簡易檢索 / 詳目顯示

研究生: 林育賢
Yu-hsien Lin
論文名稱: 應用壓阻高分子複材製作軟性應變感測陣列
Flexible Strain Sensors with Piezoresistive Polymer Composites
指導教授: 張復瑜
Fuh-yu Chang
口試委員: 陳炤彰
Chao-chang art. Chen
施文彬
Wen-pin Shih
汪若蕙
Ruoh-huey Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 118
中文關鍵詞: 軟性應變感測器奈米碳管奈米碳纖碳黑
外文關鍵詞: flexible strain sensor, carbon nano-tube, carbon nano-fiber, carbon black
相關次數: 點閱:249下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一電阻式結構應變感測陣列的設計與製造,製造技術採用薄膜製程製作而成,將壓阻高分子複材溶液使用滴定方式塗佈在經過親水處理的聚醯亞胺(Polyimide, PI)基底上,親水處理方式是大氣電漿表面改質技術改善高分子表面的濕潤性與提高表面能。測量水的接觸角發現未經過親水處理接觸角為118.8°,經過親水處理後接觸角為0.9°。壓阻高分子複材以聚氨酯(Polyurethane, PU)為基材,搭配不同的導電摻入物(如奈米碳管、奈米碳纖、碳黑)以不同比例的摻入,並加入不同成份分散劑(聚苯乙烯磺酸和十二烷基硫酸鈉),以研究不同導電摻入物及不同比例成份對應變變形時其電阻變化的敏感度。將製作完成的應變感測陣列放在自行設計的模具上進行彎曲量測,並使用LabView®圖控程式軟體擷取數位電錶的電阻值,以進行分析探討。研究中亦開發軟性應變感測陣列之掃描電路,實際應用於人體姿勢矯正與人工肌肉,實驗結果顯示,可以成功擷取軟性應變感測陣列應變之訊號。


    In this work, we present the development of a reliable piezoresistive strain sensing array fabricated by a solution based thin film method. The strain sensing array were made on a polyimide (PI) substrate by patterned hydrophilic treatment and tilted-drop process. The technique of patterned surface modification was performed by atmospheric plasma for enhancing surface energy in specific area. The measured water contact angles were 118.8° and 0.9° before and after hydrophilic treatment respectively. The materials used in the tilted-drop process were conductive polymer composites solutions with different ingredients and proportions. Fabricated strain sensor samples with different conductive fillers, including carbon nano-fiber, multi-wall carbon nano-tube and carbon black, and different surfactants, including sodium dodecyl sulfate (SDS) and polystyrene sulfonate (PSS), have been investigated by measuring resistivity in different strain. Finally, the fabricated strain sensing array has been tested by using a LabView program to capture the multi-meter values of resistivity. A scanning circuite were also developed to capture the signal from the flexible sensing array. The developed system has been applied to human posture correction and artificial muscle research.

    摘要I AbstractII 目錄III 圖目錄VI 表目錄XII 符號說明XIII 第一章 緒論1 1.1前言1 1.2 研究動機與目的2 1.3 文獻回顧4 1.3.1 電阻式軟性感測器4 1.3.2 壓阻高分子複材19 1.4 論文架構25 第二章 理論基礎26 2.1 電阻式應變計之原理26 2.2 壓阻高分子複材之導電機制30 2.3 本研究之軟性應變感測機制34 第三章 製造方法與步驟37 3.1 製程規劃37 3.2 製程設計38 3.2.1 基底選用及表面處理40 3.2.2 壓阻高分子複材溶液調配49 3.2.3 軟性應變感測器製作55 第四章 量測系統60 4.1 控制系統60 4.2 實驗架設環境62 4.3 掃瞄電路系統65 第五章 結果與討論69 5.1 單一電阻式感測器效能量測69 5.1.1 單一電阻式感測器導電率量測69 5.1.2 單一電阻式感測器應變敏感性量測77 5.1.3 使用SEM觀察壓阻高分子複材表面形貌83 5.1.4 壓阻高分子複材拉伸試驗85 5.2 軟性應變感測陣列之效能討論90 5.2.1 軟性應變感測陣列之應變量測90 5.2.2 軟性應變感測陣列應用人體姿勢矯正 95 5.2.3 軟性應變感測陣列應用電致動高分子 105 5.2.4 軟性應變感測陣列疲勞測試114 第六章 結論與未來展望116 6.1 結論116 6.2 未來展望118 參考文獻119 附錄124 附錄A 大氣電漿表面處理量測數據124 附錄B 單一電阻式感測器導電率量測125 附錄C 單一電阻式感測器應變敏感性量測127 附錄D 軟性應變感測陣列之應變量測139 附錄E 軟性應變感測陣列感測頸部彎曲之應變142 附錄F 軟性應變感測陣列感測人工肌肉彎曲之應變149 附錄G 軟性應變感測陣列疲勞測試151

    [1]K. Oliver, W. Karsten,and W. Heinz, ” Development of a flexible tactile sensor system for a humanoid robot”, Intelligent Robots and Systems. Proceedings. IEEE/RSJ Internnational Conference, vol.1, pp.1-6, 2003.
    [2]Y. J. Yang, M. Y. Cheng, W. Y. Chang, L. C. Tsao , S. A. Yang , W. P. Shih , F. Y. Chang, S. H. Chang, K. C. Fan, ” An integrated flexible temperature and tactile sensing array using PI-copper films,” Sensors and Actuators A-Physical, vol. 143, no.1, pp. 143-153, 2008.
    [3]M. Shimojo, A. Namiki, M. Ishikawa, R. Makino, and K. Mabuchi, “A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method,” IEEE Sensors Journal, vol.4, no.5, pp. 589-596, 2004.
    [4]K. Ryosuke, K. Satoshi, I. Masayuki, I. Hirochika, “Development of soft and distributed tactile sensors and application to a humanoid robot,” Proceedings of the IEEE International Conference on Systems, vol. 2, pp. 981-986, 1999.
    [5]T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, and T. Sakurai, ”Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes,” Proceedings of the National Academy of the United States of America, vol. 102, no.35, pp. 12321-12325, 2005.
    [6]B. Choi, S. Lee and H. R. Choi, and S. Kang, “Development of anthropomorphic robot hand with tactile sensor : SKKU Hand II,” IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1-12, pp. 3779-3784, 2006.
    [7]T. Mukai, M. Onishi, T. Odashima, S. Hirano, and Z. Luo, “Development of the tactile sensor of a human-interactive robot “RI-MAN”, ”IEEE Transactions on Robotics, vol. 24, no.2, pp. 505-512, 2008.
    [8]J. Engel, J. Chen, Z. F. Fan, and L. Chang, “Polymer micromachined multimodal tactile sensors,” Sensors and Actuators A-Physical, vol. 117, no.1, pp. 50-61, 2005.
    [9]K. Noda, K. Hoshino, K. Matsumoto, and I. Shimoyama, “A shear stress sensors for tactile sensing with the piezoresistive cantilever standing in elastic material,” Sensors and Actuators A-Physical, vol. 127, no. 2, pp. 295-301, 2006.
    [10]K. Hosoda, Y. Tada, and M. Asada, “Anthropomorphic robotic soft fingertip with randomly distributed receptors,” Robotics and Autonomous Systems, vol.54, no.2, pp. 104-109, 2006.
    [11]J. B. Wang and K. D, Wise, “A hybrid electrode array with built-in position sensors for an implantable MEMS-based cochlear prosthesis,” Journal of Microelectromechanical systems, vol. 17, no. 5, pp. 589-596, 2004.
    [12]M. Adam, T. Mohacsy, P. Jonas, C. Duecso, E. Vazsonyi, and I. Barsony, “CMOS integrated tactile sensor array by porous Si bulk micromachining,” Sensors and Actuators A-physical, vol.142, no. 1, pp. 192-195, 2008.
    [13]E. S. Hwang, J. H. Seo, and Y. J. Kim, “A polymer-based flexible tactile sensors for normal & shear load detection,” 19th IEEE International Conference on Microelectromechanical Systems (MEMS2006), vol.16, no. 3, pp. 556-563, 2007.
    [14]L. Wang and D. J. Beebe, “A silicon-based shear force sensor: development and characterization,” Sensors and Actuators A-Physical, vol.84, no.1-2, pp.33-44, 2000.
    [15]K. Kim, K. R. Lee, Y. K. Kim, D. S. Lee, N. K. Cho, W. H. Kim, K. B. Park, H. D. Park, Y. K. Park, J. H. Kim, and J. J. Park, “3-axes flexible tactile sensor fabricated by Si micromachining and packaging technology,” 19th IEEE International Conference on Mircoelectromechanical Systems(MEMS), pp. 678-681, 2006.
    [16]W. Xue and T. Cui, “Electrical and electromechanical characteristics of nano-assembled carbon nanotube thin film resistors on flexible substrates,” 14th IEEE International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 1047-1050, 2007.
    [17]S. Jung, T. Ji, J. Xie, and V. K. Varadan, “Flexible strain sensors based on pentacene-carbon nanotube composite thin films,” 7th IEEE International Conference on Nanotechnology, pp. 375-378, 2007.
    [18]D. J. Lichtenwalner, A. E. Hydrick, A. I. Kingon, “Flexible thin film temperature and strain sensor array utilizing a novel sensing concept,” Sensors and Actuators A-Physical, vol.135, no.2, pp.593-597, 2007.
    [19]G. Latessa, F. Brunetti, A. Reale, G. Saggio, A. Di Carlo, “Piezoresistive behaviour of flexible PEDOT:PSS based sensors,” Sensors and Actuators B-Chemical, vol.139, no.2, pp.304-309, 2009.
    [20]M. Knite , V. Tupureina , A. Fuith , J. Zavickis , V. Teteris, ” Polyisoprene—multi-wall carbon nanotube composites for sensing strain,” Materials Science and Engineering, vol.27, no.5, pp.1125-1128, 2007.
    [21]M. Park, H. Kim and J. P Youngblood, “Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films,” Nanotechnology, vol.19, no.5, pp. 055705-055712, 2008.
    [22]N. Hu, Y. Karube, C. Yan, Z. Masuda, H. Fukunaga, “Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor,” Acta Materialia, vol.56, no.13, pp. 2929–2936, 2008.
    [23]R. Zhang, M. Baxendale and T. Peijs, “Universal resistivity–
    strain dependence of carbon nanotube/polymer composites,” Physical Review, vol.76, no.19, pp.1-5, 2007.
    [24]M. H G Wichmann, S. T Buschhorn, L. Boger, R. Adelung and K. Schulte, “Direction sensitive bending sensors based on multi-wall carbon nanotube/epoxy nanocomposites,” Nanotechnology, vol.19, no.47, pp. 475503-475508, 2008.
    [25]N. Q. Nguyen, S. Lee, and N. Gupta, “Carbon nanofiber-network sensor films for strain measurement in composites,” Materials Research Society, vol.1129, pp.04-11, 2009.
    [26]A. Rahy, P. Bajaj, I. H. Musselman, S. H. Hong, Y. P. Sun, D. J. Yang, “Coating of carbon nanotubes on flexible substrate and its adhesion study,” Applied Surface Science, vol.255, no.15, pp. 7084-7089, 2009.
    [27]郭雲龍,“工程量測,”全華科技圖書股份有限公司, 1986.
    [28]“Strain Gage,”
    http://www.efunda.com/DesignStandards/sensors/strain_gages/, Efunda engineering fundamentals.
    [29]D. Stauffer and A. Aharony, Introduction to Percolation Theory, 4th. ed. (Taylor&Francis, London, 1985).
    [30]F. Y. Chang, R. H. Wang, H. Yang, Y. H. Lin, T. M. Chen, S. J. Huang, “Flexible strain sensors fabricated with carbon nano-tube and carbon nano-fiber composite thin films,” Thin Solid Film, In Press, Corrected Proof, 2010.
    [31]J.R. Roth, Industrial Plasma Engineering, Applications to nonthermal plasma processing, vol.2, IOP Publishing, Philadelphia, 2001.
    [32]J. Park, I. Henins, H. W. Herrmann, G. S. Selwyn, R. F. Hicks “Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source,” Journal of Applied Physics, vol.34, no.1, pp.20-28, 2001.
    [33]S.Y. Moon, W. Choe, B. K. Kang, “A uniform glow discharge plasma source at atmospheric pressure,” Applied Physics Letters, vol.84, no.2, pp.188-191, 2004.
    [34]陳澤民,“第十五次工作報告,” 工業技術研究院, 2010.
    [35]黃信華, “電容式可撓性觸覺感測陣列的研製,” 國立台灣大學機械工程系碩士論文, 2009.
    [36]全華出版, “感測器應用與線路分析,” 盧明智,盧鵬任, 2008.
    [37]J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” Journal of Applied Physics, vol.34, no.6, pp.1793-1804, 1963.
    [38]“塑膠之抗拉性能試驗法,” CNS 4396, 1992.
    [39]D. J. Magee, “Orthopedic physical assessment,” Saunders Ltd, 4th ed. 2002.
    [40]M. Nordin, V. H. Frankel, “Engineering approcaches to standing, sitting, and lying,” Basic biomechanics of the musculoskeletal system, Lippincott Williams & Wilkins Ltd, 421-436, 2001.
    [41]M. S. Wong, A. F. Mak, “Effectiveness and biomechanics of spinal orthoses in the treatment AIS,” Prosthetics and Orthotics International, vol.24, no.2, pp.148-162, 2000.
    [42]G. P. Szeto, L. Straker, S. Raine, “A field comparison of neck and shoulder postures in symptomatic and asymptomatic office workers,” Applied Ergonomics, vol.33, no.1, pp.75-84, 2002.
    [43]C. Kisner, L. A. Colby, “Therapeutic exercise foundations and techniques,” Book promotions & service Ltd, 4th ed. 2002.
    [44]M. S. Wong, A. F. Mak, K. D. Luk, J. H. Evans, B. Brown, “Effectiveness of audio-biofeedback in postural training for adolescent idiopathic scoliosis patients,” Prosthet Orthot Int. vol.25, no.1, pp.60-70, 2001.
    [45]N. Azrin, H. Rubin, F. O’Brien, T. Ayllon, D. Roll, “Postural training by automated electronic instrument,” Journal of Applied Behavior Analysis, vol.1, no.2, pp.99-108, 1968.
    [46]B. Dworkin, “Instrumental learning for the treatment of disease,” Journal of Health Psychologt, vol.1, no.1, pp.45-59, 1982.
    [47]科學發展, “仿生科技,” 台灣大學化工系, 房瓚, 蘇嘉弘, 蔡偉博, 2005.
    [48]M. Shahinpoor, K. J. Kim, “Ionic polymer-metal composites: IV. Industrial and medical applications,” Smart Materials and Structures, vol.14, no.1, pp. 197-214, 2005.
    [49]M. Shahinpoor, K.J. Kim, “Ionic polymer-metal composites: I. Fundamentals,” Smart Materials and Structures, vol.10, no.4, pp. 819-833, 2001.
    [50]賴耀東, “利用離子性聚合物-金屬複合材料於尿道人工括約肌之研發,” 國立台灣大學化學工程系碩士論文, 2007.
    [51]K. Sadeghipour, R. Salomon, S. Neogi, “Development of a novel electrochemically active membrane and smart material based vibration sensor/damper,” Smart Materials and Structures, vol.1, no.2, pp.172-179, 1992
    [52]M. Shahinpoor, “Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles,” Smart Materials and Structures, vol.1, no.1, pp.91-94, 1992.
    [53]C. A. Dai, C. C. Hsiao, S. C. Wang, A. C. Kao, C. P. Liu, W. B. Tsai, W. S. Chen, W. M. Liu, W. P. Shih, C. C. Ma, “A membrane actuator based on an ionic polymer network and carbon nanotubes: the synergy of ionic transport and mechanical properties,” Smart Materials and Structures, vol.18, no.8, pp.085016-085029, 2009.
    [54]陳澤民, “第十七次工作報告,” 工業技術研究院, 2010.

    無法下載圖示 全文公開日期 2015/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE