簡易檢索 / 詳目顯示

研究生: 蔡周益
Chou-Yi Tsai
論文名稱: 新型功能性共軛高分子及聚醯胺醯亞胺: 合成與分散半導體單壁奈米碳管、光致發光以及電致變色的應用
Novel Functional Conjugated Polymers and Polyamide-imide: Synthesis and Applications for Dispersion of Semiconducting Single-Walled Carbon Nanotubes, Photoluminescence and Electrochromism
指導教授: 張家耀
Jia-Yaw Chang
廖德章
Der-Jang Liaw
口試委員: 張家耀
Jia-Yaw Chang
廖德章
Der-Jang Liaw
江志強
Jyh-Chiang Jiang
汪昆立
Kun-Li Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 68
中文關鍵詞: 共軛高分子單壁奈米碳管電致變色無色聚醯胺醯亞胺
外文關鍵詞: conjugated polymers, single-walled carbon nanotubes, electrochromism, polyamide-imides
相關次數: 點閱:255下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一部分,以三苯胺為主鏈之共軛高分子能夠有選擇性地纏繞單壁奈米碳管,其中單壁奈米碳管之種類即掌性指數以及纏繞數量取決於高分子的主鏈結構和側鏈官能化(如PTAA, P1, P2, P3, P4, P5 and P6)。P3可將(6,5)半導體奈米碳管有效地從CoMoCAT單壁奈米碳管萃取出來CoMoCAT/P6分散液具有高度安定性。此外,碳管分散液混合電致變色高分子後,其電化學和電致變色的響應時間更進一步的縮短。改善的原因歸咎於剛硬的碳管與柔軟的高分子在成膜過程中出現相分離,膜上粗糙的表面型態提 供更多的路徑讓相對離子快速擴散至膜內進行電致變色。
    第二部分,在本次研究中開發了具有扭曲結構和調控共軛基團的代表性無色聚醯胺醯亞胺。它們結合了扭曲二胺和非線性二酐的特定結構導致它們高度鬆散的鏈填充,減少了電荷轉移複合物的形成。


    First of all, the triarylamine-based conjugated polymers can selectively wrap the single-walled carbon nanotubes (SWNTs) with specific chiral indices and wrapping amount depending on their backbone structures and side-chain functionality (e.g., P1, P2, P3, P4, P5 and P6). P3 exhibits heavily selective wrapping for the (6,5) chirality from CoMoCAT SWNTs. SWNT/P6 dispersion has highly stabling in organic solution. In addition, when the dispersion is doped in electrochromic polymer (ECP), the response time of its electrochemical and electrochromic behaviors is further reduced. The improvement is caused by the phase separation of the rigid SWNT and the flexible polymer, which generates a rough surface morphology and provides more pathways for faster diffusion of counterions (ClO_4^-). The SWNT/P6 doping technique provides a simple way to accelerate ion diffusion in anodically coloring materials.
    The second section, representative colorless polyamide-imides having intrinsically twisted structures and adjusted conjugated groups were developed. Their specific structures incorporating of twisted diamines and nonlinear dianhydrides resulted in their highly loose chain packing, which minimized the charge transfer complex formation.

    CHAPTER 1: SINGLE-WALLED CARBON NANOTUBES VIA SELECTIVE DISPERSION SOLUTION USING POLY(TRIARYLAMINE) AND APPLICATION FOR ENHANCED ELECTROCHROMIC PROPERTIES 1 1.1. INTRODUCTION 1 1.2. EXPERIMENTAL SECTION 4 1.2.1. Materials 4 1.2.2. Instrumentation 4 1.2.3. Monomer and Polymer Synthesis 6 1.2.3.1. Synthesis of 4-ethyl-N,N-bis(4-bromophenyl)aniline (M1) 6 1.2.3.2. Synthesis of 4-buthyl-N,N-bis(4-bromophenyl)aniline (M2) 8 1.2.3.3. Synthesis of 4-hexyl-N,N-bis(4-bromophenyl)aniline (M3) 8 1.2.3.4. Synthesis of 4-octyl-N, N-bis (4-bromophenyl) aniline (M4) 10 1.2.3.5. Synthesis of 4-decyl-N,N-bis (4-bromophenyl)aniline (M5) 10 1.2.3.6. Synthesis of 4-dodecyl-N, N-bis (4-bromophenyl) aniline (M6) 12 1.2.3.7. Synthesis of poly[N-(4-methoxylphenyl)-4,4’-diphenylamine-alt-N- (p-ethyl) phenyl-4,4'-diphenylamine] (P1) 14 1.2.3.8. Synthesis of poly[N-(4-methoxylphenyl)-4,4’-diphenylamine-alt-N- (p-butyl)phenyl-4,4'-diphenylamine] (P2) 16 1.2.3.9. Synthesis of poly[N-(4-methoxylphenyl)-4,4’-diphenylamine-alt-N- (p-hexyl)phenyl-4,4'-diphenylamine] (P3) 18 1.2.3.10. Synthesis of poly[N-(4-methoxylphenyl)-4,4’-diphenylamine-alt-N- (p-octyl)phenyl-4,4'-diphenylamine] (P4) 20 1.2.3.11. Synthesis of poly[N-(4-methoxylphenyl)-4,4’-diphenylamine-alt-N- (p-decyl)phenyl-4,4'-diphenylamine] (P5) 22 1.2.3.12. Synthesis of poly[N-(4-methoxylphenyl)-4,4’-diphenylamine-alt-N- (p-dodecyl)phenyl-4,4'-diphenylamine] (P6) 24 1.3. RESULTS AND DISCUSSION 26 1.3.1. Basic Characterization 26 1.3.2. Sample preparation 29 1.3.3. The optical properties of CoMoCAT/PTAA 29 1.3.4. Characterization of SWNT/P6. 32 1.3.5. Electrochemical properties of SWNT/P6/ECP 35 1.3.6. Potential step absorptiometry and morphologies of SWNT/P6/ECP films. 38 1.4. CONCLUSIONS 43 1.5 REFERENCES 44 CHAPTER 2: OPTICAL TRANSPARENCY IN ORGANO SOLUBLE POLYAMIDE-IMIDE BASED ON NONCOPLANAR AND CYCLOHEXYL FUNCTIONAL GROUPS 48 2.1. INTRODUCTION 48 2.2. EXPERIMENTAL SECTION 50 2.2.1. Materials 50 2.2.2. Synthesis and characterization 51 2.2.2.1. Synthesis of Monomer (i) 51 2.2.2.2. Synthesis of monomer (a, HTA-PPD) 53 2.2.2.3. Synthesis of PI-1a 54 2.2.2.4. Synthesis of PI-2a 56 2.2.2.5. Synthesis of PI-3a 58 2.2.2.6. Synthesis of PI-4a 59 2.2.2.7. Synthesis of PI-5a 60 2.2.2.8. Synthesis of PI-2b 61 2.2.3. Methods 62 2.2.3.1. Basic characterization 62 2.2.3.2. Film preparation 62 2.3. RESULTS AND DISCUSSION 63 2.3.1. Superior transmittance by incorporation of noncoplanar diamine and nonlinear, alicyclic dianhydride 63 2.4. CONCLUSIONS 66 2.5. REFERENCE 67

    CHAPTER 1: SINGLE-WALLED CARBON NANOTUBES VIA SELECTIVE DISPERSION SOLUTION USING POLY(TRIARYLAMINE) AND APPLICATION FOR ENHANCED ELECTROCHROMIC PROPERTIES
    (1) Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603−605.
    (2) Ajayan, P. M. Nanotubes from Carbon. Chem. Rev. 1999, 99, 1787-1799.
    (3) Samanta, S. K.; Fritsch, M.; Scherf, U.; Gomulya, W.; Bisri, S. Z.; Loi, M. A. Conjugated Polymer-Assisted Dispersion of Single-Wall Carbon Nanotubes: The Power of Polymer Wrapping. Acc. Chem. Res. 2014, 47, 2446–2456.
    (4) He, M.; Chernov, A. I.; Fedotov, P. V.; Obraztsova, E. D.; Sainio, J.; Rikkinen, E.; Jiang, H.; Zhu, Z.; Tian Y.; Kauppinen, E. I.; Niemela, M.; Krause, A. O. Predominant (6,5) Single-Walled Carbon Nanotube Growth on a Copper-Promoted Iron Catalyst. J. AM. CHEM. SOC. 2010, 132, 13994–13996.
    (5) Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. Electronic Structure of Chiral Graphene Tubules. Appl. Phys. Lett. 1992, 60, 2004-2006.
    (6) Stranks, S. D.; Baker, A. M. R.; Alexander-Webber, J. A.; Dirks; B.; Nicholas, R. J. Production of High-Purity Single-Chirality Carbon Nanotube Hybrids by Selective Polymer Exchange. small 2013, 9, 2245–2249.
    (7) Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010, 35, 357-401.
    (8) Hwang, J. Y.; Nish, A.; Doig, J.; Douven, S.; Chen, C. W.; Chen, L. C.; Nicholas, R. J. Polymer Structure and Solvent Effects on the Selective Dispersion of Single-Walled Carbon Nanotubes. J. AM. CHEM. SOC. 2008, 130, 3543-3553.
    (9) Chen, Y.; Malkovskiy, A.; Wang, X. Q.; Colon, M. L.; Alexei P. Sokolov, A. P.; Perry, K.; More, K.; Pang, Y. Selection of Single-Walled Carbon Nanotube with Narrow Diameter Distribution by Using a PPE−PPV Copolymer. ACS Macro Lett. 2012, 1, 246−251.
    (10) Wang, P.-I.; Tsai, C.-Y.; Hsiao, Y.-J.; Jiang, J.-C.; Liaw, D.-J. High-Purity Semiconducting Single-Walled Carbon Nanotubes via Selective Dispersion in Solution Using Fully Conjugated Polytriarylamines. Macromolecules 2016, 49, 8520−8529.
    (11) Shiacham-Diamand, Y. Nanomaterials for 2D and 3D Printing Wiley-VCH Verlag GmbH & Co. KGaA, 2017.
    (12) Assis, L. M. N.; Ponez, L.; Januszko, A.; Grudzinski, K.; Pawlicka, A. A Green-Yellow Reflective Electrochromic Device. Electrochim. Acta, 2013, 111, 299-304.
    (13) Wu, F. I.; Shih, P. I.; Shu, C. F.; Tung, Y. L.; Chi, Y. Highly Efficient Light-Emitting Diodes Based on Fluorene Copolymer Consisting of Triarylamine Units in the Main Chain and Oxadiazole Pendent Groups. Macromolecules 2005, 38, 9028-9036.
    (14) Yasuda, T.; Shinohara, Y.; Matsuda, T.; Han, L.; Ishi-i, T. Improved Power Conversion Efficiency of Bulk-Heterojunction Organic Solar Cells Using a Benzothiadiazole–Triphenylamine Polymer. J. Mater. Chem. 2012, 22, 2539-2544.
    (15) Stevens, M. P. Polymer Chemistry: an Introduction, 3rd; Oxford University Press: Oxford, 1999.
    (16) B. Valeur, in Molecular Fluorescence, Wiley-VCH Verlag GmbH, 2001.
    (17) Nish, A.; Hwang, J. Y.; Doig, J; Nicholas, R. J. Highly selective dispersion of singlewalled carbon nanotubes using aromatic polymers. Nature Nanotech 2007, 2, 640-646.
    (18) Tange, M.; Okazaki, T.; Ijima, S. Influence of structure-selective fluorene-based polymer wrapping on optical transitions of single-wall carbon nanotubes. Nanoscale 2014, 6, 248–254.
    (19) Cho, N. S.; Hwang, D. H.; Jung, B. J.; Lim, E.; Lee, J.; Shim, H. K. Synthesis, Characterization, and Electroluminescence of New Conjugated Polyfluorene Derivatives Containing Various Dyes as Comonomers. Macromolecules 2004, 37, 5265-5273.
    (20) Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes. Science 2002, 298, 2361-2366.
    (21) Bachilo, S. M.; Balzano, L.; Herrera, J. E.; Pompeo, F.; Resasco, D. E.; Weisman, R. B. Narrow (n,m)-Distribution of Single-Walled Carbon Nanotubes Grown Using a Solid Supported Catalyst. J. Am. Chem. Soc. 2003, 125, 11186-11187.
    (22) Xiong, S. X.; Wei, J.; Jia, P.; Yang, L. Ma, J.; Lu, X. Water-processable polyaniline with covalently bonded single-walled carbon nanotubes: enhanced electrochromic properties and impedance analysis. ACS Appl. Mater. Interfaces 2011, 3 (3), 782-788.
    (23) Mohamed, M. G.; Hsu, K.-C.; Kuo, S.-W. Bifunctional Polybenzoxazine Nanocomposites Containing Photo-crosslinkable Coumarin Units and Pyrene units Capable of Dispersing Single-walled Carbon Nanotubes. Polym. Chem. 2015, 6, 2423–2433.
    (24) Crouch, S. R.; Skoog, D. A. in Principles of instrumental analysis., Cengage Learning, 2006.
    (25) Wei, J.; Xiong, S.; Bai, Y.; Jia, P.; Ma, J.; Lu, X. Polyaniline Nanoparticles Doped with Star-like Poly(styrene sulfonate): Synthesis and Electrochromic Properties. Sol. Energy Mater. Sol. Cells, 2012, 99, 141-147.
    (26) Green, M. J.; Behabtu, N.; Pasquali, M.; Adams, W. W. Nanotubes as polymers. Polymer 2009, 50 (21), 4979-4997.
    (27) Viswanathan, S.; Dadmun, M. D. Guidelines to creating a true molecular composite: inducing miscibility in blends by optimizing intermolecular hydrogen bonding. Macromolecules 2002, 35 (13), 5049-5060.
    (28) Feng, J. R.; Winnik, M. A. Winnik, Effect of water on polymer diffusion in latex films. Macromolecules 1997, 30 (15), 4324-4331.
    (29) Pozo-Gonzalo, C.; Mecerreyes, D.; Pomposo, J. A.; Salsamendi, M.; Marcilla, R.; Grande, H.; Vergaz, R.; Barrios, D.; Sánchez-Pena, J. M. All-plastic electrochromic devices based on PEDOT as switchable optical attenuator in the near IR. Sol. Energy Mater. Sol. Cells 2008, 92 (2), 101-106.
    (30) Takagi, S.; Makuta, S.; Veamatahau, A.; Otsuka, Y.; Tachibana, Y.; Organic/inorganic hybrid electrochromic devices based on photoelectrochemically formed polypyrrole/TiO2 nanohybrid films. J. Mater. Chem. 2012, 22, 22181-22189.
    (31) Kerszulis, J. A.; Bulloch, R. H.; Teran, N. B.; Wolfe, R. M. W.; Reynolds, J. R. Relax: A Sterically Relaxed Donor−Acceptor Approach for Color Tuning in Broadly Absorbing, High Contrast Electrochromic Polymers. Macromolecules 2016, 49, 6350-6359.
    (33) Wałęsa-Chorab, M.; Skene, W. G.; Visible-to-NIR Electrochromic Device Prepared from a Thermally Polymerizable Electroactive Organic Monomer. ACS Appl. Mater. Interfaces 2017, 9, 21524-21531.

    CHAPTER 2: OPTICAL TRANSPARENCY IN ORGANO SOLUBLE POLYAMIDE-IMIDE BASED ON NONCOPLANAR AND CYCLOHEXYL FUNCTIONAL GROUPS
    (1) Margolis, J. M., in Engineering plastics handbook, McGraw-Hill, 2005.
    (2) Liaw, D.-J.; Wang, K.-L.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y. Had, C.-S. Advanced Polyimide Materials: Syntheses, Physical Properties and Applications. Prog. Polym. Sci. 2012, 37, 907-974.
    (3) Liaw, D. J.; Hsu, P. N.; Chen, W. H.; Lin, S. L. High Glass Transitions of New Polyamides, Polyimides, and Poly(amide-imide)s Containing a Triphenylamine Group: Synthesis and Characterization. Macromolecules 2002, 35, 4669-4676.
    (4) Liaw, D. J.; Liaw, B. Y.; Li, L. J.; Sillion, B.; Mercier, R.; Thiria, R.; Sekiguchi, H. Synthesis and Characterization of New Soluble Polyimides from 3,3',4,4'-Benzhydrol Tetracarboxylic Dianhydride and Various Diamines. Chem. Mater. 1998, 10, 734-739.
    (5) Liaw, D. J.; Chang, F.-C.; Leung, M.; Chou, M.-Y.; Muellen, K. High Thermal Stability and Rigid Rod of Novel Organosoluble Polyimides and Polyamides Based on Bulky and Noncoplanar Naphthalene-Biphenyldiamine. Macromolecules 2005, 38, 4024-4029.
    (6) Yamada, M.; Kusama, M.; Matsumoto, T.; Kurosaki, T. Soluble Polyimides with Polyalicyclic tructure. 2.1 Polyimides from icyclo[2.2.l]heptane-2-exo-3-exo-5- exo-6-exotetracarboxylic,3:5,6-Dianhydride. Macromolecules 1993, 26, 4961-4963.
    Kusama, M.; Matsumoto, T.; Kurosaki, T. Macromolecules,1994, 27, 1117.
    (7) Liaw, D. J.; Liaw, B. Y.; Hsu, P. N.; Hwang, C. Y. Synthesis and Characterization of New Highly Organosoluble Poly(ether imide)s Bearing a Noncoplanar 2,2'-Dimethyl-4,4¢-biphenyl Unit and Kink Diphenylmethylene Linkage. Chem. Mater. 2001, 13, 1811-1816.
    (8) Liaw, D. J.; Liaw, B. Y.; Yang, C. M. Synthesis and Properties of New Polyamides Based on Bis[4-(4-aminophenoxy)phenyl]diphenylmethane. Macromolecules 1999, 32, 7 248-7250.
    (9) Liaw, D. J.; Liaw, B. Y. Synthesis and Characterization of New Soluble Polyimides Derived from 2,2-Bis[3,5-dimethyl-4-(4-aminophenoxy)phenyl]propane. Macromol. Chem. Phys. 1998, 199, 1473–1478.
    (10) Matsuura, T.; Ando, S.; Sasaki, S., Fluoropolymers, Springer, Boston, 2011.
    (11) Matsumoto, T. Nonaromatic polyimides derived from cycloaliphatic monomers. Macromolecules 1999, 32, 4933–4939.
    (12) Hasegawa, M.; Kasamatsu, K.; Koseki, K. Colorless Poly(ester-imide)s Derived from Hydrogenated Trimellitic Anhydride. Eur. Polym. J. 2012, 48, 483-498.
    (13) Hasegawa, M.; Horie, K. Photophysics, photochemistry and optical properties of polyimides. Prog. Polym. Sci. 2001, 26, 259–335.
    (14) Hasegawa, M.; Hirano, D.; Fujii, M.; Haga, M.; Takezawa, E.; Yamaguchi. S.; Ishikawa, A.; Kagayama, T. Solution-processable colorless polyimides derived from hydrogenated pyromellitic dianhydride with controlled steric structure. "J. Polym. Sci. A Polym. Chem. 2013, 51, 575–592.
    (15) Hasegawa, M.; Tominaga, A. Fluorene-containing poly(ester-imide)s and application to positive-type photosensitive heat-resistant materials. Macromol. Mater. Eng. 2011, 296, 1002–1017.
    (16) Ebisawa, S.; Ishii, J.; Sato, M.; Vladimirov, L.; Hasegawa, M. Spontaneous molecular orientation of polyimides induced by thermal imidization (5). Effect of ordered structure formation in polyimide precursors on CTE. Eur. Polym. J 2010, 46, 283–297.

    無法下載圖示 全文公開日期 2023/08/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE