簡易檢索 / 詳目顯示

研究生: 吳昭儀
Chao-yi Wu
論文名稱: 聚雙噻吩環戊烷與芴之共軛高分子包含萘二醯亞胺之合成及性質鑑定
Synthesis and Characterization of Cyclopentadithiophene and Fluorene based Conjugated Polymers Containing Naphthalene Bisimide
指導教授: 游進陽
Chin-yang Yu
口試委員: 邱顯堂
Hsien-tang Chiu
陳志堅
Jyh-chien Chen
堀江正樹
Masaki Horie
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 118
中文關鍵詞: 有機場效電晶體有機太陽能電池有機半導體材料電荷轉移作用
外文關鍵詞: organic field effect transistors, organic photovoltaics, organic semiconducting materials, charge transfer interaction
相關次數: 點閱:410下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用鈴木耦合聚合反應合成新聚雙噻吩環戊烷與芴之共軛高分子聚合物包含萘二醯亞胺,這些材料具有潛力應用於有機場效電晶體及有機太陽能上。透過熱重分析及示差掃描熱量分析檢測得知,這些共軛高分子聚合物具有良好的熱穩定性及低結晶性質。利用紫外-可見光譜和循環伏安儀分析,我們比較了PCPDTNBIs及其相似結構PFONBIs的光學與電化學特性。在紫外-可見光譜上,PCPDTNBI的吸收峰紅移現象較PFONBI大,是由於聚雙噻吩環戊烷具有較強的推電子能力。而PCPDTNBI分子量愈大會造成最大吸收峰的红移現象越明顯,此現象在溶液或固體吸收光譜中皆可觀察到。相較於PFONBI,PCPDTNBI具有較低的能隙,是因在聚雙噻吩環戊烷和萘二醯亞胺之間有較強電荷轉移相互作用。


    The new cyclopentadithiophene-based and fluorene-based polymers were synthesized through Suzuki coupling polymerization and these materials are potential use for organic field-effect transistors and organic photovoltaics. The resulting polymers exhibit good thermal stabilities and low crystallinities by TGA and DSC measurement. The optical and electronic properties of PCPDTNBIs and are PFONBIs can be examined by UV-vis spectroscopy and cyclic voltammetry. The UV–vis absorption maxima of PCPDTNBI were subjected to larger bathochromic shifts than those of PFONBI. This is due to stronger electron donating property of cyclopentadithiophene in the polymer backbone. The absorption maximum of PCPDTNBI showed red-shift compare to low molecular weight analogous. This phenomenon can be observed in both the solid and solution states. PCPDTNBI showed relative low bandgap than PFONBI presumably there is a strong charge transfer interaction between the electron-donating CPDT unit and the electron-accepting NBI.

    Abstract i 中文摘要 ii Acknowledgements iii Table of Content iv List of Figures vi List of Schemes x Chapter 1. Introduction and Aims 1 1.1 Introduction 2 1.2 Organic semiconductors 2 1.3 Band theory of solids 4 1.4 Charge transport in conjugated polymers 7 1.5 Charge transporting materials 10 1.5.1 P-type semiconductors 10 1.5.2 N-type semiconductors 14 1.5.3 Ambipolar semiconductors 18 1.6 Organic field-effect transistors (OFETs) 19 1.7 Organic solar cell 30 1.8 Aims of the project 35 Chapter 2. Synthesis and Characterization of Conjugated polymers Containing Fluorene, Cyclopentadithiophenone and Naphthalene Tetracarboxylic Acid Bisimide Units 36 2.1 Introduction 37 2.2 Synthesis 42 2.2.1 Preparation of monomers 42 2.2.2 Polymerization: Suzuki coupling reaction 49 2.2.3 Synthesis of polymers 53 2.2.4 Molecular weight and structure characterization 54 2.3 Properties of polymers 61 2.3.1 Thermal properties 61 2.3.2 Optical and electrochemical properties 63 2.3.3 Electrochemical characterization 69 Chapter 3. Conclusions 72 Chapter 4. Experimental 73 4.1 General procedures (Instrumentation and Materials) 74 4.2 Synthesis 75 4.2.1 Synthesis of Cyclopentadithiophenes 75 4.2.2 Synthesis of Naphthalene Bisimides 80 4.2.3 Synthesis of Dioctylfluorene dioxaborolane 82 4.2.4 Synthesis of Napthalene-based polymers 83 References 88 Appendix. 93

    [1] M. Pope, H. P. Kallmann, P. Magnante, The Journal of Chemical Physics 1963, 38, 2042 .
    [2] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Physical Review Letters 1977, 39, 1098.
    [3] H. Koezuka, A. Tsumura, T. Ando, Synthetic Metals 1987, 18, 699.
    [4] R. B. Thapa, Ph.D., State University of New York at Buffalo, 2008; UMI Number: 3294975.
    [5] J. r. Heinze, B. A. Frontana-Uribe, S. Ludwigs, Chemical Reviews 2010, 110, 4724.
    [6] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, D. G. Schlom, Electron Device Letters, IEEE 1997, 18, 87.
    [7] S. F. Nelson, Y. Y. Lin, D. J. Gundlach, T. N. Jackson, Applied Physics Letters 1998, 72, 1854.
    [8] (a)B. Lucas, T. Trigaud, C. Videlot-Ackermann, Polymer International 2012, 61, 374; (b)H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, W. Weber, Journal of Applied Physics 2002, 92, 5259.
    [9] A. Afzali, C. R. Kagan, G. P. Traub, Synthetic Metals 2005, 155, 490.
    [10] D. J. Gundlach, J. E. Royer, S. K. Park, S. Subramanian, O. D. Jurchescu, B. H. Hamadani, A. J. Moad, R. J. Kline, L. C. Teague, O. Kirillov, C. A. Richter, J. G. Kushmerick, L. J. Richter, S. R. Parkin, T. N. Jackson, J. E. Anthony, Nat Mater 2008, 7, 216.
    [11] (a)F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, P. Alnot, Journal of the American Chemical Society 1993, 115, 8716; (b)C. D. Dimitrakopoulos, B. K. Furman, T. Graham, S. Hegde, S. Purushothaman, Synthetic Metals 1998, 92, 47.
    [12] M. Halik, H. Klauk, U. Zschieschang, G. Schmid, S. Ponomarenko, S. Kirchmeyer, W. Weber, Advanced Materials 2003, 15, 917.
    [13] H. Sirringhaus, R. H. Friend, C. Wang, J. Leuninger, K. Mullen, Journal of Materials Chemistry 1999, 9, 2095.
    [14] X.-C. Li, H. Sirringhaus, F. Garnier, A. B. Holmes, S. C. Moratti, N. Feeder, W. Clegg, S. J. Teat, R. H. Friend, Journal of the American Chemical Society 1998, 120, 2206.
    [15] K. Takimiya, Y. Kunugi, Y. Konda, N. Niihara, T. Otsubo, Journal of the American Chemical Society 2004, 126, 5084.
    [16] Q. Miao, T.-Q. Nguyen, T. Someya, G. B. Blanchet, C. Nuckolls, Journal of the American Chemical Society 2003, 125, 10284.
    [17] M.-H. Yoon, S. A. DiBenedetto, A. Facchetti, T. J. Marks, Journal of the American Chemical Society 2005, 127, 1348.
    [18] S. Ando, R. Murakami, J.-i. Nishida, H. Tada, Y. Inoue, S. Tokito, Y. Yamashita, Journal of the American Chemical Society 2005, 127, 14996.
    [19] J. H. Oh, S. Liu, Z. Bao, R. Schmidt, F. Wurthner, Applied Physics Letters 2007, 91, 212107.
    [20] B. A. Jones, M. J. Ahrens, M.-H. Yoon, A. Facchetti, T. J. Marks, M. R. Wasielewski, Angewandte Chemie 2004, 116, 6523.
    [21] X. Gao, C.-a. Di, Y. Hu, X. Yang, H. Fan, F. Zhang, Y. Liu, H. Li, D. Zhu, Journal of the American Chemical Society 2010, 132, 3697.
    [22] T. W. Lee, Y. Byun, B. W. Koo, I. N. Kang, Y. Y. Lyu, C. H. Lee, L. Pu, S. Y. Lee, Advanced Materials 2005, 17, 2180.
    [23] R. W. I. de Boer, A. F. Stassen, M. F. Craciun, C. L. Mulder, A. Molinari, S. Rogge, A. F. Morpurgo, Applied Physics Letters 2005, 86, 262109.
    [24] E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk, Nat Mater 2003, 2, 678.
    [25] A. Babel, J. D. Wind, S. A. Jenekhe, Advanced Functional Materials 2004, 14, 891.
    [26] C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chemical Reviews 2011.
    [27] M. Mas-Torrent, C. Rovira, Chemical Reviews 2011, 111, 4833.
    [28] J. Cornil, J. L. Bredas, J. Zaumseil, H. Sirringhaus, Advanced Materials 2007, 19, 1791.
    [29] R. o. P. Ortiz, A. Facchetti, T. J. Marks, Chemical Reviews 2009, 110, 205.
    [30] C. R. Newman, Frisbie, C. D., da Silva Filho, D. A., Bredas, J.-L., Ewbank, P. C., Mann, K. R., Chem. Mater. 2004, 16, 4436.
    [31] J. L. Bredas, Calbert, J. P., Da Silva Filho, D. A., Cornil, J., Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 5804.
    [32] Y. Sun, Y. Liu, D. Zhu, J. Mater. Chem. 2005, 15, 53.
    [33] A. Facchetti, M.-H. Yoon, C. L. Stern, H. E. Katz, T. J. Marks, Angewandte Chemie International Edition 2003, 42, 3900.
    [34] (a)A. Facchetti, Mushrush, M., Katz, H. E., Marks, T. J., Adv. Mater. 2003, 15, 33; (b)A. Facchetti, Mushrush, M., Yoon, M.-H., Hutchison, G. R., Ratner, M. A., Marks, T. J., J. Am. Chem. Soc. 2004, 126, 13859; (c)A. Facchetti, Letizia, J., Yoon, M.-H., Mushrush, M., Katz, H. E., Marks, T. J., Chem. Mater. 2004, 16, 4715.
    [35] (a)R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. J. Frechet, Adv. Mater. 2003, 15, 1519; (b)R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. J. Frechet, M. F. Toney, Macromolecules 2005, 38, 3312.
    [36] C. Reese, M. Roberts, M.-m. Ling, Z. Bao, Materials Today 2004, 7, 20.
    [37] S. Gunes, H. Neugebauer, N. S. Sariciftci, Chemical Reviews 2007, 107, 1324.
    [38] S. A. Stauth, B. A. Parviz, Proceedings of the National Academy of Sciences 2006, 103, 13922.
    [39] M. Zhang, H. N. Tsao, W. Pisula, C. Yang, A. K. Mishra, K. Mullen, Journal of the American Chemical Society 2007, 129, 3472.
    [40] (a)J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nat Mater 2007, 6, 497; (b)Y. Zhang, J. Zou, H.-L. Yip, Y. Sun, J. A. Davies, K.-S. Chen, O. Acton, A. K. Y. Jen, Journal of Materials Chemistry 2011, 21, 3895.
    [41] (a)B. A. Jones, A. Facchetti, M. R. Wasielewski, T. J. Marks, Journal of the American Chemical Society 2007, 129, 15259; (b)K. C. See, C. Landis, A. Sarjeant, H. E. Katz, Chemistry of Materials 2008, 20, 3609.
    [42] S. Witzel, C. Ott, E. Klemm, Macromolecular Rapid Communications 2005, 26, 889.
    [43] J. A. Letizia, M. R. Salata, C. M. Tribout, A. Facchetti, M. A. Ratner, T. J. Marks, Journal of the American Chemical Society 2008, 130, 9679.
    [44] H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, A. Facchetti, Nature 2009, 457, 679.
    [45] M. M. Durban, P. D. Kazarinoff, C. K. Luscombe, Macromolecules 2010, 43, 6348.
    [46] (a)H. Brisset, S. Le Moustarder, P. Blanchard, B. Illien, A. Riou, J. Orduna, J. Garin, J. Roncali, Journal of Materials Chemistry 1997, 7, 2027; (b)U. Asawapirom, R. Guntner, M. Forster, T. Farrell, U. Scherf, Synthesis 2002, 2002, 1136,1142.
    [47] Z. Chen, Y. Zheng, H. Yan, A. Facchetti, Journal of the American Chemical Society 2008, 131, 8.
    [48] (a)S. Gronowitz, Eriksson, B., Ark. Kemi 1967, 28, 99; (b)P. Jordens, Rawson, G., Wynberg, H., Journal of the Chemical Society C 1970, 2, 273; (c)P. Lucas, El Mehdi, N., Ho, H. A., Belanger, D., Breau, L., Synthesis 2000, 9, 1253.
    [49] P. Coppo, M. L. Turner, Journal of Materials Chemistry 2005, 15, 1123.
    [50] G.-Y. Chen, C.-M. Chiang, D. Kekuda, S.-C. Lan, C.-W. Chu, K.-H. Wei, Journal of Polymer Science Part A: Polymer Chemistry 2010, 48, 1669.
    [51] X. Guo, M. D. Watson, Organic Letters 2008, 10, 5333.
    [52] M. Ranger, Rondeau, D., Leclerc, M., Macromolecules 1997, 30, 7686.
    [53] K. Tamao, K. Sumitani, M. Kumada, Journal of the American Chemical Society 1972, 94, 4374.
    [54] N. Miyaura, A. Suzuki, Chemical Reviews 1995, 95, 2457.
    [55] N. Miyaura, A. Suzuki, Journal of the Chemical Society, Chemical Communications 1979, 866.
    [56] A. Suzuki, Journal of Organometallic Chemistry 1999, 576, 147.
    [57] (a)O. InganAs, F. Zhang, M. R. Andersson, Accounts of Chemical Research 2009, 42, 1731; (b)M. Svensson, F. Zhang, S. C. Veenstra, W. J. H. Verhees, J. C. Hummelen, J. M. Kroon, O. Inganas, M. R. Andersson, Advanced Materials 2003, 15, 988; (c)L. J. Lindgren, F. Zhang, M. Andersson, S. Barrau, S. Hellstrom, W. Mammo, E. Perzon, O. Inganas, M. R. Andersson, Chemistry of Materials 2009, 21, 3491.
    [58] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Advanced Materials 2006, 18, 789.
    [59] V. N. Bliznyuk, S. A. Carter, J. C. Scott, G. Klarner, R. D. Miller, D. C. Miller, Macromolecules 1998, 32, 361.
    [60] A. P. Kulkarni, Kong, X., Jenekhe, S. A., J. Phys. Chem. B 2004, 108, 8689.
    [61] D. Cao, Q. Liu, W. Zeng, S. Han, J. Peng, S. Liu, Journal of Polymer Science Part A: Polymer Chemistry 2006, 44, 2395.

    QR CODE