簡易檢索 / 詳目顯示

研究生: 陳律亨
Lu-Heng Chen
論文名稱: 高分子/生物炭複合材料於乳化液分離以及太陽能蒸發之研究
Polymer/Biochar Composites For Emulsion Separations and Solar Evaporation
指導教授: 洪維松
Wei-Song Hung
王志逢
Chih-Feng Wang
口試委員: 賴君義
Jun-Yi Lai
蔡協致
Hsieh-Chih Cai
洪維松
Wei-Song Hung
王志逢
Chih-Feng Wang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 115
中文關鍵詞: 生物炭高分子複合材料菱角殼銀合歡乳化液分離太陽能蒸發
外文關鍵詞: Biochar, Polymer composite, Water chestnut shell, White Popinac, Emulsion separation, Solar evaporation
相關次數: 點閱:267下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 廢油汙染與廢棄溶劑量逐年成長且惡化,對於能夠處理並回收此類汙染物但又不會使環境造成二次傷害之油水分離材料的需求已迫在眉睫。此外,世界對於淡水資源的需求大幅增加,但以現有之海水淡化技術,依然存有高耗能、高成本等問題,使得近年來有許多研究開始轉向對於太陽能蒸餾技術的探討。
    菱角殼是臺灣常見的農業廢棄物,銀合歡為臺灣之入侵外來種,會排放毒素來抑制本土植物的生長,嚴重壓迫到本土植物的生存空間。本研究便是使用以菱角殼與銀合歡為來源所製備之生物炭顆粒材料來進行乳化液分離以及太陽能蒸餾。
    1.顆粒狀生物炭/高分子複合材料應用於分離水在油中乳化液
    我們所選的顆粒狀生物炭/高分子複合材料具有多孔結構,並展現親水特性。將此類顆粒加入水在油中乳化液(water-in-oil emulsion)後,顆粒能夠在短時間內捕捉乳化液中之小水胞並吸附。將乳化液倒入填滿顆粒狀生物炭/高分子複合材料之管柱,靜置5分鐘後濾液油純度超過99.99 wt%。同批顆粒連續以批式法分離10次後,濾液依然維持99.98 wt%以上的油純度。顆粒狀生物炭/高分子複合材料也可應用於奈米乳化液分離。顆粒經乾燥後便能夠再次使用,效率無明顯下降,具高度重複使用性。
    2.顆粒狀生物炭/高分子複合材料應用於太陽能蒸餾
    我們利用顆粒狀生物炭/高分子複合材料於一倍太陽光照射下(1000 W m-2)進行太陽能蒸餾實驗。由於顆粒本身的親水性與毛細現象,在光熱蒸發過程中,水分會不間斷地往上輸送,純水蒸發效率最高可達3.2 kg m-2 h-1,模擬海水的蒸發效率也能夠擁有3.0 kg m-2 h-1的表現。連續使用8小時後生物炭/高分子複合顆粒表面會有鹽類結晶生成並降低蒸發速率,將裝置移開光源30分鐘後,表面鹽類結晶便會因溶解於水溶液而去除,具有優異之重複使用性。


    Effective methods to separate the oil/water emulsions are urgently needed to address environmental and ecological problems caused by this waste. Water scarcity is one of the most critical global challenge, and has thus attracted significant attention. In this study, we use bead-like biochar/polymer composites to separate water-in-oil emulsions and perform solar evaporation. The biochar used in this study was prepared from water chestnut shell or white popinac.
    Water caltrop shell is a common agricultural waste in Taiwan. White popinac is an invasive alien species in Taiwan. It emits toxins to inhibit the growth of native plants, severely oppressing the living space of native plants. In this study, we reported two biochar/polymer composites from water chestnut shell and white popinac for emulsion separations and solar distillations.
    1.Bead-like biochar/polymer composites for water-in-oil emulsion separation
    The bead-like biochar/polymer composites possessed porous structures with superhydrophilicity. After adding into water-in-oil emulsions, our beads can capture and absorb the small water micelles from emulsions rapidly. We pour the water-in-oil emulsion into the column filled with beads, then stand the emulsion for 5 min, the oil purity of the filtrate is greater than 99.99 wt%. After separating the emulsions for 10 times with the same batch of the beads, the filtrate still maintains an oil purity greater than 99.98%. Our materials also can be used to treat nano-emulsions. After drying, the bead-like biochar/polymer composites can be reused, with no significant decrease in separation efficiency.
    2.Bead-like biochar/polymer composites for solar evaporation
    We perform solar evaporation tests through using bead-like biochar/polymer composites under one sun irradiation (1000 W m-2). Due to the hydrophilicity of the beads, the water will be continuously transported upward during the solar evaporation process. The evaporation rates were up to 3.2 and 3.0 kg m-2 h-1 for pure water and simulated seawater, respectively. After continue use for 8 h, some salt particles formed on the surface of the beads and reduced the evaporation rate. After we turning off the light for 30 min, the salt particles will be dissolved by the aqueous solution. Our materials showed excellent reusability.

    摘要 I Abstract III 致謝 V 總目錄 VI 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1 背景 1 1.2 油水分離 1 1.3 海水淡化 2 1.4 研究動機 2 第二章 文獻回顧 4 2.1 潤濕性 4 2.1.1 接觸角 4 2.1.2 Young’s equation 5 2.1.3 Wenzel equation 5 2.1.4 Cassie-Baxter Equation 6 2.2 自然界生物與人造物之特殊潤濕性 7 2.3 特殊潤濕性材料於油水分離之應用 9 2.4 碳材料於油水分離之應用 11 2.5 顆粒與粉末材料於油水分離之應用 12 2.6 奈米乳化液 14 2.7 光熱轉換材料於海水淡化之應用 16 2.8 生物炭 20 第三章 實驗方法與設計 22 3.1 實驗材料 22 3.2 實驗儀器 25 3.3 實驗步驟 31 3.3.1 水在油中乳化液之製備 31 3.3.2 水在油中奈米乳化液之製備 32 3.3.3 批式乳化液分離裝置之架設與操作 32 3.3.4 自漂浮太陽能蒸發裝置之製備 33 3.4 材料鑑定與性質檢測 35 3.4.1 材料鑑定 35 3.4.2 水在油中乳化液與奈米乳化液分離效能檢測 35 3.4.3 太陽能蒸發效能檢測 36 3.4.4 生物相容性實驗 37 第四章 生物炭顆粒於乳化液分離之應用 38 4.1 菱角殼生物炭顆粒 (WCSB Beads) 38 4.1.1 顆粒於掃描式電子顯微鏡下之微結構與表面元素分析 38 4.1.2 水在油中乳化液之分離 41 4.1.3 不同油類之水在油中乳化液分離 44 4.1.4 不同界面活性劑之水在油中乳化液分離 46 4.1.5 不同水含量之水在油中乳化液分離 48 4.1.6 染料染色之水在油中乳化液分離 49 4.1.7 耐用性測試 50 4.1.8 水在油中奈米乳化液分離 53 4.1.9 溶劑除水實驗 55 4.2 銀合歡生物炭顆粒 (WPB Beads) 56 4.2.1 顆粒於掃描式電子顯微鏡下之微結構 56 4.2.2 水在油中乳化液之分離 58 4.2.3 不同油類之水在油中乳化液分離 60 4.2.4 不同界面活性劑之水在油中乳化液分離 62 4.2.5 不同水含量之水在油中乳化液分離 64 4.2.6 耐用性測試 65 4.2.7 水在油中奈米乳化液分離 67 第五章 生物炭顆粒於太陽能蒸發之應用 69 5.1 菱角殼生物炭顆粒 (WCSB Beads) 69 5.1.1 吸光轉熱之溫度變化探討 69 5.1.2 不同填充比例對蒸發速率之影響 72 5.1.3 純水與鹽水之蒸發速率 74 5.1.4 長時間照明下之蒸發速率 76 5.1.5 溶液純化實驗 78 5.2 銀合歡生物炭顆粒 (WPB Beads) 80 5.2.1 吸光轉熱之溫度變化探討 80 5.2.2 純水與鹽水之蒸發速率 83 5.2.3 長時間照明下之蒸發速率 85 5.2.4 溶液純化實驗 87 5.3 生物相容性實驗 89 第六章 結論 90 參考文獻 91

    [1] S.M. Vicente-Serrano, S. Begueria, J.I. Lopez-Moreno, A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index, Journal of Climate, 23 (2010) 1696-1718.
    [2] T. Oki, S. Kanae, Global hydrological cycles and world water resources, Science, 313 (2006) 1068-1072.
    [3] C.J. Chen, Y.D. Kuang, L.B. Hu, Challenges and opportunities for solar evaporation, Joule, 3 (2019) 683-718.
    [4] Q.L. Ma, H.F. Cheng, A.G. Fane, R. Wang, H. Zhang, Recent development of advanced materials with special wettability for selective oil/water separation, Small, 12 (2016) 2186-2202.
    [5] F. Silva, N. Silva, I.A. da Silva, P.P.F. Brasileiro, J.M. Luna, R.D. Rufino, V.A. Santos, L.A. Sarubbo, Oil removal efficiency forecast of a dissolved air flotation (DAF) reduced scale prototype using the dimensionless number of damkohler, Journal of Water Process Engineering, 23 (2018) 45-49.
    [6] N. Zhang, X.W. Yang, Y.L. Wang, Y.F. Qi, Y.N. Zhang, J.L. Luo, P. Cui, W. Jiang, A review on oil/water emulsion separation membrane material, Journal of Environmental Chemical Engineering, 10 (2022).
    [7] V.K. Rajak, S. Kumar, N.V. Thombre, A. Mandal, Synthesis of activated charcoal from saw-dust and characterization for adsorptive separation of oil from oil-in-water emulsion, Chemical Engineering Communications, 205 (2018) 897-913.
    [8] A. Ophir, Low-temperature, multi-effect distillation for cogeneration yielding the most efficient sea-water desalination system, Desalination, 84 (1991) 85-101.
    [9] H. El-Dessouky, I. Alatiqi, H. Ettouney, Process synthesis: the multi-stage flash desalination system, Desalination, 115 (1998) 155-179.
    [10] H.S. Aybar, Analysis of a mechanical vapor compression desalination system, Desalination, 142 (2002) 181-186.
    [11] C. Fritzmann, J. Lowenberg, T. Wintgens, T. Melin, State-of-the-art of reverse osmosis desalination, Desalination, 216 (2007) 1-76.
    [12] H.J. Lee, F. Sarfert, H. Strathmann, S.H. Moon, Designing of an electrodialysis desalination plant, Desalination, 142 (2002) 267-286.
    [13] N. Nuraje, W.S. Khan, Y. Lei, M. Ceylan, R. Asmatulu, Superhydrophobic electrospun nanofibers, Journal of Materials Chemistry A, 1 (2013) 1929-1946.
    [14] T. Young, An essay on the cohesion of fluids, Philosophical Transactions, (1805) 65-87.
    [15] Y.Y. Deng, C.S. Peng, M. Dai, D.C. Lin, I. Ali, S.S. Alhewairini, X.L. Zheng, G.Q. Chen, J.Y. Li, I. Naz, Recent development of super-wettable materials and their applications in oil -water separation, Journal of Cleaner Production, 266 (2020).
    [16] R.N. Wenzel, Resistance of solid surfaces to wetting by water, Industrial & Engineering Chemistry, 28 (1936) 988-994.
    [17] A.B.D. Cassie, S. Baxter, Wettability of porous surfaces, Transactions of the Faraday Society, 40 (1944) 546-551.
    [18] W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 202 (1997) 1-8.
    [19] K. Koch, B. Bhushan, W. Barthlott, Multifunctional surface structures of plants: An inspiration for biomimetics, Progress in Materials Science, 54 (2009) 137-178.
    [20] J. Yong, F. Chen, Q. Yang, J. Huo, X. Hou, Superoleophobic surfaces, Chemical Society Reviews, 46 (2017) 4168-4217.
    [21] Z. Yu, F.F. Yun, Y. Wang, L. Yao, S. Dou, K. Liu, L. Jiang, X. Wang, Desert beetle-inspired superwettable patterned surfaces for water harvesting, Small, 13 (2017) 1701403.
    [22] C. Wang, F. Zhang, C. Yu, S. Wang, Durable underwater superoleophobic coatings via dispersed micro particle-induced hierarchical structures inspired by pomfret skin, ACS Applied Materials & Interfaces, 12 (2020) 42430-42436.
    [23] M. Obaid, H.O. Mohamed, A.B. Alayande, Y. Kang, N. Ghaffour, I.S. Kim, Facile fabrication of superhydrophilic and underwater superoleophobic nanofiber membranes for highly efficient separation of oil-in-water emulsion, Separation and Purification Technology, 272 (2021) 118954.
    [24] J. Xue, L. Zhu, X. Zhu, H. Li, R. Wang, X. Liu, F. Xia, X. Li, Q. Xue, Hierarchical superhydrophobic polydimethylsiloxane/copper terephthalate/polyurethane sponge for highly efficient oil/water separation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 630 (2021) 127635.
    [25] H. Lu, S. Sha, S. Yang, J. Wu, J. Ma, C. Hou, Z. Sheng, The coating and reduction of graphene oxide on meshes with inverse wettability for continuous water/oil separation, Applied Surface Science, 538 (2021) 147948.
    [26] P. Xu, P. Qian, J. Yang, J. Li, Y. Xia, W. Qian, Z. Duan, Superhydrophobic and compressible carbon aerogels derived from platanus orientalis for oil absorption and emulsion separation, Journal of the Taiwan Institute of Chemical Engineers, 103 (2019) 209-216.
    [27] S. Ruidas, A. Das, S. Kumar, S. Dalapati, U. Manna, A. Bhaumik, Non-fluorinated and robust superhydrophobic modification on covalent organic framework for crude-oil-in-water emulsion separation, Angewandte Chemie International Edition, 61 (2022) e202210507.
    [28] N. Yang, Z.-X. Luo, S.-C. Chen, G. Wu, Y.-Z. Wang, Superhydrophobic magnetic hollow carbon microspheres with hierarchical micro/nano-structure for ultrafast and highly-efficient multitasking oil-water separation, Carbon, 174 (2021) 70-78.
    [29] D.J. McClements, Nanoemulsions versus microemulsions: terminology, differences, and similarities, Soft Matter, 8 (2012) 1719-1729.
    [30] H. Lashgari, A. Ramazani, H. Aghahosseini, Preparation of silicone oil nanoemulsion softeners using different surfactants and their effect on physical characteristics of polyester fabric, Journal of Surfactants and Detergents, 26 (2023) 163-173.
    [31] M.N. Yukuyama, D.D.M. Ghisleni, T.J.A. Pinto, N.A. Bou-Chacra, Nanoemulsion: process selection and application in cosmetics - a review, International Journal of Cosmetic Science, 38 (2016) 13-24.
    [32] D.J. McClements, J. Rao, Food-Grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity, Critical Reviews in Food Science and Nutrition, 51 (2011) 285-330.
    [33] M. Jaiswal, R. Dudhe, P.K. Sharma, Nanoemulsion: an advanced mode of drug delivery system, 3 Biotech, 5 (2015) 123-127.
    [34] T. Tadros, P. Izquierdo, J. Esquena, C. Solans, Formation and stability of nano-emulsions, Advances in Colloid and Interface Science, 108-109 (2004) 303-318.
    [35] M. Porras, C. Solans, C. González, J.M. Gutiérrez, Properties of water-in-oil (W/O) nano-emulsions prepared by a low-energy emulsification method, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 324 (2008) 181-188.
    [36] C. Solans, P. Izquierdo, J. Nolla, N. Azemar, M.J. Garcia-Celma, Nano-emulsions, Current Opinion in Colloid & Interface Science, 10 (2005) 102-110.
    [37] D. Qin, Z. Liu, H. Bai, D.D. Sun, X. Song, A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion, Scientific Reports, 6 (2016) 24365.
    [38] A.H. Cavusoglu, X. Chen, P. Gentine, O. Sahin, Potential for natural evaporation as a reliable renewable energy resource, Nature Communications, 8 (2017).
    [39] P.H. Yang, K. Liu, Q. Chen, J. Li, J.J. Duan, G.B. Xue, Z.S. Xu, W.K. Xie, J. Zhou, Solar-driven simultaneous steam production and electricity generation from salinity, Energy & Environmental Science, 10 (2017) 1923-1927.
    [40] M.W. Higgins, A.R.S. Rahmaan, R.R. Devarapalli, M.V. Shelke, N. Jha, Carbon fabric based solar steam generation for waste water treatment, Solar Energy, 159 (2018) 800-810.
    [41] A.D. Khawaji, I.K. Kutubkhanah, J.M. Wie, Advances in seawater desalination technologies, Desalination, 221 (2008) 47-69.
    [42] H.M. Qiblawey, F. Banat, Solar thermal desalination technologies, Desalination, 220 (2008) 633-644.
    [43] H. Sharon, K.S. Reddy, A review of solar energy driven desalination technologies, Renewable and Sustainable Energy Reviews, 41 (2015) 1080-1118.
    [44] A. Kaushal, Varun, Solar stills: A review, renewable and sustainable energy reviews, 14 (2010) 446-453.
    [45] Y. Wang, L. Zhang, P. Wang, Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation, ACS Sustainable Chemistry & Engineering, 4 (2016) 1223-1230.
    [46] Y. Ito, Y. Tanabe, J.H. Han, T. Fujita, K. Tanigaki, M.W. Chen, Multifunctional porous graphene for high-efficiency steam generation by heat localization, Advanced Materials, 27 (2015) 4302-4307.
    [47] K. Kim, S. Yu, C. An, S.W. Kim, J.H. Jang, Mesoporous three-dimensional graphene networks for highly efficient solar desalination under 1 sun illumination, Acs Applied Materials & Interfaces, 10 (2018) 15602-15608.
    [48] K.K. Liu, Q. Jiang, S. Tadepallifit, R. Raliya, P. Biswas, R.R. Naik, S. Singamaneni, Wood graphene oxide composite for highly efficient solar steam generation and desalination, Acs Applied Materials & Interfaces, 9 (2017) 7675-7681.
    [49] G. Wang, Y. Fu, A.K. Guo, T. Mei, J.Y. Wang, J.H. Li, X.B. Wang, Reduced graphene oxide-polyurethane nanocomposite foam as a reusable photoreceiver for efficient solar steam generation, Chemistry of Materials, 29 (2017) 5629-5635.
    [50] X.Z. Wang, Y.R. He, G. Cheng, L. Shi, X. Liu, J.Q. Zhu, Direct vapor generation through localized solar heating via carbon-nanotube nanofluid, Energy Conversion and Management, 130 (2016) 176-183.
    [51] C. Jia, Y.J. Li, Z. Yang, G. Chen, Y.G. Yao, F. Jiang, Y.D. Kuang, G. Pastel, H. Xie, B. Yang, S. Das, L.B. Hu, Rich mesostructures derived from natural woods for solar steam generation, Joule, 1 (2017) 588-599.
    [52] H. Liu, C.J. Chen, G. Chen, Y.D. Kuang, X.P. Zhao, J.W. Song, C. Jia, X. Xu, E. Hitz, H. Xie, S. Wang, F. Jiang, T. Li, Y.J. Li, A. Gong, R.G. Yang, S. Das, L.B. Hu, High-performance solar steam device with layered channels: artificial tree with a reversed design, Advanced Energy Materials, 8 (2018).
    [53] Q. Gan, T. Zhang, R. Chen, X. Wang, M. Ye, Simple, Low-dose, durable, and carbon-nanotube-based floating solar still for efficient desalination and purification, ACS Sustainable Chemistry & Engineering, 7 (2019) 3925-3932.
    [54] H. Xu, Y. Lu, F. Jiang, J. Zhang, Y. Ge, Z. Li, 3D porous N-doped lignosulfonate/graphene oxide aerogel for efficient solar steam generation and desalination, International Journal of Biological Macromolecules, 233 (2023) 123469.
    [55] C.-F. Wang, C.-L. Wu, S.-W. Kuo, W.-S. Hung, K.-J. Lee, H.-C. Tsai, C.-J. Chang, J.-Y. Lai, Preparation of efficient photothermal materials from waste coffee grounds for solar evaporation and water purification, Scientific Reports, 10 (2020) 12769.
    [56] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review, Journal of Environmental Management, 92 (2011) 407-418.
    [57] E.K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, S. Ismadji, Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics, Water Research, 43 (2009) 2419-2430.
    [58] G. Crini, Non-conventional low-cost adsorbents for dye removal: A review, Bioresource Technology, 97 (2006) 1061-1085.
    [59] D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman, Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review, Bioresource Technology, 160 (2014) 191-202.
    [60] E. Rosales, J. Meijide, M. Pazos, M.A. Sanroman, Challenges and recent advances in biochar as low-cost biosorbent: From batch assays to continuous-flow systems, Bioresource Technology, 246 (2017) 176-192.
    [61] Y. Ding, Y.G. Liu, S.B. Liu, Z.W. Li, X.F. Tan, X.X. Huang, G.M. Zeng, L. Zhou, B.H. Zheng, Biochar to improve soil fertility. A review, agronomy for sustainable development, 36 (2016).
    [62] S. Sohi, E. Lopez-Capel, E. Krull, R. Bol, Biochar, climate change and soil: A review to guide future research, CSIRO Land and Water Science Report, 5 (2009).
    [63] L.N. Vandenberg, R. Hauser, M. Marcus, N. Olea, W.V. Welshons, Human exposure to bisphenol A (BPA), Reproductive Toxicology, 24 (2007) 139-177.
    [64] W. Shi, H. Wang, J. Yan, L. Shan, G. Quan, X. Pan, L. Cui, Wheat straw derived biochar with hierarchically porous structure for bisphenol A removal: Preparation, characterization, and adsorption properties, Separation and Purification Technology, 289 (2022) 120796.
    [65] A. Jernelöv, The threats from oil spills: Now, then, and in the future, AMBIO, 39 (2010) 353-366.
    [66] T.J. Crone, M. Tolstoy, Magnitude of the 2010 gulf of mexico oil leak, Science, 330 (2010) 634-634.
    [67] C.H. Peterson, S.D. Rice, J.W. Short, D. Esler, J.L. Bodkin, B.E. Ballachey, D.B. Irons, Long-term ecosystem response to the Exxon Valdez oil spill, Science, 302 (2003) 2082-2086.
    [68] J.R. Bragg, R.C. Prince, E.J. Harner, R.M. Atlas, Effectiveness of bioremediation for the Exxon Valdez oil spill, Nature, 368 (1994) 413-418.
    [69] R. Kandanelli, L. Meesala, J. Kumar, C.S.K. Raju, V.C.R. Peddy, S. Gandham, P. Kumar, Cost effective and practically viable oil spillage mitigation: Comprehensive study with biochar, Marine Pollution Bulletin, 128 (2018) 32-40.

    無法下載圖示 全文公開日期 2026/08/14 (校內網路)
    全文公開日期 2026/08/14 (校外網路)
    全文公開日期 2026/08/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE