簡易檢索 / 詳目顯示

研究生: 陳文祥
Wen-Hsiang Chen
論文名稱: 利用鈴木偶合聚合技術製備新型含三苯胺基團共軛高分子材料及其取代基效應
Novel Conjugated Polymer Materials Containing Triphenylamine via Suzuki Coupling: Effect of Substituent on Electrochromic Properties and Hole Mobility
指導教授: 廖德章
Der-Jang Liaw
口試委員: 江志強
Jyh-Chiang Jiang
李魁然
Kueir-Rarn Lee
汪昆立
Kun-Li Wang
洪文誼
Wen-Yi Hung
陳志堅
Jyh-Chien Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 97
中文關鍵詞: 共軛高分子電致變色鈴木偶合三苯胺
外文關鍵詞: conjugated polymer, electrochromism, Suzuki coupling, triphenylamine
相關次數: 點閱:302下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用鈴木偶合聚合技術成功製備一系列新型含三苯基胺之功能性共軛高分子材料,並進行其理論計算及物性研究,如:物理性質、熱性質、光學性質、電化學性質、電-光學性質及電洞移動率。
    首先,利用鈴木偶合反應成功地製備一系列新型含三苯基胺之共軛高分子材料(P1, P2, Ref(P3) and Ref(P4)),所得一系列新型含三苯基胺之共軛高分子材料的數目平均分子量介於1.31×104 ~ 2.05×104,並在常溫下具高溶解性,可溶於一般有機溶劑,如:N-甲基-2-吡咯酮、四氫呋喃、三氯甲烷及甲苯。另外,此一系列共軛高分子材料較商業化之共軛高分子材料(如:9,9-二辛基聚芴(poly(9,9-dioctylfluorene),POF))具有優異的熱穩定性,如:具有較高玻璃轉移溫度(Tg = 112 ~ 144 °C)及在氮氣環境下10%重量損失裂解溫度(422 ~ 446°C)。
    其中,含脂肪族懸掛基團之雙三苯基胺共軛高分子材料(P1)顯示出比單三苯基胺(Ref(P3))及不含脂肪族懸掛基團(P2)之共軛高分子材料具有較佳之電變色性質之穩定度及較快之著色時間。另外,不含脂肪族懸掛基團之雙三苯基胺共軛高分子材料(P2)具有優異之電洞移動率(10–3 cm2 V–1 s–1),並且遠高於其他共軛高分子材料。在電壓0~1.23伏特間,其紫外光-可視光-近紅外光之吸收波長變化顯示其具可逆且明顯由淺黃至綠再至藍的顏色變化。同時,此共軛高分子材料(P2)結合理論化學計算,也提出新的分子軌域理論之氧化還原機制。


    A series of novel functional conjugated polymers containing triphenylamine group were successfully prepared by Suzuki coupling, and analyzed using theoretical analysis and characterization such as physical, thermal, optical, electrochemical and electro-optical properties, and hole mobility.
    First, a series of novel triphenylamine-containing conjugated polymers (P1, P2, Ref(P3) and Ref(P4)) were successfully synthesized by Suzuki coupling. These novel conjugated polymers having number average molecular weight of 1.31×104 ~ 2.05×104 exhibited excellent solubility in common organic solvents, such as N-methyl-2-pyrrolidinone (NMP), tetrahydrofuran, chloroform, and toluene at room temperature. These conjugated polymers had useful levels of thermal stability in comparison to commercially conjugated polymers such as poly(9,9-dioctylfluorene) (POF) due to their relatively high glass transition temperature (Tg =112 ~ 144 °C) and 10% weight-loss temperatures (Td10) in nitrogen (Td10 = 422 ~ 446 °C).
    Among these conjugated polymers, the conjugated polymer film (P1) revealed better stability of electrochromic characteristics and a more rapid switching time than model polymers Ref(P3) and P2 which lack the electron-donating groups bis(4-(2,4,4-trimethylpentan-2-yl) phenyl)amine and 2,4,4-trimethylpentan-2-yl, respectively. The hole mobility of the conjugated polymer P2 revealed ca. 10–3 cm2 V–1 s–1, which is much higher than other conjugated polymer systems. The observed UV-vis-NIR absorption change in the conjugated polymer film P2 at applied potentials ranging from 0.00 to 1.23 V are fully reversible and are associated with strong color changes from pale yellowish in its neutral form to green and blue in its oxidized form. Using a combination of experimental study and theoretical investigation, we proposed an oxidation mechanism based on molecular orbital theory, which explains the cyclic voltammetry (CV) experimental results well.

    中文摘要 ------------------------------------------------------------------------------------------------ I 英文摘要 ------------------------------------------------------------------------------------------------ II 誌謝 ------------------------------------------------------------------------------------------------------ IV 圖表索引------------------------------------------------------------------------------------------------- VII Chapter 1 INTRODUCTION (緒論) ---------------------------------------------------------- 1 1.1 INTRODUCTION ----------------------------------------------------------------------------- 2 Chapter 2 EXPERIMENTAL SECTION ---------------------------------------------------- 5 2.1 Materials ---------------------------------------------------------------------------------------- 6 2.2 Monomer and polymer synthesis ------------------------------------------------------------ 6 2.2.1 Synthesis of N,N-bis(4-bromophenyl)-N’,N’-bis(4-(2,4,4- trimethylpentan- 2-yl)phenyl)-1,4-phenylenediamine (M3) ----------------------------------------- 6 2.2.2 Synthesis of N,N-bis(4-bromophenyl)-N’,N’-dipheny-l,4-phenylenediamine (M6) was carried out using the Buchwald-Hartwig Reaction ------------------ 11 2.2.3 Synthesis of model compound, 4,4’-bis(2,4,4-trimethylpentan-2-yl) triphenylamine (M7) ----------------------------------------------------------------- 17 2.2.4 Synthesis of the conjugated polymers (P1) via Suzuki coupling --------------- 18 2.2.5 Synthesis of the conjugated polymer P2 via Suzuki coupling ------------------ 24 2.2.6 Synthesis of bis(4-bromophenyl)phenylamine and model polymer (Ref(P3)) ------------------------------------------------------------------------------- 28 2.2.7 Synthesis of 4-bromo-N-(4-bromophenyl)-N-(4-butoxyphenyl)aniline (BOTPA) and model polymer (Ref(P4)) ------------------------------------------ 29 2.3 Measurements ---------------------------------------------------------------------------------- 32 Chapter 3 RESULTS AND DISCUSSION --------------------------------------------------- 35 3.1 Synthesis ---------------------------------------------------------------------------------------- 36 3.2 Basic characterization ------------------------------------------------------------------------- 37 3.3 Optical properties ------------------------------------------------------------------------------ 41 3.4 Electrochemical properties and oxidation mechanism of conjugated polymer P1 by atomic orbital theory -------------------------------------------------------------------------- 44 3.5 Oxidation mechanism of conjugated polymer P2 by theoretical study ----------------- 51 3.6 Spectroelectrochemical and electrochromic characteristics ------------------------------ 52 3.7 Hole mobility measurement ------------------------------------------------------------------ 66 3.8 Device ------------------------------------------------------------------------------------------- 69 Chapter 4 CONCLUSIONS (結論) ------------------------------------------------------------- 71 4.1 CONCLUSIONS ------------------------------------------------------------------------------- 72 Chapter 5 REFERENCES (參考文獻) --------------------------------------------------------- 73 5.1 REFERENCES --------------------------------------------------------------------------------- 74 Appendix (附錄) Atomic charge distribution of all atoms in ground state, first oxidation state, second oxidation state, and the charge difference of ΔQ1 and ΔQ2 ------------------------------------------------------------------------------------ 83 作者簡介------------------------------------------------------------------------------------------------- 90 授權書---------------------------------------------------------------------------------------------------- 97

    1. (a) Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism: Fundamentals and Applications; VCH: Weinheim, Germany, 1995; (b) Bange, K.; Bambke, T. Adv Mater 1990, 2, 10; (c) Verghese, M. M.; Ram, M. K.; Vardnan, H.; Malhorta, B. D.; Ashraf, S. M. Polymer 1997, 38, 1625.
    2. (a) Byker, H. J. Gentex Corp., U.S. Patent No. 4902108; (b) Granqvist, C. G.; Azens, A.; Isidorsson, J.; Kharrazi, M.; Cullman, L.; Lindstroem, T.; Niklasson, G. A.; Ribbing, C. G.; Roennow, D.; Stromme Mattsson, M.; Veszelei, M. J Non-Cryst Solids 1997, 218, 273.
    3. (a) Granqvist, C. G.; Azens, A.; Hjelm, A.; Kullman, L.; Niklasson, G. A.; Ribbing, C. G.; Roennow, D.; Stromme Mattsson, M.; Veszelei, M.; Vaivars, G. Sol Energy 1998, 63, 199; (b) Mortimer, R. J. Chem Soc Rev 1997, 26, 147; (c) Pennisi, A.; Simone, F.; Barletta, G.; Di Marco, G.; Lanza, M. Electrochim Acta 1999, 44, 3237.
    4. (a) Monk, P. M. S. Handb Lumin Disp Mater Devices 2003, 3, 261; (b) Monk, P. M. S. J Electroanal Chem 1997, 432, 175; (c) Bange, K. Sol Energy Mater Sol Cells 1999, 58, 1.
    5. (a) Meeker, D. L.; Mudigonda, D. S. K.; Osborn, J. M.; Loveday, D. C.; Ferraris, J. P. Macromolecules 1998, 31, 2943; (b) Brotherston, I. D.; Modigonda, D. S. K.; Osborn, J. M.; Belk, J.; Chen, J.; Loveday, D. C.; Boehme, J. L.; Ferraris, J. P.; Meeker, D. L. Electrochim Acta 1999, 44, 2993; (c) Mudigonda, D. S. K.; Meeker, D. L.; Loveday, D. C.; Osborn, J. M.; Ferraris, J. P. Polymer 1999, 40, 3407.
    6. Granqvist, C. G. Sol Energy Mater Sol Cells 2007, 91, 1529.
    7. (a) Dautremont-Smith, W. C. Displays 1982, 3; (b) Granqvist, C. G. Sol Energy Mater Sol Cells 2000, 60, 201; (c) Granqvist, C. G. Handbook of Inorganic Electrochromic Materials, Elsevier, Amsterdam, The Netherlands, 1995 (reprinted 2002).
    8. (a) Mortimer, R. J.; Reynolds, J. R. J Mater Chem 2005, 15, 2226; (b) de Tacconi, N. R.; Rajeshwar, K.; Lezna, R. O. Chem Mater 2003, 15, 3046.
    9. (a) Benito, R. V.; Pena, J. M. S.; Gonzalo, A. B.; Ollero, J. M.; Vásquez, C.; Pomposo, J. A.; Grande, H. J.; Mecerreyes, M. Opt Eng 2004, 43, 2967; (b) Ko, H. C.; Kim, S.; Lee, H.; Moon, B. Adv Funct Mater 2005, 15, 905; (c) Ryu, J. H.; Shin, D. O.; Suh, K. D. J Polym Sci Part A: Polym Chem 2005, 43, 6562; (d) Sortino, S.; Conoci, S.; Yildiz, I.; Tomasulo, M.; Raymo, F. M. J Mater Chem 2006, 16, 3171.
    10. (a) Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism and Electrochromic Devices, Cambridge : Cambridge University Press, 2007; (b) Beaupre, S.; Breton, A.-C.; Dumas, J.; Leclerc, M. Chem Mater 2009, 21, 1504; (c) Mortimer, R. J. Electrochim Acta 1999, 44, 2971; (d) Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Displays 2006, 27, 2.
    11. Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R. Handbook of Conducting Polymers, 2nd ed.; Marcel Dekker: New York, 1998.
    12. (a) Beaujuge, P. M.; Ellinger, S.; Reynolds, J. R. Nat Mater 2008, 7, 795; (b) Thompson, B. C.; Schottland, P.; Zong, K.; Reynolds, J. R. Chem Mater 2000, 12, 1563; (c) Shawn, A.; Sotzing, G. A.; Reynolds, J. R. Chem Mater 1998, 10, 2101; (d) Cirpan, A.; Argun, A. A.; Grenier, C. R. G.; Reeves, B. D.; Reynolds, J. R. J Mater Chem 2003, 13, 2422; (e) Argun, A. A.; Aubert, P. H.; Thompson, B. C.; Schwendeman, I.; Gaupp, C. L.; Hwang, J.; Pinto, N. J.; Tanner, D. B.; MacDiarmid, A. G.; Reynolds, J. R. Chem Mater 2004, 16, 4401; (f) Witker, D.; Reynolds, J. R. Macromolecules 2005, 38, 7636.
    13. (a) Zheng, J.; Qiao, W.; Wan, X.; Gao, J. P.; Wang, Z. Y. Chem Mater 2008, 20, 6163; (b) Qiao, W.; Zheng, J.; Wang, Y.; Zheng, Y.; Song, N.; Wan, X.; Wang, Z. Y. Org Lett 2008, 10, 641.
    14. (a) Thelakkat, M. Macromol Mater Eng 2002, 287, 442; (b) Liaw, D. J.; Hsu, P. N.; Chen, W. H.; Lin, S. L. Macromolecules 2002, 35, 4669; (c) Wang, K. L.; Liou, W. T.; Liaw, D. J.; Huang, S. T. Polymer 2008, 49, 1538; (d) Wang, K. L.; Liou, W. T.; Liaw, D. J.; Chen, W. T. Dyes Pigment 2008, 78, 93; (e) Liaw, D. J.; Wang, K. L.; Pujari, S. P.; Huang, Y. C.; Tao, B. C.; Chen, M. H.; Lee, K. R.; Lai, J. Y. Dyes Pigment 2009, 82, 109; (f) Liaw, D. J.; Wang, K. L.; Kang, E. T.; Pujari, S. P.; Chen, M. H.; Huang, Y. C.; Tao, B. C.; Lee, K. R.; Lai, J. Y. J Polym Sci Part A: Polym Chem 2009, 47, 991; (g) Sek, D.; Iwan, A.; Jarzabek, B.; Kaczmarczyk, B.; Kasperczyk, J.; Mazurak, Z.; Domanski, M.; Karon, K.; Lapkowski, M. Macromolecules 2008, 41, 6653; (h) Liu, M. S.; Niu, Y. H.; Ka, J. W.; Yip, H. L.; Huang, F.; Luo, J.; Kim, T. D.; Jen, A. K. Y. Macromolecules 2008, 41, 9570; (i) Mikroyannidis, J. A.; Gibbons, K. M.; Kulkarni, A. P.; Jenekhe, S. A. Macromolecules 2008, 41, 663; (j) Li, W.; Li, S.; Zhang, Q.; Zhang, S. Macromolecules 2007, 40, 8205; (k) Zhang, Z. G.; Zhang, K. L.; Liu, G.; Zhu, C. X.; Neoh, K. G.; Kang, E. T. Macromolecules 2009, 42, 3104.
    15. (a) Shirota, Y. J Mater Chem 2005, 15, 75; (b) Okumoto, K.; Shirota, Y. Chem Mater 2003, 15, 699; (c) Mochizuki, H.; Hasui, T.; Kawamoto, M.; Ikeda, T.; Adachi, C.; Taniguchi, Y.; Shirota, Y. Macromolecules 2003, 36, 3457; (d) Wu, C. S.; Chen, Y. Macromolecules 2009, 42, 3729; (e) Lee, C. C.; Yeh, K. M.; Chen, Y. J Polym Sci Part A: Polym Chem 2008, 46, 7960; (f) Hsieh, B. Y.; Chen, Y. J Polym Sci Part A: Polym Chem 2009, 47, 1553; (g) Shi, W.; Fan, S.; Huang, F.; Yang, W.; Liu, R.; Cao, Y. J Mater Chem 2006, 16, 2387; (h) Vellis, P. D.; Mikroyannidis, J. A.; Cho, M. J.; Choi, D. H. J Polym Sci Part A: Polym Chem 2008, 46, 5592; (i) Wu, F. I.; Shih, P. I.; Shu, C. F.; Tung, Y. L.; Chi, Y. Macromolecules 2005, 38, 9028.
    16. (a) Ling, Q. D.; Liaw, D. J.; Zhu, C. X.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G. Prog Polym Sci 2008, 33, 917; (b) Ling, Q. D.; Chang, F. C.; Song, Y.; Zhu, C. X.; Liaw, D. J.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G. J Am Chem Soc 2006, 128, 8732; (c) Liu, G.; Ling, Q. D.; Kang, E. T.; Neoh, K. G.; Liaw, D. J.; Chang, F. C.; Zhu, C. X.; Chan, D. S. H. J Appl Phys 2007, 102, 024502; (d) Liu, Y. L.; Ling, Q. D.; Kang, E. T.; Neoh, K. G.; Liaw, D. J.; Wang, K. L.; Liou, W. T.; Zhu, C. X.; Chan, D. S. H. J Appl Phys 2009, 105, 044501; (e) Ling, Q. D.; Liaw, D. J.; Chang, F. C.; Zhu, C. X.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G. Polymer 2007, 48, 5182.
    17. (a) Shirota, Y.; Kageyama, H. Chem Rev 2007, 107, 953; (b) Kageyama, H.; Ohishi, H.; Tanaka, M.; Ohmori, Y.; Shirota, Y. Appl Phys Lett 2009, 94, 063304; (c) Ohishi, H.; Tanaka, M.; Kageyama, H.; Shirota, Y. Chem Lett 2004, 33, 1266; (d) Cheung, C. H.; Kwok, K. C.; Tse, S. C.; So, S. K. J Appl Phys 2008, 103, 093705.
    18. (a) Okumoto, K.; Shirota, Y. Mater Sci Eng B 2001, 85, 135; (b) Heun, S.; Borsenberger, P. M. Chem Phys 1995, 200, 245; (c) Stolka, M.; Yanus, J. F.; Pai, D. M. J Phys Chem 1984, 88, 4707.
    19. (a) Tse, S. C.; Kwok, K. C.; So, S. K. Appl Phys Lett 2006, 89, 262102; (b) Mi, B. X.; Wang, P. F.; Liu, M. W.; Kwong, H. L.; Wong, N. B.; Lee, C. S.; Lee, S. T. Chem Mater 2003, 15, 3148; (c) Deng, Z.; Lee, S. T.; Webb, D. P.; Chan, Y. C.; Gambling, W. A. Synth Met 1999, 107, 107; (d) VanSlyke, S. A.; Chen, C. H.; Tang, C. W. Appl Phys Lett 1996, 69, 2160; (e) Tong, K. L.; Tsang, S. W.; Tsung, K. K.; Tse, S. C.; So, S. K. J Appl Phys 2007, 102, 093705.
    20. (a) Tang, C. W.; VanSlyke, S. A. Appl Phys Lett 1987, 51, 913; (b) Tang, C.W.; VanSlyke, S. A.; Chen, C. H. J Appl Phys 1989, 65, 3610; (c) Adachi, C.; Nagai, K.; Tamoto, N. Appl Phys Lett 1989, 66, 2679; (d) Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Jpn J Appl Phys 1988, 27, L269.
    21. (a) Strohriegl, P.; Grazulevicius, J. V. Adv Mater 2002, 14, 1439; (b) Fong, H. H.; Lun, K. C.; So, S. K. Chem Phys Lett 2002, 353, 407.
    22. (a) Chen, J.; Cao, Y. Acc Chem Res 2009, 42, 1709; (b) Veres, J.; Ogier, S. D.; Leeming, S. W.; Cupertino, D. C.; Khaffaf, S. M. Adv Funct Mater 2003, 13, 199; (c) Chung, D. S.; Lee, S. J.; Park, J. W.; Choi, D. B.; Lee, D. H.; Park, J. W.; Shin, S. C.; Kim, Y. H.; Kwon, S. K.; Park, C. E. Chem Mater 2008, 20, 3450; (d) Xiao, S.; Stuart, A. C.; Liu, S.; Zhou, H.; You, W. Adv Funct Mater 2010, 20, 635; (e) Wang, F.; Luo, J.; Yang, K.; Chen, J.; Huang, F.; Cao, Y. Macromolecules 2005, 38, 2253; (f) Pacios, R.; Nelson, J.; Bradley, D. D. C.; Brabec, C. J. Appl Phys Lett 2003, 83, 4764; (g) Choulis, S. A.; Nelson, J.; Kim, Y.; Poplavskyy, D.; Kreouzis, T.; Durrant, J. R.; Bradley, D. D. C. Appl Phys Lett 2003, 83, 3812; (h) Redecker, M.; Bradley, D. D. C.; Inbasekaran, M.; Wu, W. W.; Woo, E. P. Adv Mater 1999, 11, 241.
    23. Liao, Y. L.; Hung, W. Y.; Hou, T. H.; Lin, C. Y.; Wong, K. T. Chem Mater 2007, 19, 6350.
    24. (a) Beaupre, S.; Dumas, J.; Leclerc, M. Chem Mater 2006, 18, 4011; (b) Choi, K.; Yoo, S. J.; Sung, Y. E.; Zentel, R. Chem Mater 2006, 18, 5823; (c) Otero, L.; Sereno, L.; Fungo, F.; Liao, Y. L.; Lin, C. Y.; Wong, K. T. Chem Mater 2006, 18, 3495; (d) Natera, J.; Otero, L.; Sereno, L.; Fungo, F.; Wang, N. S.; Tsai, Y. M.; Hwu, T. Y.; Wong, K. T. Macromolecules 2007, 40, 4456; (e) Liou, G. S.; Lin, H. Y. Macromolecules 2009, 42, 125.
    25. (a) Seo, E. T.; Nelson, R. F.; Fritsch, J. M.; Marcoux, L. S.; Leedy, D. W.; Adams, R. N. J Am Chem Soc 1966, 88, 3498; (b) Nelson, R. F.; Adams, R. N. J Am Chem Soc 1968, 90, 3925.
    26. (a) Ito, A.; Ino, H.; Tanaka, K.; Kanemoto, K.; Kato, T. J Org Chem 2002, 67, 491; (b) Hagopian, L.; Kohler, G.; Walter, R. I. J Phys Chem 1967, 71, 2290.
    27. (a) Marken, F.; Hayman, C. M.; Bulman Page, P. C. Electrochem Commun 2002, 4, 462; (b) Wadhawan, J. D.; Evans, R. G.; Banks, C. E.; Wilkins, S. J.; France, R. R.; Oldham, N. J.; Fairbanks, A. J.; Wood, B.; Walton, D. J.; Schroder, U.; Compton, R. G. J Phys Chem B 2002, 106, 9619; (c) Davies, W. B.; Svec, W. A.; Ratner, M. A.; Wasielewski, M. R. Nature 1998, 396, 60.
    28. (a) Hartwig, J. F.; Kawatsura, M.; Hauck, S. I.; Shaughnessy, K. H.; Alcazar-Roman, L. M. J Org Chem 1999, 64, 5575; (b) Hartwig, J. F. Angew Chem Int Ed Engl 1998, 37, 2046; (c) Wolfe, J. P.; Wagaw, S.; Marcoux, J. F.; Buchwald, S. L. Acc Chem Res 1998, 31, 805.
    29. (a) Gujadhur, R.; Venkataraman, D.; Kintigh, J. T. Tetrahedron Lett 2001, 42, 4791; (b) Urgaonkar, S.; Xu, J. H.; Verkade, J. G. J Org Chem 2003, 68, 8416; (c) Bergstrom, F. W.; Granara, I. M.; Erickson, V. J Org Chem 1942, 7, 98.
    30. Lim, E.; Kim, Y. M.; Lee, J. I.; Jung, B. J.; Cho, N. S.; Lee, J.; Do, L. M.; Shim, H. K. J Polym Sci Part A: Polym Chem 2006, 44, 4709.
    31. Grell, M.; Bradley, D. D. C.; Inbasekaran, M.; Woo, E. P. Adv Mater 1997, 9, 798.
    32. Morin, J. F.; Leclerc, M. Macromolecules 2002, 35, 8413.
    33. (a) Tokito, S.; Tanaka, H.; Okada, A.; Taga, Y. Appl Phys Lett 1996, 69, 878; (b) Tokito, S.; Tanaka, H.; Noda, K.; Okada, A.; Taga, Y. Appl Phys Lett 1997, 70, 1929; (c) Tokito, S.; Tanaka, H.; Noda, K.; Okada, A.; Taga, Y. IEEE Trans Electron Devices 1997, 44, 1239.
    34. Koleva, B. B.; Stoyanov, S.; Kolev, T.; Petkov, I.; Spiteller, M. Spectroc Acta Pt A-Molec Biomolec Spectr 2008, 71, 847.
    35. Kim, J. S.; Lu, L.; Sreearunothai, P.; Seeley, A.; Yim, K. H.; Petrozza, A.; Murphy, C. E.; Beljonne, D.; Cornil, J.; Friend, R. H. J Am Chem Soc 2008, 130, 13120.
    36. (a) Jenekhe, S. A.; Osaheni, J. A. Science, 1994, 265, 765; (b) Teetsov, J.; Fox, M. A. J Mater Chem 1999, 9, 2117.
    37. (a) Ito, A.; Ino, H.; Tanaka, K.; Kanemoto, K.; Kato, T. J Org Chem 2002, 67, 491; (b) Marcoux, L. S.; Adams, R. N.; Feldberg, S. W. J Phys Chem 1969, 73, 2611; (c) Wu, H. Y.; Wang, K. L.; Liaw, D. J.; Lee, K. R.; Lai, J. Y. J Polym Sci Part A: Polym Chem 2010, 48, 1469.
    38. Wu, H. Y.; Wang, K. L.; Jiang, J. C.; Liaw, D. J.; Lee, K. R.; Lai, J. Y.; Chen, C. L. J Polym Sci Part A: Polym Chem 2010 (In press) (DOI: 10.1002/pola.24104).
    39. (a) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr., T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q. ; Baboul, A. G. ; Clifford, S. ; Cioslowski, J. ; Stefanov, B. B. ; Liu, G. ; Liashenko, A. ; Piskorz, P. ; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.02; Gaussian, Inc.: Wallingford, CT, 2004; (b) Hung, Y. C.; Jiang, J. C.; Chao, C. Y.; Su, W. F.; Lin, S. T. J Phys Chem B 2009, 113, 8268; (c) Liu, C. S.; Chou, L. W.; Hong, L. S.; Jiang, J. C. J Am Chem Soc 2008, 130, 5440; (d) Chang, H. C.; Jiang, J. C.; Liou, Y. C.; Hung, C. H.; Lai, T. Y.; Lin, S. H. J Chem Phys 2008, 129, 044506.
    40. (a) Lin, B. C.; Cheng, C. P.; Lao, Z. P. M. J Phys Chem A 2003, 107, 5241; (b) You, N. H.; Chueh, C. C.; Liu, C. L.; Ueda, M.; Chen, W. C. Macromolecules 2009, 42, 4456; (c) Wang, H. Y.; Chen, G.; Xu, X. P.; Ji, S. J. Synth Met 2010, 160, 1065; (d) Sancho-García, J. C.; Foden, C. L.; Grizzi, I.; Greczynski, G.; de Jong, M. P.; Salaneck, W. R.; Brédas, J. L.; Cornil, J. J Phys Chem B 2004, 108, 5594.
    41. (a) Chen, W. H.; Wang, K. L.; Liaw, D. J.; Lee, K. R.; Lai, J. Y. Macromolecules, 2010, 43, 2236; (b) Chang, H. W.; Lin, K. H.; Chueh, C. C.; Liou, G. S.; Chen, W. C. J Polym Sci Part A: Polym Chem 2009, 47, 4037; (c) Lin, H. Y.; Liou, G. S. J Polym Sci Part A: Polym Chem 2009, 47, 285.
    42. (a) Gaupp, C. L.; Welsh, D. M.; Rauh, R. D.; Reynolds, J. R. Chem Mater 2002, 14, 3964; (b) Delongchamp, D. M.; Kastantin, M.; Hammond, P. T. Chem Mater 2003, 15, 1575; (c) Meng, H.; Tucker, D.; Chaffins, S.; Chen, Y.; Helgeson, R.; Dunn, B.; Wudl, F. Adv Mater 2003, 15, 146; (d) Bach, U.; Corr, D.; Lupo, D.; Pichot, F.; Ryan, M. Adv Mater 2002, 14, 845; (e) Cutler, C. A.; Bouguettaya, M.; Reynolds, J. R. Adv Mater 2002, 14, 684; (f) Reeves, B. D.; Thompson, B. C.; Abboud, K. A.; Smart, B. E.; Reynolds, J. R. Adv Mater 2002, 14, 717; (g) Somani, P. R.; Radhakrishnan, S. Mater Chem Phys 2002, 77, 117; (h) Schwendeman, I.; Hickman, R.; Sönmez, G.; Schottland, P.; Zong, K.; Welsh, D. M.; Reynolds, J. R. Chem Mater 2002, 14, 3118; (i) Boehme, J. L.; Mudigonda, D. S. K.; Ferraris, J. P. Chem Mater 2001, 13, 4469; (j) Mudigonda, D. S. K.; Boehme, J. L.; Brotherston, I. D.; Meeker, D. L.; Ferraris, J. P. Chem Mater 2000, 12, 1508; (k) Gaupp, C. L.; Zong, K.; Schottland, P.; Thompson, B. C.; Thomas, C. A.; Reynolds, J. R. Macromolecules 2000, 33, 1132; (l) Welsh, D. M.; Kumar, A.; Meijer, E. W.; Reynolds, J. R. Adv Mater 1999, 11, 1379.
    43. Borsenberger, P. M.; Weiss, D. S. Organic Photoreceptors for Imaging Systems; Marcel Dekker: New York, 1993.
    44. Borsenberger, P. M.; Pautmeier, L.; Bässler, H. J Chem Phys 1991, 94, 5447.
    45. Marcus, R. A. Rev Mod Phys 1993, 65, 599.
    46. (a) Lin, C. Y.; Chen, Y. M.; Chen, H. F.; Fang, F. C.; Lin, Y. C.; Hung, W. Y.; Wong, K. T.; Kwong, R. C.; Xia, S. C. Org Electron 2009, 10, 181; (b) Chao, T. C.; Wong, K. T.; Hung, W. Y.; Hou, T. H.; Chen, W. J. Tetrahedron Lett 2008, 50, 3422.
    47. (a) Egbe, D. A. M.; Türk, S.; Rathgeber, S.; Kühnlenz, F.; Jadhav, R.; Wild, A.; Birckner, E.; Adam, G.; Pivrikas, A,; Cimrova, V.; Knör, G.; Sariciftci, N. S.; Hoppe, H. Macromolecules 2010, 43, 1261; (b) Gambino, S.; Bansal, A. K.; Samuel, I. D. W. Org Electron 2010, 11, 467.

    無法下載圖示 全文公開日期 2015/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE