簡易檢索 / 詳目顯示

研究生: 王翼澤
Yi-Ze Wang
論文名稱: 新型含奈米石墨烯之聚醯胺-醯亞胺:合成與應用於光致發光
Novel Polyamide-imides with Nanographenes: Synthesis and Applications for Photoluminescence
指導教授: 何郡軒
Jinn-Hsuan Ho
廖德章
Der-Jang Liaw
口試委員: 何郡軒
Jinn-Hsuan Ho
廖德章
Der-Jang Liaw
汪昆立
Kun-Li Wang
江志強
Jyh-Chiang Jiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 64
中文關鍵詞: 六苯基苯聚醯胺-醯亞胺鈴木偶合反應奈米石墨烯光致發光-激發圖譜
外文關鍵詞: hexaphenylbenzene, polyamide-imide, Suzuki coupling, nanographene, photoluminescence-excitation maps
相關次數: 點閱:228下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇主要研究聚醯胺-醯亞胺上的六苯並蔻分子於不同溶劑中的分散情形,並利用紫外光-可見光吸收光譜與光激發光光譜等技術觀察六苯並蔻分子的團聚與分散現象。第一步先利用鈴木偶合反應製備側鏈帶六苯基苯(HPB)之非共平面芴二胺單體,與實驗室製備的二酸酐單體(Ph-HTA)聚合成聚醯胺-醯亞胺高分子,另外,摻入未取代之非共平面芴二胺單體做共聚合。接著利用氯化鐵將六苯基苯環化製備六苯並蔻(又稱奈米石墨烯)。第二步以紅外光譜儀及X光散射儀鑑定六苯並蔻之結構,並進一步測定高分子的玻璃轉移溫度以及熱裂解溫度與其他Ph-HTA衍生之聚醯胺-醯亞胺高分子之熱性質做比較,發現帶六苯基苯的高分子P2與P3的10%熱裂解溫度分別為462度與485度,比其他Ph-HTA衍生的高分子提高10度,環化後更能分別提高至470度與503度。第三步利用紫外光-可見光吸收光譜、光激發光光譜以及光致發光-激發圖譜判斷六苯並蔻分子在溶劑中的分散與團聚現象並比較含六苯並蔻之共聚高分子與均聚高分子在溶劑中的狀態,發現在共聚高分子上的六苯並蔻擁有較好的分散性與穩定性。


    In this study, hexabenzocoronene (HBCs) on polyamide-imide were dispersed in various solvents, and their dispersibility were investigated by UV-Vis and photoluminescence spectra. First, non-coplanar 9, 9-bis (4-aminophenyl) fluorene monomer (BAPF) with hexaphenylbenzene (HPB) was prepared through Suzuki coupling, then polymerized with phenyl hydrogenated tetracarboxylic dianhydride monomer (Ph-HTA) to receive polyamide-imide. Also, copolymerization with non-coplanar monomer (BAPF) was also carried out. All hexaphenylbenzene moieties were oxidatively cyclodehydrogenated with FeCl3 to obtain hexabenzocoronene (also known as nanographene). Second, hexabenzocoronene moieties were confirmed by FT-IR and X-Ray powder diffraction. Glass transition temperatures and thermal degradation temperatures of polymers P2 and P3 were evaluated and compared with other Ph-HTA derived polyamide-imides. And we found that P2 and P3 represented 10% weight loss temperature 462 and 485 Celsius degrees, which were 10 degrees higher than other Ph-HTA derived polyamide-imides. The 10% weight loss temperature of P2 and P3 could be further raised to 470 and 503 degrees after being cyclodehydrogenated into P4 and P5. Third, aggregation and dispersion phenomena of hexabenzocoronene containing homopolymer and copolymer were observed through dispersing in solvents, then confirmed by UV-Vis absorption spectroscopy, photoluminescence spectroscopy and photoluminescence-excitation maps. And we found that hexabenzocoronene on copolymer exhibit better dispersibility and stability.

    摘要 I Abstract II List of Figures IV List of Schemes VI Introduction 1 2. Experimental Section 3 2.1 Materials 3 2.2 Instrumentation 4 2.3 Synthesis of monomer 7 2.3.1 Synthesis of 4-(9-(4-aminophenyl)-2,7-di-pentaphenylbenzene-9-yl) benzenamine (M3) 7 2.3.2 Synthesis of dianhydride (Ph-HTA) 10 2.4 Polymerization of polyamide-imides 13 2.4.1 Synthesis of polyamide-imide (P1) via polycondensation 13 2.4.2 Synthesis of polyamide-imide (P2) via polycondensation 16 2.4.3 Synthesis of polyamide-imide (P3) via polycondensation 19 2.5 Preparation of hexabenzocoronene 23 2.5.1 Synthesis of Hexabenzocoronene containing polyamide-imide (P4) via Cyclodehydrogenation 23 2.5.2 Synthesis of Hexabenzocoronene containing polyamide-imide (P5) via Cyclodehydrogenation 24 2.5.3 Preparation of HBC derivatives dispersed in solvents 24 3. Results and Discussion 25 3.1 Synthesis of monomer and polyamide-imides 25 3.2 Cyclodehydrogenation 28 3.3 Basic characterization 28 3.4 Optical properties of P1 and HPB-containing polyamide-imides P2 and P3 37 3.5 Optical properties of HBC-containing polyamide-imides P4 and P5 39 3.6 Test of HBC-containing polymers’ dispersibilities 44 4. Conclusion 48 5. Reference 49 6. 附錄 52

    C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam and A. Govindaraj, Angewandte Chemie-International Edition, 2009, 48, 7752-7777.
    2. A. Narita, X. Y. Wang, X. L. Feng and K. Mullen, Chemical Society Reviews, 2015, 44, 6616-6643.
    3. W. W. H. Wong, T. B. Singh, D. Vak, W. Pisula, C. Yan, X. L. Feng, E. L. Williams, K. L. Chan, Q. H. Mao, D. J. Jones, C. Q. Ma, K. Mullen, P. Bauerle and A. B. Holmes, Advanced Functional Materials, 2010, 20, 927-938.
    4. R. Rieger and K. Mullen, Journal of Physical Organic Chemistry, 2010, 23, 315-325.
    5. C. Y. Liu, A. Fechtenkotter, M. D. Watson, K. Mullen and A. J. Bard, Chemistry of Materials, 2003, 15, 124-130.
    6. A. M. van de Craats, N. Stutzmann, O. Bunk, M. M. Nielsen, M. Watson, K. Mullen, H. D. Chanzy, H. Sirringhaus and R. H. Friend, Advanced Materials, 2003, 15, 495-499.
    7. J. S. Wu, A. C. Grimsdale and K. Mullen, Journal of Materials Chemistry, 2005, 15, 41-52.
    8. P. I. Wang, W. Pisula, K. Mullen and D. J. Liaw, Polymer Chemistry, 2016, 7, 6211-6219.
    9. C. Y. Tsai, Q. Zhang, Y. Z. Wang, J. Shyong, H. L. Chen and D. J. Liaw, Polymer Chemistry, 2017, 8, 3327-3332.
    10. A. A. O. Sarhan and C. Bolm, Chemical Society Reviews, 2009, 38, 2730-2744.
    11. E. Jacobi, H. Schuttenberg and R. C. Schulz, Die Makromolekulare Chemie, Rapid Communications, 1980, 1, 397-402.
    12. A. Bilici, I. Kaya and M. Yildirim, European Polymer Journal, 2011, 47, 1005-1017.
    13. N. Biolley, M. Grégoire, T. Pascal and B. Sillion, Polymer, 1991, 32, 3256-3261.
    14. M. Ghaemy and R. Alizadeh, European Polymer Journal, 2009, 45, 1681-1688.
    15. S. Seesukphronrarak, S. Kawasaki, K. Kobori and T. Takata, Journal of Polymer Science Part a-Polymer Chemistry, 2007, 45, 3073-3082.
    16. M. Hasegawa, K. Kasamatsu and K. Koseki, European Polymer Journal, 2012, 48, 483-498.
    17. L. Zhao, S. M. Wang, S. Y. Shao, J. Q. Ding, L. X. Wang, X. B. Jing and F. S. Wang, Journal of Materials Chemistry C, 2015, 3, 8895-8903.
    18. K. Nakabayashi, T. Imai, M. C. Fu, S. Ando, T. Higashihara and M. Ueda, Macromolecules, 2016, 49, 5849-5856.
    19. S. H. Hsiao, C. P. Yang and W. L. Lin, Macromolecular Chemistry and Physics, 1999, 200, 1428-1433.
    20. M. G. Schwab, A. Narita, Y. Hernandez, T. Balandina, K. S. Mali, S. De Feyter, X. L. Feng and K. Mullen, Journal of the American Chemical Society, 2012, 134, 18169-18172.
    21. D. J. Liaw, P. N. Hsu and B. Y. Liaw, Journal of Polymer Science Part a-Polymer Chemistry, 2001, 39, 63-70.
    22. D. J. Liaw, B. Y. Liaw, P. N. Hsu and C. Y. Hwang, Chemistry of Materials, 2001, 13, 1811-1816.
    23. G. Rouille, M. Steglich, F. Huisken, T. Henning and K. Mullen, Journal of Chemical Physics, 2009, 131.
    24. J. M. Hughes, Y. Hernandez, D. Aherne, L. Doessel, K. Mullen, B. Moreton, T. W. White, C. Partridge, G. Costantini, A. Shmeliov, M. Shannon, V. Nicolosi and J. N. Coleman, Journal of the American Chemical Society, 2012, 134, 12168-12179.
    25. A. J. Fleming, J. N. Coleman, A. B. Dalton, A. Fechtenkotter, M. D. Watson, K. Mullen, H. J. Byrne and W. J. Blau, Journal of Physical Chemistry B, 2003, 107, 37-43.

    無法下載圖示 全文公開日期 2023/08/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE