簡易檢索 / 詳目顯示

研究生: 傅咨翔
Tzu-Hsiang Fu
論文名稱: 可拉伸式奈米碳材混成薄膜材料及其主動發熱片應用
Stretchable nanocarbon material hybrids film and heater application
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 邱顯堂
Hsien-Tang Chiu
游進陽
Chin-Yang Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 71
中文關鍵詞: 碳黑奈米碳管石墨烯分散劑發熱元件導電薄膜
外文關鍵詞: Carbon black, Carbon nanotubes, Graphene, Dispersant, Heater, Conductive film
相關次數: 點閱:280下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,電熱性紡織品發展受到很多關注,紡織與發熱元件的結合就成為智慧紡織領域研究重點。保暖紡織品則以紡織材料為設計基礎,使紡織紗線本身具有加熱保溫的功能。一般市面常見的電熱型產品系統,多以碳素纖維、電熱絲等為主體,再包含高純度的鎳系合金而成。然而電熱性紡織品許多問題需要克服,例如紡織與電熱絲相容性,動作時熱源穩定,材料環保性,舒適性等問題。
    因此,在此研究,以碳黑、奈米碳管、石墨烯作為導體製作成主動發熱元件,以製作不同奈米碳材的電熱性薄膜作為研究目的,探討電熱性薄膜表面結構、導電性、導熱性、拉伸性、重複加熱性影響性。第一部分,由於奈米碳材容易於傾向聚集的行為,首先將設計及合成高分型分散劑(Polymeric Dispersant)幫助奈米碳材(Carbon black, CB/Carbon Nanotubes, CNTs/Reduced Graphene Oxide, rGO) 獲得良好的分散型態,此高分子行分散劑是以苯乙烯-馬林酸酐共聚物(SMA系列)和聚醚單胺( Polyoxyalkylene amine、M1000) 進行酰胺化和酰亞胺化反應合成,以奈米碳材與分散劑不同比例(1:0、1:0.5、1:1、1:1.5、1:2),並以FT-IR、DLS與TEM分析其結果。第二部份,高分子分散劑使奈米碳材(CB,CNT)具備高穩定性且均勻分散溶液中,進一步添 
    加具有彈性之聚氨酯(Polyurethane、PU)。使用奈米碳材(CB、CNT)添加還原氧化石墨烯(rGO)製備發熱薄膜,以奈米碳材與還原氧化石墨烯不同比例(2:1、1:1、1:2)做比較。添加還原氧化石墨烯有助於提升導電、導熱,拉伸和疲勞等機械性質,有助於奈米碳材(CB,CNT)均勻分散並彼此呈現互相連接的網絡結構型態,使複合薄膜形成導電網絡,可以提升導電性且具有良好穩定的熱電性能。以CNT/rGO比例1:1,膜厚100 μm最低電阻值為3.3x101 ohm/sq,施加電壓(9V)薄膜溫度上升至92.1℃,在應變量20%,具有良好的回復性。未來將可應用於保暖的智能產品上。


    In recent years, the development of electrothermal textiles has received a lot of attention, and the combination of textile and heating elements has become the focus of research in the field of smart textiles. Warm textiles are based on textile materials, which make the textile yarn itself have the function of heating and heat preservation. Generally, the electrothermal product system commonly used in the market is mainly composed of carbon fiber, electric heating wire, etc., and further contains a high-purity nickel-based alloy. However, many problems of electrothermal textiles need to be overcome, such as the compatibility of textile and electric heating wire, the stability of heat source during operation, environmental protection of materials, and comfort.
    Therefore, in this study, carbon black, carbon nanotubes, and graphene were used as conductors to form active heating elements, and electrothermal films of different nanocarbon materials were fabricated for research purposes. The surface structure and electrical conductivity of electrothermal thin films were discussed. Thermal conductivity, stretchability, and repeated heating properties.
    The first part, due to the tendency of nanocarbon materials to tend to aggregate, the first design and synthesis of high-concentration dispersant (Carbon black, CB/Carbon Nanotubes, CNTs/Reduced Graphene Oxide, rGO) Obtaining a good dispersion pattern, the polymer dispersant is synthesized by amide reaction of Styrene Maleic Anhydride copolymer (SMA series) and Polyether monoamine (M1000). The results were  
    analyzed by FT-IR, DLS and TEM in different ratios of nanocarbon material and dispersant (1:0, 1:0.5, 1:1, 1:1.5, 1:2).
    The second part, the polymer dispersant makes the nanocarbon material (CB, CNT) stable and dispersed in the solution, Add polyurethane with elasticity (Polyurethane, PU). The heat-generating film was prepared by adding rGO using nanocarbon materials (CB, CNT), and comparing the ratio of nanocarbon material rGO to (2:1, 1:1, 1:2). The addition of rGO can improve the mechanical properties such as conduction, heat conduction, tensile and fatigue, and contribute to the uniform dispersion of nanocarbon materials (CB, CNT) and interconnected network structures so that the composite film is formed. The conductive network can improve conductivity and have stable thermoelectric performance. With a CNT/rGO ratio of 1:1, the minimum resistance of the film thickness of 100 μm is 3.3x101 ohm/sq, and the applied voltage (9V) film temperature rises to 92.1 °C, with a strain of 20%, and favorable recovery. The future will be applied to warm smart products.

    摘要 I Abstract III 圖目錄 XI 表目錄 XI 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 2 第二章:文獻回顧 4 2.1奈米材料 4 2.1.1碳黑(Carbon Black) 4 2.1.2奈米碳管(Carbon Nanotubes) 6 2.2石墨烯(Graphene) 7 2.2.1石墨烯製造方式 8 2.2.2還原氧化石墨烯((Reduced Graphene Oxide) 10 2.2.3奈米碳材料發展與應用 12 2.3分散劑 13 2.3.1分散劑介紹 13 2.4導電高分子 14 2.4.1本質型導電高分子 14 2.4.2複合型導電高分子 15 2.5滲透閾值(Percolation threshold) 16 2.6聚氨基甲酸酯(Polyurethane, PU) 17 2.7保暖發熱原理 19 2.7.1遠紅外線發熱原理 19 2.7.2電阻式加熱 20 2.8市售蓄熱保暖性紡織品 22 第三章 實驗方法 25 3.1實驗材料 25 3.2實驗設備 26 3.3實驗流程 27 3.4高分子分散劑合成(SMA-Amide) 27 3.5奈米碳材分散液 28 3.6奈米碳材分散溶液製備導電漿料 29 3.6.1製備奈米碳材發熱薄膜 29 3.6.2添加還原氧化石墨烯製備可拉伸碳材發熱薄膜 29 3.7鑑定及儀器 30 第四章 結果與討論 33 4.1高分子分散劑 33 4.1.1苯乙烯馬來酸酐-酰胺的合成(SMA-amide) 33 4.1.2傅立葉轉換紅外線光譜分析儀(FTIR) 34 4.1.3分散劑於不同溶劑中的溶解情形 36 4.1.3高分子分散劑與奈米碳材的分散機制 38 4.2奈米碳材分散液 40 4.2.1奈米碳材與不同分散劑的選擇 40 4.3奈米碳材分散液之粒徑分佈圖、穿透率及TEM圖 42 4.3.1碳黑分散液 42 4.3.2奈米碳管分散液 45 4.3.3還原氧化石墨烯分散液 47 4.4製備導電發熱薄膜 50 4.4.1導電填充的最佳滲透閾值 51 4.4.2發熱薄膜主動元件裝置 52 4.5奈米碳材發熱薄膜 53 4.5.1奈米碳材發熱薄膜的熱性質 53 4.5.2奈米碳材發熱薄膜之截面特徵 55 4.5.3奈米碳材發熱薄膜的機械性質 57 4.6奈米碳材材(CB, CNT)薄膜添加rGO提升拉伸性 59 4.6.1 CB/rGO與CNT/rGO的機械性質與SEM圖 59 4.6.2 CB/rGO與CNT/rGO的熱性質與疲勞拉伸之電阻變化率 64 第五章 結論 70 第六章 文獻參考 71

    [1] Janas, D., and K. K. Koziol. "A review of production methods of carbon nanotube and graphene thin films for electrothermal applications." Nanoscale 2014, 6.6: 3037-3045.
    [2] Haggenmueller, Reto, et al. "Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity." Macromolecules 2007, 40.7: 2417-2421.
    [3] Iijima, Sumio. "Helical microtubules of graphitic carbon." Nature 1991, 354.6348: 56.
    [4] Novoselov, Kostya S., et al. "Electric field effect in atomically thin carbon films." Science 2004, 306.5696: 666-669.
    [5] Im, Hyeongwook, et al. "Enhancement of heating performance of carbon nanotube sheet with granular metal." ACS applied materials & interfaces 2012, 4.5: 2338-2342.
    [6] Shin, Keun-Young, et al. "High electrothermal performance of expanded graphite nanoplatelet-based patch heater." Journal of Materials Chemistry 2012, 22.44: 23404-23410.
    [7] Berber, Savas, Young-Kyun Kwon, and David Tománek. "Unusually high thermal conductivity of carbon nanotubes." Physical review letters 2000, 84.20: 4613.
    [8] Wan, Neng, et al. "Synthesis of graphene–CNT hybrids via joule heating: Structural characterization and electrical transport." Carbon 2013, 53: 260-268. 
    [9] Zhu, Lingbo, et al. "Well-aligned open-ended carbon nanotube architectures: an approach for device assembly." Nano letters 2006, 6.2: 243-247.
    [10] De Volder, Michael FL, et al. "Carbon nanotubes: present and future commercial applications." Science 2013, 339.6119: 535-539.
    [11] Yoon, Y‐H., et al. "Transparent film heater using single‐walled carbon nanotubes." Advanced Materials 2007, 19.23: 4284-4287.
    [12] Sui, Dong, et al. "Flexible and transparent electrothermal film heaters based on graphene materials." Small 2011, 7.22: 3186-3192.
    [13] Lee, Byeong-Joo, and Goo-Hwan Jeong. "Fabrication of defrost films using graphenes grown by chemical vapor deposition." Current Applied Physics 2012, 12: 113-117..
    [14] Kang, Junmo, et al. "High-performance graphene-based transparent flexible heaters." Nano letters 2011, 11.12: 5154-5158.
    [15] Jeong, Young Gyu, and Ji-Eun An. "Effects of mixed carbon filler composition on electric heating behavior of thermally-cured epoxy-based composite films." Composites Part A: Applied Science and Manufacturing 2014, 56: 1-7.
    [16] Kim, Chang-Lae, et al. "A highly flexible transparent conductive electrode based on nanomaterials." NPG Asia Materials 2017, 9.10: 438.
    [17] Hafner, Jason H., et al. "Catalytic growth of single-wall carbon nanotubes from metal particles." Chemical Physics Letters 1998, 296.1-2: 195-202.

    [18] Sadezky, Alexa, et al. "Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information." Carbon 2005, 43.8: 1731-1742.
    [19] Yuan, Wenhui, Yejian Gu, and Li Li. "Green synthesis of graphene/Ag nanocomposites." Applied Surface Science 2012, 261: 753-758.
    [20] Galiuto, Leonarda, et al. "Predicting the no-reflow phenomenon following successful percutaneous coronary intervention." Biomarkers in medicine 2010, 4.3: 403-420.
    [21] Homann, Klaus‐Heinrich. "Fullerenes and soot formation—new pathways to large particles in flames." Angewandte Chemie International Edition 1998, 37.18: 2434-2451.
    [22] Lahaye J, Prado G. In: Th Rodriguez-Reinoso, F., and A. Linares-Sabio. "Thrower P Editor,«Chemistry and Physics of carbons»." New York: Marcel Dekker 1989, 21.
    [23] Yeoh, Oon H. "Characterization of elastic properties of carbon-black-filled rubber vulcanizates." Rubber chemistry and technology 1990, 63.5: 792-805.
    [24] Sadezky, Alexa, et al. "Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information." Carbon 2005, 43.8: 1731-1742.
    [25] Huang, Zhen, et al. "Application of carbon materials as counter electrodes of dye-sensitized solar cells."Electrochemistry Communications 2007, 9.4: 596-598.

    [26] Novoselov, Kostya S., et al. "Electric field effect in atomically thin carbon films." Science 2004, 306.5696: 666-669.
    [27] Loh, Kian Ping, et al. "The chemistry of graphene." Journal of Materials Chemistry 2010, 20.12: 2277-2289.
    [28] Yi, Min, and Zhigang Shen. "A review on mechanical exfoliation for the scalable production of graphene." Journal of Materials Chemistry A 2015, 3.22: 11700-11715.
    [29] Martinez, Amos, Kazuyuki Fuse, and Shinji Yamashita. "Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers." Applied Physics Letters 2011, 99.12: 121107.
    [30] Losurdo, Maria, et al. "Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure." Physical Chemistry Chemical Physics 2011, 13.46: 20836-20843.
    [31] Shi, Jia‐Le, et al. "3D Mesoporous Graphene: CVD Self‐Assembly on Porous Oxide Templates and Applications in High‐Stable Li‐S Batteries."Small 2015, 11.39: 5243-5252.
    [32] Cabrero-Vilatela, Andrea, et al. "Towards a general growth model for graphene CVD on transition metal catalysts." Nanoscale 2016, 8.4: 2149-2158.
    [33] Stankovich, Sasha, et al. "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide." Carbon 2007, 45.7: 1558-1565.
    [34] Yang, Dongxing, et al. "Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy." Carbon 2009, 47.1: 145-152. 
    [35] Pumera, Martin, et al. "Graphene for electrochemical sensing and biosensing." TrAC Trends in Analytical Chemistry 2010, 29.9: 954-965.
    [36] Tang, Longhua, et al. "Preparation, structure, and electrochemical properties of reduced graphene sheet films." Advanced Functional Materials 2009, 19.17: 2782-2789.
    [37] Münstedt, Helmut, and Zdeněk Starý. "Is electrical percolation in carbon-filled polymers reflected by rheological properties?." Polymer 2016,98: 51-60.
    [38] Sandler, JKWea, et al. "Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites." Polymer 2003, 44.19: 5893-5899.
    [39] Tsou, Chi-Hui, et al. "Synthesis and properties of antibacterial polyurethane with novel Bis (3-pyridinemethanol) silver chain extender." Polymer 2016, 85: 96-105.
    [40] Liu, Xin, et al. "Synthesis and properties of segmented polyurethanes with hydroquinone ether derivatives as chain extender." Journal of Polymer Research 2015, 22.8 (2015): 149.
    [41] Lapprand, Aude, Françoise Méchin, and J‐P. Pascault. "Synthesis and properties of self‐crosslinkable thermoplastic polyurethanes." Journal of applied polymer science 2007,105.1: 99-113.
    [42] Charlon, M., et al. "Synthesis, structure and properties of fully biobased thermoplastic polyurethanes, obtained from a diisocyanate based on modified dimer fatty acids, and different renewable diols." European Polymer Journal 2014, 61: 197-205.
    [43]Byrnes, James, ed. Unexploded ordnance detection and mitigation. Springer Science & Business Media, 2008.

    無法下載圖示 全文公開日期 2024/01/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE