簡易檢索 / 詳目顯示

研究生: 蔡凱杰
Kai-Jie Tsai
論文名稱: 蕭基接面增益光沉積鉑共觸媒於石墨烯/矽光陰極之水分解應用
Schottky Junction Enhanced Photodeposition for Preparing Pt Nanoparticles Modified Graphene/Si Photocathode for Water Splitting
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 蘇威年
Wei-Nien Su
陳俊維
Chun-Wei Chen
溫政彥
Cheng-Yen Wen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 90
中文關鍵詞: p-型矽石墨烯蕭基接面鉑奈米粒子光沉積法光陰極水分解產氫共觸媒
外文關鍵詞: p-type silicon, Schottky junction
相關次數: 點閱:300下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在眾多半導體材料中,具備窄能隙(~1.1 eV)與適當傳導帶位置的矽,被視為光陰極產氫材料中的主力發展之對象。為了更進一步提升電子電洞對分離以及表面電催化能力,如何在半導體光電極表面以具電化學催化活性之共觸媒修飾,有效提升其氫氣產生速率,一直為此領域所關注之議題。
    有鑑於此,本研究採用p型半導體矽作為光電極,引進石墨烯於其表面使建立石墨烯/p-型矽蕭基接面,進而提升其光電極之電子電洞對分離能力,同時可以減緩原生氧化層的增長;此外,本研究首度提出於石墨烯/p-型矽光電極表面,利用蕭基接面增益光沉積製程來合成鉑奈米粒子作為共觸媒,進而增加其產氫速率。相較於一般光沉積製程,從光學電子顯微鏡與感應耦合電漿原子發射光譜分析結果,顯示蕭基接面增益光沉積製程能在相同反應條件下達到更高的鉑沉積量,表示石墨烯/p-型矽蕭基接面能有效提升電子電洞對快速分離以避免其再結合。利用光沉積還原機制,可合理推論蕭基接面增益光沉積製程所合成之鉑奈米粒子,能精準沉積在光電子最佳傳遞路徑之活性位置,並進一步抑制光電子再結合的可能,達到提升整體產氫反應速率。本研究中亦利用蕭基接面增益光沉積對光源強度之依存性,藉由調控光源強度、光照時間及溶液濃度等參數去調控鉑奈米粒子之尺寸、含量以及覆蓋率,並結合掃描電子顯微鏡、感應耦合電漿原子發射光譜、線性掃描伏安法以及電化學阻抗分析等分析技術,製備可應用於在光催化水分解的高效能鉑奈米粒子修飾石墨烯/p-型矽蕭基接面平台。本研究實驗結果顯示出在標準太陽光模擬器(AM 1.5 & 100 mW/cm2)條件照射下,在以光沉積法製備鉑奈米粒子修飾石墨烯/p-型矽蕭基接面光電極於水溶液系統(pH=0)下,起始電位可正偏移至0.27 V,並於0 V (vs. RHE)之光電流可達19.08 mA/cm2,高於在相同條件下無光電流產生之純矽元件以及使用含浸法所製備之鉑奈米粒子系統(0.417 mA/cm2),且具有120小時之穩定度。本研究提出一種蕭基接面增益光沉積製程,並成功應用在製備高效能水分解光觸媒電極。


    Photoelectrochemical (PEC) water splitting is a promising method to directly convert solar energy into hydrogen generation without any carbon emission and air pollution. With its narrow band gap and suitable conduction band position, silicon has been considered as one of the most ideal photocathodes among the numerous semiconductor materials.
    Herein, in this work, graphene and silicon were delicately assembled to form the Schottky junction based device. It can not only separate the charge carriers rapidly but also inhibit the growth of silicon native oxide. In addition, Pt nanoparticles (Pt NPs) were selectively photodeposited to modify the graphene/p-Si electrode by Schottky junction. Through the Auger Electron Spectroscopy, it is noticeable that the Pt NPs decorated by photodeposition method were inclined to be reduced on the graphene/p-Si side, instead of bare p-Si. It shows Pt NPs could be more efficiently reduced on the active sites of electrocatalysis, which are also the same sites for catalyzing the hydrogen evolution reaction under illumination. Meanwhile, particle sizes, loading, and distribution of co-catalyst can be easily and precisely controlled by Schottky junction enhanced photodeposition. The results were analyzed by SEM, ICP-AES, LSV and EIS to confirm the optimal parameters. Also, the bare silicon device showed no photo-response under 1 Sun simulation at 0 V(vs. RHE), but the photocurrent density of Pt NPs decorated graphene/p-Si device increased to 19.08 mA/cm2. The onset potential positively shifted to 0.27 V and the stability remained for 120 hours. The performance of the device has surpassed the values from devices of bare silicon or with Pt co-catalysts decorated by impregnation method. These results provide an evidence to support that the photo-induced charge separation of p-Si could be enhanced by introducing the graphene/p-Si Schottky junction.

    摘要 I ABSTRACT III 致謝 V 目錄 VII 圖目錄 XI 表目錄 XVII 第1章、 緒論 1 1.1. 前言 1 1.2. 光電化學系統應用於太陽光能之轉化 3 1.3. 光催化水分解原理 3 1.4. 蕭基接面(Schottky Junction) 7 1.5. 石墨烯介紹 8 1.5.1. 石墨烯發展歷史 8 1.5.2. 石墨烯能隙結構 10 第2章、 文獻回顧 13 2.1. 光催化水分解發展 13 2.2. 矽光電極之發展與瓶頸 15 2.3. 光沉積法形成共觸媒系統 23 2.4. 蕭基接面(Schottky Junction)之應用 25 2.4.1. 金屬/半導體蕭基接面太陽能電池 25 2.4.2. 石墨烯/半導體蕭基接面太陽能電池 25 2.5. 研究動機與目的 28 第3章、 實驗部分 29 3.1. 實驗架構 29 3.2. 實驗儀器 31 3.3. 實驗藥品 32 3.4. 實驗步驟 33 3.4.1. 化學氣相沉積法成長石墨烯 33 3.4.2. 石墨烯轉印 34 3.4.3. 含浸法還原鉑共觸媒 34 3.4.4. 光沉積法還原鉑共觸媒 35 3.5. 材料鑑定與分析 36 3.5.1. 掃描式電子顯微鏡(SEM) 36 3.5.2. 歐傑電子能譜儀(Auger electron spectroscopy) 36 3.5.3. 拉曼光譜儀(Raman spectroscope) 37 3.5.4. 感應耦合電漿-原子放射光譜(ICP-AES) 37 3.6. 材料光電化學特性測試 37 3.6.1. 線性掃描伏安法(Linear sweep voltammetry, LSV) 38 3.6.2. 計時安培分析法(Chrono amperometry) 38 3.6.3. 電化學交流阻抗分析(Electrochemical Impedence Spectroscopy) 38 第4章、 結果與討論 45 4.1. 石墨烯/矽蕭基接面特性分析 45 4.1.1. 轉印石墨烯元件確認 45 4.1.2. 蕭基接面特性確認 46 4.1.3. 原生氧化層對矽基材料之影響 47 4.2. 蕭基接面對光沉積法之影響 50 4.3. 蕭基接面增益光沉積還原共觸媒調控與分析 53 4.3.1. 固定時間下調控光照強度對光沉積鉑顆粒之影響與分析 53 4.3.2. 固定光照強度下調控時間對光沉積鉑顆粒之影響與分析 61 4.4. 含浸法還原鉑共觸媒之特性測試與分析 75 4.5. 所有元件之光電化學表現比較 78 4.6. 光電極穩定性量測 81 第5章、 結論 83 第6章、 未來展望 84 第7章、 參考文獻 85

    [1] M. Emst, "Global average temperature and carbon dioxide concentrations, 1880-2010," The Woods Hole Research Center, 2010.
    [2] A. Kudo and Y. Miseki, "Heterogeneous photocatalyst materials for water splitting," Chem Soc Rev, vol. 38, pp. 253-278, Jan 2009.
    [3] K. Akihiko, "Photocatalyst materials for water splitting.," Catalysis Surveys from Asia, vol. 7, pp. 31-38, 2003.
    [4] https://heatisland.lbl.gov/coolscience/cool-roofs
    [5] 施敏、伍國、張鼎張、劉柏村, 半導體元件物理學 上冊 第三版: 國立交通大學.
    [6] M. Terrones, A. R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y. I. Vega-Cantú, F. J. Rodríguez-Macías, et al., "Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications," Nano Today, vol. 5, pp. 351-372, 2010.
    [7] W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, "Solid C60: a new form of carbon," Nature, vol. 347, pp. 354-358, 1990.
    [8] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
    [9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, pp. 666-669, 2004.
    [10] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, et al., "Fine Structure Constant Defines Visual Transparency of Graphene," Science, vol. 320, pp. 1308-1308, 2008.
    [11] F. Schwierz, "Graphene transistors," Nat Nano, vol. 5, pp. 487-496, 2010.
    [12] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, et al., "Detection of individual gas molecules adsorbed on graphene," Nat Mater, vol. 6, pp. 652-655, 2007.
    [13] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, et al., "Roll-to-roll production of 30-inch graphene films for transparent electrodes," Nat Nano, vol. 5, pp. 574-578, 2010.
    [14] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, et al., "Graphene-based composite materials," Nature, vol. 442, pp. 282-286, 2006.
    [15] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, et al., "Electronic Confinement and Coherence in Patterned Epitaxial Graphene," Science, vol. 312, pp. 1191-1196, 2006.
    [16] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, vol. 93, p. 103-113, 2008.
    [17] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Reviews of Modern Physics, vol. 81, pp. 109-162, 2009.
    [18] A. Fujishima and K. Honda, "Electrochemical photolysis of water at a semiconductor electrode," Nature, vol. 238, pp. 37-38, 1972.
    [19] M. Gratzel, "Photoelectrochemical cells," Nature, vol. 414, pp. 338-344, 2001.
    [20] J. Kye, M. Shin, B. Lim, J.-W. Jang, I. Oh, and S. Hwang, "Platinum Monolayer Electrocatalyst on Gold Nanostructures on Silicon for Photoelectrochemical Hydrogen Evolution," ACS Nano, vol. 7, pp. 6017-6023, 2013.
    [21] A. G. Tamirat, W.-N. Su, A. A. Dubale, H.-M. Chen, and B.-J. Hwang, "Photoelectrochemical water splitting at low applied potential using a NiOOH coated codoped (Sn, Zr) [small alpha]-Fe2O3 photoanode," Journal of Materials Chemistry A, vol. 3, pp. 5949-5961, 2015.
    [22] A. A. Dubale, C.-J. Pan, A. G. Tamirat, H.-M. Chen, W.-N. Su, C.-H. Chen, et al., "Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction," Journal of Materials Chemistry A, vol. 3, pp. 12482-12499, 2015.
    [23] O. Khaselev and J. A. Turner, "A Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting," Science, vol. 280, pp. 425-427, 1998.
    [24] C. Liu, N. P. Dasgupta, and P. Yang, "Semiconductor Nanowires for Artificial Photosynthesis," Chemistry of Materials, vol. 26, pp. 415-422, 2014.
    [25] B. Seger, A. B. Laursen, P. C. K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, et al., "Hydrogen Production Using a Molybdenum Sulfide Catalyst on a Titanium-Protected n+p-Silicon Photocathode," Angewandte Chemie International Edition, vol. 51, pp. 9128-9131, 2012.
    [26] U. Sim, T.-Y. Yang, J. Moon, J. An, J. Hwang, J.-H. Seo, et al., "N-doped monolayer graphene catalyst on silicon photocathode for hydrogen production," Energy & Environmental Science, vol. 6, pp. 3658-3664, 2013.
    [27] J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, and T. F. Jaramillo, "Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials," Advanced Energy Materials, vol. 4, 2014.
    [28] B. Seger, T. Pedersen, A. B. Laursen, P. C. K. Vesborg, O. Hansen, and I. Chorkendorff, "Using TiO2 as a Conductive Protective Layer for Photocathodic H2 Evolution," Journal of the American Chemical Society, vol. 135, pp. 1057-1064, 2013.
    [29] J. Feng, M. Gong, M. J. Kenney, J. Z. Wu, B. Zhang, Y. Li, et al., "Nickel-coated silicon photocathode for water splitting in alkaline electrolytes," Nano Research, vol. 8, pp. 1577-1583, 2015.
    [30] M. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza, et al., "High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation," Science, vol. 342, pp. 836-840, 2013.
    [31] T. R. Hellstern, J. D. Benck, J. Kibsgaard, C. Hahn, and T. F. Jaramillo, "Engineering Cobalt Phosphide (CoP) Thin Film Catalysts for Enhanced Hydrogen Evolution Activity on Silicon Photocathodes," Advanced Energy Materials, vol. 6, 2016.
    [32] G. Siddiqi, V. Mougel, and C. Copéret, "Highly Active Subnanometer Au Particles Supported on TiO2 for Photocatalytic Hydrogen Evolution from a Well-Defined Organogold Precursor, [Au5(mesityl)5]," Inorganic Chemistry, vol. 55, pp. 4026-4033, 2016.
    [33] C.-J. Chen, M.-G. Chen, C. K. Chen, P. C. Wu, P.-T. Chen, M. Basu, et al., "Ag-Si artificial microflowers for plasmon-enhanced solar water splitting," Chemical Communications, vol. 51, pp. 549-552, 2015.
    [34] S. Sato and J. M. White, "Photodecomposition of water over Pt/TiO2 catalysts," Chemical Physics Letters, vol. 72, pp. 83-86, 1980.
    [35] K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, et al., "GaN:ZnO Solid Solution as a Photocatalyst for Visible-Light-Driven Overall Water Splitting," Journal of the American Chemical Society, vol. 127, pp. 8286-8287, 2005.
    [36] H. Kato, K. Asakura, and A. Kudo, "Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure," Journal of the American Chemical Society, vol. 125, pp. 3082-3089, 2003.
    [37] A. Kudo and Y. Miseki, "Heterogeneous photocatalyst materials for water splitting," Chemical Society Reviews, vol. 38, pp. 253-278, 2009.
    [38] T. Sano, N. Negishi, D. Mas, and K. Takeuchi, "Photocatalytic Decomposition of N2O on Highly Dispersed Ag+ Ions on TiO2 Prepared by Photodeposition," Journal of Catalysis, vol. 194, pp. 71-79, 2000.
    [39] J. M. Herrmann, J. Disdier, and P. Pichat, "Photoassisted platinum deposition on TiO2 powder using various platinum complexes," The Journal of Physical Chemistry, vol. 90, pp. 6028-6034, 1986.
    [40] T. Ohno, K. Sarukawa, and M. Matsumura, "Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions," New Journal of Chemistry, vol. 26, pp. 1167-1170, 2002.
    [41] S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, et al., "Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO2 Substrate," Nano Letters, vol. 10, pp. 4944-4951, 2010.
    [42] K. Ki Kang, R. Alfonso, S. Yumeng, P. Hyesung, L. Lain-Jong, L. Young Hee, et al., "Enhancing the conductivity of transparent graphene films via doping," Nanotechnology, vol. 21, p. 285205, 2010.
    [43] C. Xie, X. Zhang, K. Ruan, Z. Shao, S. S. Dhaliwal, L. Wang, et al., "High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells," Journal of Materials Chemistry A, vol. 1, pp. 15348-15354, 2013.
    [44] Z. Li, H. Zhu, D. Xie, K. Wang, A. Cao, J. Wei, et al., "Flame synthesis of few-layered graphene/graphite films," Chemical Communications, vol. 47, pp. 3520-3522, 2011.
    [45] T. Feng, D. Xie, Y. Lin, H. Zhao, Y. Chen, H. Tian, et al., "Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS," Nanoscale, vol. 4, pp. 2130-2133, 2012.
    [46] S. Tongay, K. Berke, M. Lemaitre, Z. Nasrollahi, D. B. Tanner, A. F. Hebard, et al., "Stable hole doping of graphene for low electrical resistance and high optical transparency," Nanotechnology, vol. 22, p. 425701, 2011.
    [47] P.-H. Ho, Y.-T. Liou, C.-H. Chuang, S.-W. Lin, C.-Y. Tseng, D.-Y. Wang, et al., "Self-Crack-Filled Graphene Films by Metallic Nanoparticles for High-Performance Graphene Heterojunction Solar Cells," Advanced Materials, vol. 27, pp. 1724-1729, 2015.
    [48] D. Usachov, O. Vilkov, A. Grüneis, D. Haberer, A. Fedorov, V. K. Adamchuk, et al., "Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties," Nano Letters, vol. 11, pp. 5401-5407, 2011.
    [49] W. J. Yu, L. Liao, S. H. Chae, Y. H. Lee, and X. Duan, "Toward Tunable Band Gap and Tunable Dirac Point in Bilayer Graphene with Molecular Doping," Nano Letters, vol. 11, pp. 4759-4763, 2011.
    [50] K. M. McCreary, K. Pi, and R. K. Kawakami, "Metallic and insulating adsorbates on graphene," Applied Physics Letters, vol. 98, p. 192101, 2011.
    [51] D. B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.-M. Lin, G. S. Tulevski, J. C. Tsang, et al., "Chemical Doping and Electron−Hole Conduction Asymmetry in Graphene Devices," Nano Letters, vol. 9, pp. 388-392, 2009.
    [52] S. K. Behura, S. Nayak, I. Mukhopadhyay, and O. Jani, "Junction characteristics of chemically-derived graphene/p-Si heterojunction solar cell," Carbon, vol. 67, pp. 766-774, 2014.
    [53] M. Mohammed, Z. Li, J. Cui, and T.-p. Chen, "Junction investigation of graphene/silicon Schottky diodes," Nanoscale Research Letters, vol. 7, pp. 1-6, 2012.
    [54] A. Lasia, "Electrochemical impedance spectroscopy and its applications," in Modern Aspects of Electrochemistry. vol. 32, B. E. Conway, J. O. M. Bockris, and R. White, Eds., ed: Springer US, pp. 143-248, 2002.
    [55] P.-H. Ho, W.-C. Lee, Y.-T. Liou, Y.-P. Chiu, Y.-S. Shih, C.-C. Chen, et al., "Sunlight-activated graphene-heterostructure transparent cathodes: enabling high-performance n-graphene/p-Si Schottky junction photovoltaics," Energy & Environmental Science, vol. 8, pp. 2085-2092, 2015.

    QR CODE