu and Z. L. Wang, “Direct-current nanogenerator riven by ultrasonic waves,” Science, 2007, 316, 102.
    [27] M. S. Wagh, L. A. Patil, T. Seth and D. P. Amalnerkar, “Surface cupricated SnO2-ZnO thick films as a H2S gas sensor,” Mater. Chem. Phys., 2004, 84, 228.
    [28] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett., 2004, 84, 3654.
    [29] S. J. Pearton, W. H. Heo, M. Ivill, D. P. Norton and T. Steiner, “Dilute magnetic semiconducting oxides,” Semicond. Sci. Technol., 2004, 19, 59.
    [30] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, “Nanowire dye-sensitized solar cells,” Nat Mater., 2005, 4, 455.
    [31] J. Zhou, N. S. Xu and Z. L. Wang, “Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures,” Adv. Mater., 2006, 18, 2432.
    [32] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Adv. Funct. Mater., 2002, 12, 323.
    [33] F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi and G. Salviati, “Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures,” Scientific Reports, 2014, 4, 5158.
    [34] D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell and W.C. Harsch, “Electrical properties of bulk ZnO,” Solid State Communications, 1998, 105, 399.
    [35] R. L. Hoffman, B. J. Norris and J. F. Wager, “ZnO-based transparent thin-film transistors,” Appl. Phys. Lett., 2003, 82, 733.
    [36] H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett., 2004, 4, 1247.
    [37] J. Goldberger, D. J. Sirbuly, M. Law and P. Yang, “ZnO nanowire transistors,” J. Phys. Chem. B, 2005, 109, 9.
    [38] Y. Zhang, A. Kolmakov, S. Chretien, H. Metiu and M. Moskovits, “Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it,” Nano Lett., 2004, 4, 403.
    [39] F. Chaabouni, M. Abaab and B. Rezig, “Metrological characteristics of ZnO oxygen sensor at room temperature”, Sens. Actuators B, 2004, 100, 200.
    [40] W. I. Park, J. S. Kim, G. C. Yi, M. H. Bae and H. J. Lee, “Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors”, Appl. Phys. Lett., 2004, 85, 5052.
    [41] P. C. Chang, Z. Y. Fan, C. J. Chien, D. Stichtenoth, C. Ronning and J. G. Lu, “High-performance ZnO nanowire field effect transistors”, Appl. Phys. Lett., 2006, 89, 133113.
    [42] S. Song, W. K. Hong, S. S. Kwon and T. Lee, “Passivation effects on ZnO nanowire field effect transistors under oxygen, ambient and vacuum environments”, Appl. Phys. Lett., 2008, 92, 263109.
    [43] S. M. Zhou, X. H. Zhang, X. M. Meng, K. Zou, X. fan, S. K. Wu and S. T. Lee, “The fabrication and optical properties of highly crystalline ultra-long Cu-doped ZnO nanowires,” Nanotechnology, 2004, 15, 1152.
    [44] C. Geng, Y. Jiang, Y. Yao, X. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz and S. T. Lee, “Well-aligned ZnO nanowire arrays fabricated on silicon substrates,” Adv. Funct. Mater., 2004, 14, 589.
    [45] J. H. He, J. H. Hsu, C. W. Wang, H. N. Lin, L. J. Chen and Z. L. Wang, “Pattern and feature designed growth of ZnO nanowire arrays for vertical devices,” J. Phys. Chem. B, 2005, 110, 50.
    [46] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater., 2003, 15, 464.
    [47] Y. C. Chang and L. J. Chen, “ZnO nanoneedles with enhanced and sharp ultraviolet cathodoluminescence peak,” J. Phys. Chem. C, 2007, 111, 1268.
    [48] J. Serrano, F. J. Manjo´n, A. H. Romero, F. Widulle, R. Lauck and M. Cardona, “Dispersive phonon linewidths: the E2 phonons of ZnO,” Phys. Rev. Lett., 2003, 90, 055510.
    [49] Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng and J. G. Lu, “ZnO nanowire field-effect transistor and oxygen sensing property,” Appl. Phys. Lett., 2004, 85, 5923.

    無法下載圖示 全文公開日期 2021/07/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE