簡易檢索 / 詳目顯示

研究生: 黃琮翰
Tsung-Han Huang
論文名稱: 石墨烯誘導壓電性聚偏二氟乙烯薄膜用於水處理與電能生成之研究
The Study of Graphene-Induced Piezoelectric Polyvinylidene Fluoride Membranes for Water Treatment and Power Generation
指導教授: 洪維松
Wei-Song Hung
口試委員: 賴君義
Juin-Yih Lai
孫一明
Yi-Ming Sun
李魁然
Kueir-Rarn Lee
康敦彥
Dun-Yen Kang
蔡協致
Hsieh-Chih Tsai
胡蒨傑
Chien-Chieh Hu
洪維松
Wei-Song Hung
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 135
中文關鍵詞: 石墨烯-聚偏二氟乙烯壓電薄膜太陽能蒸餾海浪發電結垢移除/監控壓電催化
外文關鍵詞: Graphene-PVDF piezoelectric membrane, Solar evaporation, Sea wave power generation, Fouling removing/monitoring, Piezocatalysis
相關次數: 點閱:28下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著全球人口增長與極端氣候,水與能源短缺的問題日趨嚴峻,儘管已有許多方法可以產生水資源與能源。但幾乎都需要消耗額外的資源,如水資源的有效利用與處理需要大量電能,電能的生產過程亦需要大量水資源,這導致兩者之間有著密切的關連,無法單一考量。因此,大量的研究致力於發展低能耗的水處理方法、新的能源生產方案以及同時獲取水與能源的新型技術。
    薄膜科技是解決這些複雜議題最有效且可行的方法之一,本研究提出一種石墨烯-聚偏二氟乙烯 (Polyvinylidene fluoride, PVDF) 壓電薄膜,透過太陽能蒸餾與壓電效應同時獲取乾淨水與能源以克服前述的難題。藉由石墨烯(Graphene)添加以靜電作用力誘導PVDF高分子從非極性α相轉換至壓電性β相。透過海浪驅動薄膜將機械能轉換為電能,在模擬海浪1 Hz下薄膜可獲得2.6 V (±1.3 V)。另一方面,透過光熱效應使薄膜在1倍太陽光下的產水率為1.2 kg m-2 h-1,符合世界衛生組織(WHO)的飲用水標準。
    另一方面,太陽蒸餾薄膜在長期的操作下,常因汙染物堆積,造成薄膜的結垢現象(Fouling),大幅度影響了薄膜的效率與壽命,儘管目前已有部分方法能有效去除一定程度的結垢,然而無法準確判定材料實際結垢程度與清洗時機。為了克服上述議題,本研究於第二部份進一步引入無機的鈦酸鋇(Barium titanate, BaTiO3),與石墨烯的協同效應強化了PVDF的壓電性能。另一方面,壓電效應同時抑制光生載流子(Photogenerated carrier)重組。薄膜同時具備四種功能包含太陽蒸餾、海浪發電、壓電光降解及結垢移除/監控(Fouling removing/monitoring)。相較於先前研究,在模擬海浪1 Hz下薄膜電壓輸出為8 V (±4 V),最大發電功率為5.73 W m-2。對於剛果紅(Congo red, CR)染料的壓電光降解率為93%,透過逆壓電振動,對應自監控的電阻回復率為60%。
    除了水與能源的短缺,科技的進步總是伴隨著工業汙染,這導致了環境修復在近年來成為備受矚目的議題之一,因此我們針對薄膜以環境友善的壓電降解為目標進行進一步的探討。透過薄膜產生的強壓電場與水或氧氣反應產生活性氧物質(Reactive oxygen species, ROS)如超氧自由基(Superoxide radical, ∙O2-)與氫氧自由基(Hydroxyl radical, ∙OH),進一步降解汙染物。其中最適化PVDF/Graphene薄膜不僅對於有毒染料羅丹明B(Rhodamine B, RhB) 展現96.1%的降解效率並且在8個循環測試中擁有良好的穩定性與重複性。
    本研究深入探討並完成可實現資源生成(潔淨水、能源)和環境修復(汙染物降解)的多功能石墨烯壓電薄膜的技術開發,結合壓電效應與不同機制探討在各領域應用的可行性與潛能,為未來以綠色能源和永續發展為核心的薄膜領域研究人員提出一種新的方向與可能。


    In recent years, with global population growth and extreme climate conditions, the issues of water and energy scarcity have become increasingly severe. Although there already have many traditional methods to produce clean water and energy, but most of them need additional resources. For example, the efficient utilization and treatment of water resources require a large amount of energy, while the production of energy also demands substantial water resources. The high degree of interdependence between these two issues makes it impossible to consider them separately. Consequently, extensive research is dedicated to developing low-energy water treatment methods, novel power generation approaches, and innovative technologies that simultaneously acquire both water and energy resources.
    Membrane technology is one of the most effective and feasible solutions to address these complex issues. This study proposed a graphene-polyvinylidene fluoride (PVDF) piezoelectric membrane to obtain clean water and energy simultaneously through solar evaporation and the piezoelectric effect, aiming to overcome the aforementioned challenges. PVDF was induced to transfer from the non-polar α phase to the piezoelectric β phase by using the electrostatic interaction with the addition of graphene. The membrane driven by ocean waves converted the mechanical energy into electrical energy, generating 2.6 V (±1.3 V) under a simulated 1 Hz sea wave. Meanwhile, a membrane with photothermal effect achieved a water production rate of 1.2 kg m-2 h-1 under 1 sun illumination, in compliance with the WHO’s standards.
    On the other hand, under long-term operation, membrane fouling commonly occurs in membrane applications, and significantly affects the membrane’s efficiency and lifespan due to the accumulation of contaminants. Although some methods effectively remove a certain degree of fouling, accurately determining the actual extent of fouling and the appropriate cleaning time remains challenging. Therefore, in the second part of this thesis, further introducing inorganic barium titanate (BaTiO3), which had a synergistic effect with graphene, enhanced the PVDF’s piezoelectric properties, while also suppressing the recombination of photogenerated carrier. The membrane shows four functions, including solar evaporation, sea wave power generation, piezo-photodegradation and fouling removing/monitoring. Compared to the results in the first part, the membrane exhibited a voltage output of 8 V (±4 V) and a maximum power generation of 5.73 W m-2 at 1 Hz simulated sea wave. The piezo-photodegradation rate for dyes reached 93%. By using reverse piezoelectric vibrations, the corresponding recovery rate of the resistance for self-monitoring was 60%.
    In addition to water and energy scarcity, technological advancements have often been accompanied by industrial pollution, making environmental remediation a highly pressing issue in recent years. Therefore, this study aimed to further explore the membrane's environment-friendly piezoelectric degradation capabilities. By utilizing the strong piezoelectric field generated to react with H2O and O2 by the membrane, reactive oxygen species (ROS) such as superoxide radical (∙O2-) and hydroxyl radical (∙OH) are produced to further degrade pollutants. The optimized PVDF/Graphene membrane not only exhibited degradation rates of 96.1% for the toxic dye rhodamine B (RhB) but also showed the good repeatability in 8 cycles.
    This thesis delved deeply and accomplished the development of multifunctional graphene-based piezoelectric membranes capable of resource generation and environmental remediation. By integrating piezoelectric effect and exploring different mechanisms, we evaluated the feasibility and potential of their applications across various domains. This presents a new direction and potential for researchers in the field of membrane technology who focus on green energy and sustainable development in the future.

    摘要 III ABSTRACT V 誌謝 VII Table of Contents VIII List of Figures XII List of Tables XXII List of symbols abbreviations XXIII Chapter I Introduction 1 1.1 Background and motivation of the study 2 Chapter Ⅱ Literature Review 5 2.1 Seawater desalination technology 6 2.1.1 Traditional seawater desalination technology 6 2.1.2 Membrane-based seawater desalination technology 6 2.2 Solar evaporation technology 8 2.2.1 Overview 8 2.2.2 Solar evaporation materials 9 2.2.3 Structure designs of solar evaporator 11 2.3 Piezoelectric power generation technology 12 2.3.1 Overview 12 2.3.2 Piezoelectric materials 15 2.3.3 Polyvinylidene fluoride (PVDF) 16 2.3.4 The methods for inducing β phase of PVDF 17 2.4 The technology for simultaneous water and power generation 19 2.5 Environmental remediation technology 22 2.5.1 Photocatalytic technology 22 2.5.2 Piezocatalytic technology 23 2.5.3 Piezo-photocatalytic technology 24 Chapter Ⅲ Experimental Section 26 3.1 Chemicals and instruments 27 3.2 Preparation of Membranes 30 3.2.1 PVDF1/Gx TIPS membranes 30 3.2.2 PVDF1/G1-BTx NIPS membranes 30 3.2.3 PVDF1/Gx NIPS membrane 31 3.3 Experimental setup and methods 32 3.3.1 Characterization of membranes 32 3.3.2 Calculation methods in TGA and FTIR 32 3.3.3 Solar evaporation efficiency of membranes 33 3.3.4 Electrochemical properties of membranes 34 3.3.5 Piezoelectric response of membranes 34 3.3.6 Prototype of simultaneous water and power generation 35 3.3.7 Fouling removing/monitoring properties of membranes 36 3.3.8 Catalytic activity detection of PVDF/Graphene membranes - free radical scavenger test 37 3.3.9 Photodegradation/Piezodegradation/Piezo-photodegradation efficiency of membranes 38 Chapter Ⅳ Tailoring of a Piezo‐photo‐thermal Solar Evaporator for Simultaneous Steam and Power Generation 39 4.1 Overview 40 4.2 Morphology of the PVDF/Graphene solar evaporator membrane 41 4.3 Energy conversion efficiency of the PVDF/Graphene solar evaporator membrane 45 4.4 Electrical properties of the PVDF/Graphene solar evaporator membrane 47 4.5 Pyroelectric performance of the PVDF/Graphene solar evaporator membrane 52 4.6 PVDF/Graphene membrane simultaneous steam and power generation prototype 53 4.7 Summary 55 Chapter Ⅴ Multifunctional Phra Phrom‐like Graphene‐Based Membrane for Environmental Remediation and Resources Generation 56 5.1 Overview 57 5.2 Study of the morphological and surface properties of PVDF1/G1-BTx membranes 58 5.3 Study of the crystallinity of PVDF1/G1-BTx membranes 62 5.4 Function I - Solar evaporation efficiency of PVDF1/G1-BTx membranes 68 5.5 Function II - Piezoelectric property of PVDF1/G1-BTx membranes 71 5.6 Function III - Piezo-photodegradation property of PVDF1/G1-BTx membranes 74 5.7 Function IV - Self-monitoring and fouling removing properties of PVDF1/G1-BTx membranes 80 5.8 PVDF1/G1-BTx membrane prototype for clean water and energy generation 81 5.9 Summary 84 Chapter Ⅵ Piezocatalytic Property of PVDF/Graphene Piezoelectric Membrane for Environmental Remediation 85 6.1 Overview 86 6.2 Morphology of PVDF1/Gx membranes 87 6.3 Crystallinity of PVDF1/Gx membrane 89 6.4 Piezoelectric property of PVDF1/Gx membranes 94 6.5 Piezocatalysis property of PVDF1/Gx membranes 98 6.6 Toxic dye (RhB) degradataion efficiency and free radical scavenger test 101 6.7 Piezocatalysis mechanism of PVDF1/Gx membranes 105 6.8 Summary 108 Chapter Ⅶ Conclusions and Future Perspective 109 7.1 Conclusions 110 7.2 Future perspectives 112 List of Publication and Awards 113 Research Grants 113 Conference Awards 113 Publications List 113 References 116

    [1] C.J. Vorosmarty, P. Green, J. Salisbury, R.B. Lammers, Global water resources: vulnerability from climate change and population growth, Science, 289(5477) (2000) 284-288.
    [2] M. McLennan, The global risks report 2021 16th edition, WEF, Switzerland, 2021.
    [3] A. Subramani, J.G. Jacangelo, Emerging desalination technologies for water treatment: A critical review, Water Res., 75 (2015) 164-187.
    [4] Y. Tu, R. Wang, Y. Zhang, J. Wang, Progress and expectation of atmospheric water harvesting, Joule, 2(8) (2018) 1452-1475.
    [5] K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination-Development to date and future potential, J. Membr. Sci., 370(1-2) (2011) 1-22.
    [6] S.S. Shenvi, A.M. Isloor, A. Ismail, A review on RO membrane technology: Developments and challenges, Desalination, 368 (2015) 10-26.
    [7] M. Hashim, S. Mukhopadhyay, J.N. Sahu, B. Sengupta, Remediation technologies for heavy metal contaminated groundwater, J. Environ. Manage., 92(10) (2011) 2355-2388.
    [8] A.W. Mohammad, Y. Teow, W. Ang, Y. Chung, D. Oatley-Radcliffe, N. Hilal, Nanofiltration membranes review: Recent advances and future prospects, Desalination, 356 (2015) 226-254.
    [9] J. Ravi, M.H.D. Othman, T. Matsuura, M.R.i. Bilad, T. El-Badawy, F. Aziz, A. Ismail, M.A. Rahman, J. Jaafar, Polymeric membranes for desalination using membrane distillation: A review, Desalination, 490 (2020) 114530.
    [10] H.T. El-Dessouky, H.M. Ettouney, Fundamentals of salt water desalination, Elsevier, 2002.
    [11] M. Fessehaye, S.A. Abdul-Wahab, M.J. Savage, T. Kohler, T. Gherezghiher, H. Hurni, Fog-water collection for community use, Renew. Sustain. Energy Rev., 29 (2014) 52-62.
    [12] A.A. Salehi, M. Ghannadi-Maragheh, M. Torab-Mostaedi, R. Torkaman, M. Asadollahzadeh, A review on the water-energy nexus for drinking water production from humid air, Renew. Sustain. Energy Rev., 120 (2020) 109627.
    [13] S.K. Patel, C.L. Ritt, A. Deshmukh, Z. Wang, M. Qin, R. Epsztein, M. Elimelech, The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies, Energy Environ. Sci., 13(6) (2020) 1694-1710.
    [14] A.M. Hamiche, A.B. Stambouli, S. Flazi, A review of the water-energy nexus, Renew. Sustain. Energy Rev., 65 (2016) 319-331.
    [15] L. Zhu, M. Gao, C.K.N. Peh, G.W. Ho, Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications, Nano Energy, 57 (2019) 507-518.
    [16] L. Zhu, M. Gao, C.K.N. Peh, X. Wang, G.W. Ho, Self‐contained monolithic carbon sponges for solar‐driven interfacial water evaporation distillation and electricity generation, Adv. Energy Mater., 8(16) (2018) 1702149.
    [17] M. Jiang, Q. Shen, J. Zhang, S. An, S. Ma, P. Tao, C. Song, B. Fu, J. Wang, T. Deng, Bioinspired temperature regulation in interfacial evaporation, Adv. Funct. Mater., 30(14) (2020) 1910481.
    [18] M. Gao, C.K. Peh, H.T. Phan, L. Zhu, G.W. Ho, Solar absorber gel: localized macro‐nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation, Adv. Energy Mater., 8(25) (2018) 1800711.
    [19] H. Wang, W. Xie, B. Yu, B. Qi, R. Liu, X. Zhuang, S. Liu, P. Liu, J. Duan, J. Zhou, Simultaneous solar steam and electricity generation from synergistic salinity‐temperature gradient, Adv. Energy Mater., 11(18) (2021) 2100481.
    [20] P. Yang, K. Liu, Q. Chen, J. Li, J. Duan, G. Xue, Z. Xu, W. Xie, J. Zhou, Solar-driven simultaneous steam production and electricity generation from salinity, Energy Environ. Sci., 10(9) (2017) 1923-1927.
    [21] Z. Chen, J. Shi, Y. Li, B. Ma, X. Yan, M. Liu, H. Jin, D. Li, D. Jing, L. Guo, Recent progress of energy harvesting and conversion coupled with atmospheric water gathering, Energy Convers. Manag., 246 (2021) 114668.
    [22] T. Li, M. Wu, J. Xu, R. Du, T. Yan, P. Wang, Z. Bai, R. Wang, S. Wang, Simultaneous atmospheric water production and 24-hour power generation enabled by moisture-induced energy harvesting, Nat. Commun., 13(1) (2022) 6771.
    [23] F. Gong, H. Li, Q. Zhou, M. Wang, W. Wang, Y. Lv, R. Xiao, D.V. Papavassiliou, Agricultural waste-derived moisture-absorber for all-weather atmospheric water collection and electricity generation, Nano Energy, 74 (2020) 104922.
    [24] L. Yang, D.K. Nandakumar, L. Miao, L. Suresh, D. Zhang, T. Xiong, J.V. Vaghasiya, K.C. Kwon, S.C. Tan, Energy harvesting from atmospheric humidity by a hydrogel-integrated ferroelectric-semiconductor system, Joule, 4(1) (2020) 176-188.
    [25] A.P. Straub, A. Deshmukh, M. Elimelech, Pressure-retarded osmosis for power generation from salinity gradients: is it viable?, Energy Environ. Sci., 9(1) (2016) 31-48.
    [26] A. Rommerskirchen, C.J. Linnartz, D. Müller, L.K. Willenberg, M. Wessling, Energy recovery and process design in continuous flow–electrode capacitive deionization processes, ACS Sustain. Chem. Eng., 6(10) (2018) 13007-13015.
    [27] F.-J. Fu, S. Zhang, T.-S. Chung, Sandwich-structured hollow fiber membranes for osmotic power generation, Desalination, 376 (2015) 73-81.
    [28] S. Porada, D. Weingarth, H.V. Hamelers, M. Bryjak, V. Presser, P.M. Biesheuvel, Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation, J. Mater. Chem. A., 2(24) (2014) 9313-9321.
    [29] C. Tan, C. He, W. Tang, P. Kovalsky, J. Fletcher, T.D. Waite, Integration of photovoltaic energy supply with membrane capacitive deionization (MCDI) for salt removal from brackish waters, Water Res., 147 (2018) 276-286.
    [30] W. Guo, H.-H. Ngo, J. Li, A mini-review on membrane fouling, Bioresour. Technol., 122 (2012) 27-34.
    [31] X. Zhao, R. Zhang, Y. Liu, M. He, Y. Su, C. Gao, Z. Jiang, Antifouling membrane surface construction: Chemistry plays a critical role, J. Membr. Sci., 551 (2018) 145-171.
    [32] X. Zhang, J. Ma, J. Zheng, R. Dai, X. Wang, Z. Wang, Recent advances in nature-inspired antifouling membranes for water purification, J. Chem. Eng., 432 (2022) 134425.
    [33] W. Chen, J. Mo, X. Du, Z. Zhang, W. Zhang, Biomimetic dynamic membrane for aquatic dye removal, Water Res., 151 (2019) 243-251.
    [34] C. Yang, P. Wang, J. Li, Q. Wang, P. Xu, S. You, Q. Zheng, G. Zhang, Photocatalytic PVDF ultrafiltration membrane blended with visible-light responsive Fe (III)-TiO2 catalyst: Degradation kinetics, catalytic performance and reusability, J. Chem. Eng., 417 (2021) 129340.
    [35] S. Arefi-Oskoui, A. Khataee, M. Safarpour, Y. Orooji, V. Vatanpour, A review on the applications of ultrasonic technology in membrane bioreactors, Ultrason. Sonochem., 58 (2019) 104633.
    [36] M. Aslam, A. Charfi, G. Lesage, M. Heran, J. Kim, Membrane bioreactors for wastewater treatment: A review of mechanical cleaning by scouring agents to control membrane fouling, J. Chem. Eng., 307 (2017) 897-913.
    [37] E. Vitzilaiou, I.M. Stoica, S. Knøchel, Microbial biofilm communities on Reverse Osmosis membranes in whey water processing before and after cleaning, J. Membr. Sci., 587 (2019) 117174.
    [38] E.J. Lee, Y.H. Kim, M.J. Jeon, H.S. Kim, The effect of aeration types on foulant removal in ex-situ chemical cleaning in place (CIP) with membranes fouled by secondary effluents, J. Chem. Eng., 333 (2018) 730-738.
    [39] K. Kimura, H. Uchida, Intensive membrane cleaning for MBRs equipped with flat-sheet ceramic membranes: Controlling negative effects of chemical reagents used for membrane cleaning, Water Res., 150 (2019) 21-28.
    [40] N.V. Thombre, A.P. Gadhekar, A.V. Patwardhan, P.R. Gogate, Ultrasound induced cleaning of polymeric nanofiltration membranes, Ultrason. Sonochem., 62 (2020) 104891.
    [41] E. Ali, J. Orfi, H. AlAnsary, S. Baakeem, A.S. Alsaadi, N. Ghaffour, Advanced structures of reversal multi-stage flash desalination, Desalination, 571 (2024) 117095.
    [42] A. Liponi, C. Wieland, A. Baccioli, Multi-effect distillation plants for small-scale seawater desalination: thermodynamic and economic improvement, Energy Convers. Manag., 205 (2020) 112337.
    [43] J.E. Miller, Review of water resources and desalination technologies, SAND Report 2003-0800, 2003.
    [44] Y.J. Lim, K. Goh, M. Kurihara, R. Wang, Seawater desalination by reverse osmosis: Current development and future challenges in membrane fabrication–A review, J. Membr. Sci., 629 (2021) 119292.
    [45] J. Wang, X. Liu, Forward osmosis technology for water treatment: Recent advances and future perspectives, J. Clean. Prod., 280 (2021) 124354.
    [46] S. Al. Amshawee, M.Y.B.M. Yunus, A.A.M. Azoddein, D.G. Hassell, I.H. Dakhil, H.A. Hasan, Electrodialysis desalination for water and wastewater: A review, J. Chem. Eng., 380 (2020) 122231.
    [47] F.E. Ahmed, B.S. Lalia, R. Hashaikeh, N. Hilal, Alternative heating techniques in membrane distillation: A review, Desalination, 496 (2020) 114713.
    [48] A. Al. Karaghouli, L.L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes, Renew. Sustain. Energy Rev., 24 (2013) 343-356.
    [49] B. Van der Bruggen, C. Vandecasteele, Distillation vs. membrane filtration: overview of process evolutions in seawater desalination, Desalination, 143(3) (2002) 207-218.
    [50] H. Li, Z. Yan, Y. Li, W. Hong, Latest development in salt removal from solar-driven interfacial saline water evaporators: Advanced strategies and challenges, Water Res., 177 (2020) 115770.
    [51] V.D. Dao, N.H. Vu, S. Yun, Recent advances and challenges for solar-driven water evaporation system toward applications, Nano Energy, 68 (2020) 104324.
    [52] J. Yan, Q. Su, W. Xiao, Z. Wu, L. Chen, L. Tang, N. Zheng, J. Gao, H. Xue, A review of nanofiber membranes for solar interface evaporation, Desalination, 531 (2022) 115686.
    [53] L. Zhu, M. Gao, C.K.N. Peh, G.W. Ho, Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications, Mater. Horiz., 5(3) (2018) 323-343.
    [54] J.H. Lee, K.J. Gibson, G. Chen, Y. Weizmann, Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals, Nat. Commun., 6(1) (2015) 7571.
    [55] M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production, Energy Environ. Sci., 12(3) (2019) 841-864.
    [56] J. Zhao, Q. Huang, S. Gao, H. Piao, Q. Quan, C. Xiao, In situ photo-thermal conversion nanofiber membrane consisting of hydrophilic PAN layer and hydrophobic PVDF-ATO layer for improving solar-thermal membrane distillation, J. Membr. Sci., 635 (2021) 119500.
    [57] W. Guan, Y. Guo, G. Yu, Carbon materials for solar water evaporation and desalination, Small, 17(48) (2021) 2007176.
    [58] S. Loeb, C. Li, J.H. Kim, Solar photothermal disinfection using broadband-light absorbing gold nanoparticles and carbon black, Environ. Sci. Technol., 52(1) (2018) 205-213.
    [59] C. Chen, Y. Kuang, L. Hu, Challenges and opportunities for solar evaporation, Joule, 3(3) (2019) 683-718.
    [60] W. He, L. Zhou, M. Wang, Y. Cao, X. Chen, X. Hou, Structure development of carbon-based solar-driven water evaporation systems, Sci. Bull., 66(14) (2021) 1472-1483.
    [61] C. Du, X. Zhao, X. Qian, C. Huang, R. Yang, Heat-localized solar evaporation: Transport processes and applications, Nano Energy, 107 (2023) 108086.
    [62] Y. Li, T. Gao, Z. Yang, C. Chen, Y. Kuang, J. Song, C. Jia, E.M. Hitz, B. Yang, L. Hu, Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination, Nano Energy, 41 (2017) 201-209.
    [63] Y. Li, T. Gao, Z. Yang, C. Chen, W. Luo, J. Song, E. Hitz, C. Jia, Y. Zhou, B. Liu, 3D‐printed, all‐in‐one evaporator for high‐efficiency solar steam generation under 1 sun illumination, Adv. Mater., 29(26) (2017) 1700981.
    [64] X. Li, W. Xu, M. Tang, L. Zhou, B. Zhu, S. Zhu, J. Zhu, Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path, Proc. Natl. Acad. Sci. U.S.A., 113(49) (2016) 13953-13958.
    [65] X. Luo, D. Wu, C. Huang, Z. Rao, Skeleton double layer structure for high solar steam generation, Energy, 183 (2019) 1032-1039.
    [66] Q. Huang, C. Huang, S. Liu, F. Wang, C. Guo, Solar vapor generation optimization of a carbon‐black/wood‐flour system with strength enhanced by polystyrene, Int. J. Energy Res. 44(5) (2020) 3687-3696.
    [67] N. Armaroli, V. Balzani, Towards an electricity-powered world, Energy Environ. Sci., 4(9) (2011) 3193-3222.
    [68] N. Armaroli, V. Balzani, The legacy of fossil fuels, Chem. Asian J., 6(3) (2011) 768-784.
    [69] J.F. Tressler, S. Alkoy, R.E. Newnham, Piezoelectric sensors and sensor materials, J. Electroceramics, 2 (1998) 257-272.
    [70] R. Whatmore, Pyroelectric devices and materials, Rep. Prog. Phys., 49(12) (1986) 1335.
    [71] F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator, Nano energy, 1(2) (2012) 328-334.
    [72] X.L. Shi, J. Zou, Z.G. Chen, Advanced thermoelectric design: from materials and structures to devices, Chem. Rev., 120(15) (2020) 7399-7515.
    [73] S. Chandrasekaran, C. Bowen, J. Roscow, Y. Zhang, D.K. Dang, E.J. Kim, R. Misra, L. Deng, J.S. Chung, S.H. Hur, Micro-scale to nano-scale generators for energy harvesting: Self powered piezoelectric, triboelectric and hybrid devices, Phys. Rep., 792 (2019) 1-33.
    [74] D. Zhang, H. Wu, C.R. Bowen, Y. Yang, Recent advances in pyroelectric materials and applications, Small, 17(51) (2021) 2103960.
    [75] C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric nanogenerator: a foundation of the energy for the new era, Adv. Energy Mater., 9(1) (2019) 1802906.
    [76] W. Voigt, Lehrbuch der kristallphysik:(mit ausschluss der kristalloptik), BG Teubner, 1910.
    [77] J. Hao, W. Li, J. Zhai, H. Chen, Progress in high-strain perovskite piezoelectric ceramics, Mater. Sci. Eng. R Rep., 135 (2019) 1-57.
    [78] L. Lu, W. Ding, J. Liu, B. Yang, Flexible PVDF based piezoelectric nanogenerators, Nano Energy, 78 (2020) 105251.
    [79] H. Zhu, Interfacial preparation of ferroelectric polymer nanostructures for electronic applications, Polym. J., 53(8) (2021) 877-886.
    [80] Y. Ting, Suprapto, C.W. Chiu, H. Gunawan, Characteristic analysis of biaxially stretched PVDF thin films, J. Appl. Polym. Sci., 135(36) (2018) 46677.
    [81] S. Men, Z. Gao, R. Wen, J. Tang, J.M. Zhang, Effects of annealing time on physical and mechanical properties of PVDF microporous membranes by a melt extrusion‐stretching process, Polym. Adv. Technol., 32(6) (2021) 2397-2408.
    [82] L. Li, M. Zhang, M. Rong, W. Ruan, Studies on the transformation process of PVDF from α to β phase by stretching, Rsc Adv., 4(8) (2014) 3938-3943.
    [83] Y. Jung, J.H. Kwak, Y.H. Lee, W.D. Kim, S. Hur, Development of a multi-channel piezoelectric acoustic sensor based on an artificial basilar membrane, Sens., 14(1) (2013) 117-128.
    [84] C. Lee, J.A. Tarbutton, Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications, Smart Mater. Struct., 23(9) (2014) 095044.
    [85] L. Daneshmandi, M. Barajaa, A. Tahmasbi Rad, S.A. Sydlik, C.T. Laurencin, Graphene‐based biomaterials for bone regenerative engineering: a comprehensive review of the field and considerations regarding biocompatibility and biodegradation, Adv. Healthc. Mater., 10(1) (2021) 2001414.
    [86] S. Meng, C.Y. Tang, J. Jia, J. Yang, M.B. Yang, W. Yang, A Wave‐Driven Piezoelectric Solar Evaporator for Water Purification, Adv. Energy Mater., 12(21) (2022) 2270087.
    [87] R. Al. Tohamy, S.S. Ali, F. Li, K.M. Okasha, Y.A.G. Mahmoud, T. Elsamahy, H. Jiao, Y. Fu, J. Sun, A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety, Ecotoxicol. Environ. Saf., 231 (2022) 113160.
    [88] Y. Nosaka, A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis, Chem. Rev., 117(17) (2017) 11302-11336.
    [89] K. Wang, C. Han, J. Li, J. Qiu, J. Sunarso, S. Liu, The mechanism of piezocatalysis: energy band theory or screening charge effect?, Angew. Chem., 134(6) (2022) e202110429.
    [90] Y. Wang, X. Wen, Y. Jia, M. Huang, F. Wang, X. Zhang, Y. Bai, G. Yuan, Y. Wang, Piezo-catalysis for nondestructive tooth whitening, Nat. Commoun., 11(1) (2020) 1328.
    [91] S. Tu, Y. Guo, Y. Zhang, C. Hu, T. Zhang, T. Ma, H. Huang, Piezocatalysis and piezo‐photocatalysis: catalysts classification and modification strategy, reaction mechanism, and practical application, Adv. Funct. Mater., 30(48) (2020) 2005158.
    [92] Y.L. Liu, W.S. Tong, L.C. Wang, P.P. Zhang, J.H. Zhang, X.M. Wang, S. Zhang, Y. Liu, S.L. Liu, S.Q. Wang, M.N. Chai, Y.H. Zhang, Phase separation of a PVDF-HFP film on an ice substrate to achieve self-polarisation alignment, Nano Energy, 106 (2023) 108082.
    [93] S. Aid, A. Eddhahak, S. Khelladi, Z. Ortega, S. Chaabani, A. Tcharkhtchi, On the miscibility of PVDF/PMMA polymer blends: Thermodynamics, experimental and numerical investigations, Polym. Test., 73 (2019) 222-231.
    [94] X. Cai, T. Lei, D. Sun, L. Lin, A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR, RSC Adv., 7(25) (2017) 15382-15389.
    [95] Y. Kang, Y. Xia, H. Wang, X. Zhang, 2D laminar membranes for selective water and ion transport, Adv. Funct. Mater., 29(29) (2019) 1902014.
    [96] W. Tu, Y. Zhou, Z. Zou, Versatile graphene‐promoting photocatalytic performance of semiconductors: basic principles, synthesis, solar energy conversion, and environmental applications, Adv. Funct. Mater., 23(40) (2013) 4996-5008.
    [97] T. Li, H. Liu, X. Zhao, G. Chen, J. Dai, G. Pastel, C. Jia, C. Chen, E. Hitz, D. Siddhartha, Scalable and highly efficient mesoporous wood‐based solar steam generation device: localized heat, rapid water transport, Adv. Funct. Mater., 28(16) (2018) 1707134.
    [98] Y. Wang, C. Wang, X. Song, S.K. Megarajan, H. Jiang, A facile nanocomposite strategy to fabricate a rGO–MWCNT photothermal layer for efficient water evaporation, J. Mater. Chem. A., 6(3) (2018) 963-971.
    [99] H. Shang, Y. Wang, S. Limmer, T. Chou, K. Takahashi, G. Cao, Optically transparent superhydrophobic silica-based films, Thin Solid Films, 472(1-2) (2005) 37-43.
    [100] K.F. Mak, L. Ju, F. Wang, T.F. Heinz, Optical spectroscopy of graphene: From the far infrared to the ultraviolet, Solid State Commun., 152(15) (2012) 1341-1349.
    [101] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene, Phys. Rep., 473(5-6) (2009) 51-87.
    [102] W.S. Hung, S.Y. Ho, Y.H. Chiao, C.C. Chan, W.Y. Woon, M.J. Yin, C.Y. Chang, Y.M. Lee, Q.F. An, Electrical tunable PVDF/graphene membrane for controlled molecule separation, Chem. Mater., 32(13) (2020) 5750-5758.
    [103] T. Huang, S. Yang, P. He, J. Sun, S. Zhang, D. Li, Y. Meng, J. Zhou, H. Tang, J. Liang, Phase-separation-induced PVDF/graphene coating on fabrics toward flexible piezoelectric sensors, ACS Appl. Mater. Interfaces, 10(36) (2018) 30732-30740.
    [104] J. Widakdo, Y.H. Chiao, Y.L. Lai, A.C. Imawan, F.M. Wang, W.S. Hung, Mechanism of a self-assembling smart and electrically responsive PVDF–graphene membrane for controlled gas separation, ACS Appl. Mater. Interfaces, 12(27) (2020) 30915-30924.
    [105] L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, X. Zhang, Properties and applications of the β phase poly (vinylidene fluoride), Polymers 10(3) (2018) 228.
    [106] G. Liu, J. Xu, K. Wang, Solar water evaporation by black photothermal sheets, Nano Energy, 41 (2017) 269-284.
    [107] Y. Wang, C. Wang, X. Song, M. Huang, S.K. Megarajan, S.F. Shaukat, H. Jiang, Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones, J. Mater. Chem. A., 6(21) (2018) 9874-9881.
    [108] Y. Kakihana, L. Cheng, L.F. Fang, S.Y. Wang, S. Jeon, D. Saeki, S. Rajabzadeh, H. Matsuyama, Preparation of positively charged PVDF membranes with improved antibacterial activity by blending modification: Effect of change in membrane surface material properties, Colloids Surf. A: Physicochem. Eng. Asp., 533 (2017) 133-139.
    [109] S. Guerin, S.A. Tofail, D. Thompson, Organic piezoelectric materials: milestones and potential, NPG Asia Mater., 11(1) (2019) 10.
    [110] A.F.d.O. Falcao, Wave energy utilization: A review of the technologies, Renew. Sustain. Energy Rev., 14(3) (2010) 899-918.
    [111] Y. Zhang, S.K. Ravi, S.C. Tan, Food-derived carbonaceous materials for solar desalination and thermo-electric power generation, Nano Energy, 65 (2019) 104006.
    [112] L. Zhu, T. Ding, M. Gao, C.K.N. Peh, G.W. Ho, Shape conformal and thermal insulative organic solar absorber sponge for photothermal water evaporation and thermoelectric power generation, Adv. Energy Mater., 9(22) (2019) 1900250.
    [113] Q. Shen, Z. Ning, B. Fu, S. Ma, Z. Wang, L. Shu, L. Zhang, X. Wang, J. Xu, P. Tao, An open thermo-electrochemical cell enabled by interfacial evaporation, J. Mater. Chem. A., 7(11) (2019) 6514-6521.
    [114] X. Li, X. Min, J. Li, N. Xu, P. Zhu, B. Zhu, S. Zhu, J. Zhu, Storage and recycling of interfacial solar steam enthalpy, Joule, 2(11) (2018) 2477-2484.
    [115] T. Ding, L. Zhu, X.Q. Wang, K.H. Chan, X. Lu, Y. Cheng, G.W. Ho, Hybrid photothermal pyroelectric and thermogalvanic generator for multisituation low grade heat harvesting, Adv. Energy Mater., 8(33) (2018) 1802397.
    [116] T. Ding, Y. Zhou, W.L. Ong, G.W. Ho, Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization, Mater. Today, 42 (2021) 178-191.
    [117] Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, M. Chen, Multifunctional porous graphene for high‐efficiency steam generation by heat localization, Adv. Mater., 27(29) (2015) 4302-4307.
    [118] B. Fan, Z. Guo, X. Li, S. Li, P. Gao, X. Xiao, J. Wu, C. Shen, Y. Jiao, W. Hou, Electroactive barium titanate coated titanium scaffold improves osteogenesis and osseointegration with low-intensity pulsed ultrasound for large segmental bone defects, Bioact. Mater., 5(4) (2020) 1087-1101.
    [119] B. Xie, Q. Zhang, L. Zhang, Y. Zhu, X. Guo, P. Fan, H. Zhang, Ultrahigh discharged energy density in polymer nanocomposites by designing linear/ferroelectric bilayer heterostructure, Nano Energy, 54 (2018) 437-446.
    [120] T. Li, M. Qu, C. Carlos, L. Gu, F. Jin, T. Yuan, X. Wu, J. Xiao, T. Wang, W. Dong, High‐performance poly (vinylidene difluoride)/dopamine core/shell piezoelectric nanofiber and its application for biomedical sensors, Adv. Mater., 33(3) (2021) 2006093.
    [121] D. Cheng, L. Zhao, N. Li, S.J. Smith, D. Wu, J. Zhang, D. Ng, C. Wu, M.R. Martinez, M.P. Batten, Aluminum fumarate MOF/PVDF hollow fiber membrane for enhancement of water flux and thermal efficiency in direct contact membrane distillation, J. Membr. Sci., 588 (2019) 117204.
    [122] H. Rekik, Z. Ghallabi, I. Royaud, M. Arous, G. Seytre, G. Boiteux, A. Kallel, Dielectric relaxation behaviour in semi-crystalline polyvinylidene fluoride (PVDF)/TiO2 nanocomposites, Compos. B. Eng., 45(1) (2013) 1199-1206.
    [123] P. Martins, A. Lopes, S. Lanceros-Mendez, Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications, Prog. Polym. Sci., 39(4) (2014) 683-706.
    [124] M. Mohammadi Ghaleni, A. Al Balushi, S. Kaviani, E. Tavakoli, M. Bavarian, S. Nejati, Fabrication of Janus membranes for desalination of oil-contaminated saline water, ACS Appl. Mater. Interfaces, 10(51) (2018) 44871-44879.
    [125] A. Tamang, S.K. Ghosh, S. Garain, M.M. Alam, J.r. Haeberle, K. Henkel, D. Schmeisser, D. Mandal, DNA-assisted β-phase nucleation and alignment of molecular dipoles in PVDF film: a realization of self-poled bioinspired flexible polymer nanogenerator for portable electronic devices, ACS Appl. Mater. Interfaces, 7(30) (2015) 16143-16147.
    [126] J. Widakdo, T.H. Huang, T. Subrahmanya, H.F.M. Austria, W.S. Hung, C.F. Wang, C.C. Hu, K.R. Lee, J.Y. Lai, Tailoring of graphene–organic frameworks membrane to enable reversed electrical-switchable permselectivity in CO2 separation, Carbon, 182 (2021) 545-558.
    [127] Y. Cho, J. Jeong, M. Choi, G. Baek, S. Park, H. Choi, S. Ahn, S. Cha, T. Kim, D.S. Kang, BaTiO3@ PVDF-TrFE nanocomposites with efficient orientation prepared via phase separation nano-coating method for piezoelectric performance improvement and application to 3D-PENG, J. Chem. Eng., 427 (2022) 131030.
    [128] J. Chen, J.L. Yin, B. Li, Z. Ye, D. Liu, D. Ding, F. Qian, N.V. Myung, Q. Zhang, Y. Yin, Janus evaporators with self-recovering hydrophobicity for salt-rejecting interfacial solar desalination, ACS nano, 14(12) (2020) 17419-17427.
    [129] W.H. Organization, A global overview of national regulations and standards for drinking-water quality, (2021).
    [130] W. Li, Z. Li, K. Bertelsmann, D.E. Fan, Portable low‐pressure solar steaming‐collection unisystem with polypyrrole origamis, Adv. Mater., 31(29) (2019) 1900720.
    [131] S. Jesse, A.P. Baddorf, S.V. Kalinin, Switching spectroscopy piezoresponse force microscopy of ferroelectric materials, Appl. Phys. Lett., 88(6) (2006).
    [132] W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T.F. Heinz, Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics, Nature, 514(7523) (2014) 470-474.
    [133] A. Rozhkov, G. Giavaras, Y.P. Bliokh, V. Freilikher, F. Nori, Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport, Phys. Rep., 503(2-3) (2011) 77-114.
    [134] J. Jiang, S. Tu, R. Fu, J. Li, F. Hu, B. Yan, Y. Gu, S. Chen, Flexible piezoelectric pressure tactile sensor based on electrospun BaTiO3/poly (vinylidene fluoride) nanocomposite membrane, ACS Appl. Mater. Interfaces., 12(30) (2020) 33989-33998.
    [135] C. Shuai, G. Liu, Y. Yang, W. Yang, C. He, G. Wang, Z. Liu, F. Qi, S. Peng, Functionalized BaTiO3 enhances piezoelectric effect towards cell response of bone scaffold, Colloids Surf. B., 185 (2020) 110587.
    [136] P. Feng, J. He, S. Peng, C. Gao, Z. Zhao, S. Xiong, C. Shuai, Characterizations and interfacial reinforcement mechanisms of multicomponent biopolymer based scaffold, Mater. Sci. Eng. C, 100 (2019) 809-825.
    [137] N.A. Shepelin, P.C. Sherrell, E. Goudeli, E.N. Skountzos, V.C. Lussini, G.W. Dicinoski, J.G. Shapter, A.V. Ellis, Printed recyclable and self-poled polymer piezoelectric generators through single-walled carbon nanotube templating, Energy Environ. Sci., 13(3) (2020) 868-883.
    [138] B. Athira, A. George, K. Vaishna Priya, U. Hareesh, E.B. Gowd, K.P. Surendran, A. Chandran, High-performance flexible piezoelectric nanogenerator based on electrospun PVDF-BaTiO3 nanofibers for self-powered vibration sensing applications, ACS Appl. Mater. Interfaces, 14(39) (2022) 44239-44250.
    [139] S. Wang, H.Q. Shao, Y. Liu, C.Y. Tang, X. Zhao, K. Ke, R.Y. Bao, M.B. Yang, W. Yang, Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor, Compos. Sci. Technol., 202 (2021) 108600.
    [140] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293(5528) (2001) 269-271.
    [141] H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano‐photocatalytic materials: possibilities and challenges, Adv. Mater., 24(2) (2012) 229-251.
    [142] H. Huang, S. Tu, C. Zeng, T. Zhang, A.H. Reshak, Y. Zhang, Macroscopic polarization enhancement promoting photo‐and piezoelectric‐induced charge separation and molecular oxygen activation, Angew. Chem. Int. Ed., 56(39) (2017) 11860-11864.
    [143] Z. Liang, C.F. Yan, S. Rtimi, J. Bandara, Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook, Appl. Catal. B, 241 (2019) 256-269.
    [144] T. Ren, W. Tian, Q. Shen, Z. Yuan, D. Chen, N. Li, J. Lu, Enhanced piezocatalysis of polymorphic few-layered MoS2 nanosheets by phase engineering, Nano Energy, 90 (2021) 106527.
    [145] R. Wang, X. Xie, C. Xu, Y. Lin, D. You, J. Chen, Z. Li, Z. Shi, Q. Cui, M. Wang, Bi-piezoelectric effect assisted ZnO nanorods/PVDF-HFP spongy photocatalyst for enhanced performance on degrading organic pollutant, J. Chem. Eng., 439 (2022) 135787.
    [146] L.G. Devi, P. Nithya, Preparation, characterization and photocatalytic activity of BaTiF6 and BaTiO3: A comparative study, J. Environ. Chem. Eng., 6(3) (2018) 3565-3573.
    [147] W. Ma, B. Yao, W. Zhang, Y. He, Y. Yu, J. Niu, Fabrication of PVDF-based piezocatalytic active membrane with enhanced oxytetracycline degradation efficiency through embedding few-layer E-MoS2 nanosheets, J. Chem. Eng., 415 (2021) 129000.
    [148] L. Wan, W. Tian, N. Li, D. Chen, Q. Xu, H. Li, J. He, J. Lu, Hydrophilic porous PVDF membrane embedded with BaTiO3 featuring controlled oxygen vacancies for piezocatalytic water cleaning, Nano Energy, 94 (2022) 106930.
    [149] X.S. Yuan, Z.Y. Guo, H.Z. Geng, D.S. Rhen, L.D. Wang, X.T. Yuan, J. Li, Enhanced performance of conductive polysulfone/MWCNT/PANI ultrafiltration membrane in an online fouling monitoring application, J. Membr. Sci., 575 (2019) 160-169.
    [150] P.S. Xiao, N.B. Yi, T.F. Zhang, Y. Huang, H.C. Chang, Y. Yang, Y. Zhou, Y.S. Chen, Construction of a Fish-like Robot Based on High Performance Graphene/PVDF Bimorph Actuation Materials, Adv. Sci., 3(6) (2016).
    [151] A.F.D. Falcao, Wave energy utilization: A review of the technologies, Renew. Sustain. Energy Rev., 14(3) (2010) 899-918.
    [152] Y. Zhou, T. Ding, M. Gao, K.H. Chan, Y. Cheng, J. He, G.W. Ho, Controlled heterogeneous water distribution and evaporation towards enhanced photothermal water-electricity-hydrogen production, Nano Energy, 77 (2020) 105102.
    [153] Y. Xu, Z. Guo, J. Wang, Z. Chen, J. Yin, Z. Zhang, J. Huang, J. Qian, X. Wang, Harvesting solar energy by flowerlike carbon cloth nanocomposites for simultaneous generation of clean water and electricity, ACS Appl. Mater. Interfaces, 13(23) (2021) 27129-27139.
    [154] J. Ma, Z. Guo, X. Han, K. Guo, H. Li, P. Fang, X. Wang, J. Xin, Reduced graphene oxide/FeOOH-based asymmetric evaporator for the simultaneous generation of clean water and electrical power, Carbon, 201 (2023) 318-327.
    [155] T.H. Huang, J.X. Huang, Y.H. Chiao, C.M. Chang, W.S. Hung, S.J. Lue, C.F. Wang, C.C. Hu, K.R. Lee, H.H. Pan, , J.Y. Lai, Tailoring of a piezo‐photo‐thermal solar evaporator for simultaneous steam and power generation, Adv. Funct. Mater., 31(17) (2021) 2010422.
    [156] X. Zhou, Q. Sun, Z. Xiao, H. Luo, D. Zhang, Three-dimensional BNT/PVDF composite foam with a hierarchical pore structure for efficient piezo-photocatalysis, J. Environ. Chem. Eng., 10(5) (2022) 108399.
    [157] X. Huang, W. Wang, Y. Liu, H. Wang, Z. Zhang, W. Fan, L. Li, Treatment of oily waste water by PVP grafted PVDF ultrafiltration membranes, J. Chem. Eng., 273 (2015) 421-429.
    [158] Y. Hu, T. Guo, X. Ye, Q. Li, M. Guo, H. Liu, Z. Wu, Dye adsorption by resins: effect of ionic strength on hydrophobic and electrostatic interactions, J. Chem. Eng., 228 (2013) 392-397.
    [159] R. Siburian, C. Simanjuntak, M. Supeno, S. Lumbanraja, H. Sihotang, New route to synthesize of graphene nano sheets, Orient J. Chem., 34(1) (2018).
    [160] P. Viswanath, M. Yoshimura, Light-induced reversible phase transition in polyvinylidene fluoride-based nanocomposites, SN Appl. Sci., 1 (2019) 1-9.
    [161] J.H. Li, M.Z. Li, J. Miao, J.B. Wang, X.S. Shao, Q.Q. Zhang, Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive, Appl. Surf. Sci., 258(17) (2012) 6398-6405.
    [162] Y. Zhu, J. Wang, F. Zhang, S. Gao, A. Wang, W. Fang, J. Jin, Zwitterionic nanohydrogel grafted PVDF membranes with comprehensive antifouling property and superior cycle stability for oil‐in‐water emulsion separation, Adv. Funct. Mater., 28(40) (2018) 1804121.
    [163] D. Mandal, K.J. Kim, J.S. Lee, Simple synthesis of palladium nanoparticles, β-phase formation, and the control of chain and dipole orientations in palladium-doped poly (vinylidene fluoride) thin films, Langmuir, 28(28) (2012) 10310-10317.
    [164] S. Sarkar, S. Garain, D. Mandal, K. Chattopadhyay, Electro-active phase formation in PVDF–BiVO4 flexible nanocomposite films for high energy density storage application, RSC Adv., 4(89) (2014) 48220-48227.
    [165] S. Barrau, A. Ferri, A. Da Costa, J. Defebvin, S. Leroy, R. Desfeux, J.-M. Lefebvre, Nanoscale investigations of α-and γ-crystal phases in PVDF-based nanocomposites, ACS Appl. Mater. Interfaces, 10(15) (2018) 13092-13099.
    [166] S. Chen, P. Zhu, L. Mao, W. Wu, H. Lin, D. Xu, X. Lu, J. Shi, Piezocatalytic medicine: An emerging frontier using piezoelectric materials for biomedical applications, Adv. Mater., (2023) 2208256.
    [167] S. Masimukku, Y.C. Hu, Z.H. Lin, S.W. Chan, T.M. Chou, J.M. Wu, High efficient degradation of dye molecules by PDMS embedded abundant single-layer tungsten disulfide and their antibacterial performance, Nano Energy, 46 (2018) 338-346.
    [168] X. Chen, L. Liu, Y. Feng, L. Wang, Z. Bian, H. Li, Z.L. Wang, Fluid eddy induced piezo-promoted photodegradation of organic dye pollutants in wastewater on ZnO nanorod arrays/3D Ni foam, Mater. Today, 20(9) (2017) 501-506.
    [169] T.H. Huang, X.Y. Tian, Y.Y. Chen, J. Widakdo, H.F.M. Austria, O. Setiawan, T. Subrahmanya, W.S. Hung, D.M. Wang, C.Y. Chang, C.F. Wang, C.C. Hu, C.H. Lin, Y.L. Lai, K.R. Lee, J.Y. Lai, Multifunctional Phra Phrom‐like Graphene‐Based Membrane for Environmental Remediation and Resources Regeneration, Adv. Funct. Mater., (2023) 2308321.
    [170] L. Liang, L. Cheng, Y. Zhang, Q. Wang, Q. Wu, Y. Xue, X. Meng, Efficiency and mechanisms of rhodamine B degradation in Fenton-like systems based on zero-valent iron, RSC Adv., 10(48) (2020) 28509-28515.
    [171] W. Qian, K. Zhao, D. Zhang, C.R. Bowen, Y. Wang, Y. Yang, Piezoelectric material-polymer composite porous foam for efficient dye degradation via the piezo-catalytic effect, ACS Appl. Mater. Interfaces, 11(31) (2019) 27862-27869.
    [172] S. Ghosh, S. Bardhan, D. Mondal, D. Sarkar, J. Roy, S. Roy, R. Basu, S. Das, Natural hematite-based self-poled piezo-responsive membrane for harvesting energy from water flow and catalytic removal of organic dye, Ceram. Int., 49(9) (2023) 14710-14718.
    [173] D. Ding, Z. Li, S. Yu, B. Yang, Y. Yin, L. Zan, N.V. Myung, Piezo-photocatalytic flexible PAN/TiO2 composite nanofibers for environmental remediation, Sci. Total Environ., 824 (2022) 153790.
    [174] A.G. Magomedova, A.A. Rabadanova, A.O. Shuaibov, D.A. Selimov, D.S. Sobola, K.S. Rabadanov, K.M. Giraev, F.F. Orudzhev, Combination NIPS/TIPS Synthesis of α-Fe2O3 and α/γ-Fe2O3 Doped PVDF Composite for Efficient Piezocatalytic Degradation of Rhodamine B, Molecules, 28(19) (2023) 6932.
    [175] D. Mondal, S. Bardhan, N. Das, J. Roy, S. Ghosh, A. Maity, S. Roy, R. Basu, S. Das, Natural clay-based reusable piezo-responsive membrane for water droplet mediated energy harvesting, degradation of organic dye and pathogenic bacteria, Nano Energy, 104 (2022) 107893.
    [176] S. Xu, W. Qian, D. Zhang, X. Zhao, X. Zhang, C. Li, C.R. Bowen, Y. Yang, A coupled photo-piezo-catalytic effect in a BST-PDMS porous foam for enhanced dye wastewater degradation, Nano Energy, 77 (2020) 105305.
    [177] R.K. Dharman, G. Palanisamy, T.H. Oh, Sonocatalytic degradation of ciprofloxacin and organic pollutant by 1T/2H phase MoS2 in Polyvinylidene fluoride nanocomposite membrane, Chemosphere, 308 (2022) 136571.
    [178] G. Singh, M. Sharma, R. Vaish, Flexible Ag@ LiNbO3/PVDF composite film for piezocatalytic dye/pharmaceutical degradation and bacterial disinfection, ACS Appl. Mater. Interfaces., 13(19) (2021) 22914-22925.
    [179] D. Thakur, M. Sharma, R. Vaish, V. Balakrishnan, WS2 monolayer for Piezo-Phototronic Dye Degradation and Bacterial Disinfection. ACS Appl. Nano Mater., 4(8) (2021) 7879–7887.
    [180] B. Dai, L. Zhang, H. Huang, C. Lu, J. Kou, Z. Xu, Photocatalysis of composite film PDMS-PMN-PT@ TiO2 greatly improved via spatial electric field, Appl. Surf. Sci., 403 (2017) 9-14.
    [181] H.K. Mishra, D. Sengupta, A. Babu, B.M. Pirzada, R. Sarkar, B.S. Naidu, T.K. Kundu, D. Mandal, PVDF/Ag2CO3 nanocomposites for efficient dye degradation and flexible piezoelectric mechanical energy harvester, Sustain. Energy Fuels, 6(6) (2022) 1625-1640.

    無法下載圖示 全文公開日期 2029/01/25 (校內網路)
    全文公開日期 2029/01/25 (校外網路)
    全文公開日期 2029/01/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE