簡易檢索 / 詳目顯示

研究生: 許伯任
Po-Jen Hsu
論文名稱: 以不同自組裝分子薄膜修飾反式異質結有機太陽能電池電子傳導層上下界面之研究
Dual Interfacial Modifications of Organic Solar Cell by Self-assembled Monolayers – Dipole vs Transport
指導教授: 戴龑
Yian Tai
口試委員: 陶雨臺
Yu-Tai Tao
陳良益
Liang-Yih Chen
葉旻鑫
Min-Hsin Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 86
中文關鍵詞: 雙層修飾有機太陽能電池自組裝分子薄膜分子偶極矩界面修飾
外文關鍵詞: dual modification, interface, OPV, self-assembled monolayer, dipole moment
相關次數: 點閱:225下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將自組裝分子薄膜以旋轉塗佈法修飾於有機異質結(P3HT:PCBM)太陽能電池電子傳導層(氧化鋅)上與下界面處,於電子傳導層與主動層處為上界面修飾;於陰極和電子傳導層處為下界面修飾,同時修飾上與下界面於一元件時稱之為雙層修飾。其中,上層修飾以3-氨基丙基三乙氧基矽烷(NH2-SAM)作為自組裝分子薄膜的選擇,NH2-SAM帶推電子基可降低主動層與氧化鋅間的電子注入能障使電池元件效率提升;另一方面,下層修飾選擇兩偶極矩方向相反之苯甲酸衍生物,下層修飾後因造成基板表面能變化,可改善氧化鋅薄膜垂直電阻和氧缺陷含量,使電池內串聯電阻降低並提升元件效率,另發現於下層修飾中,分子偶極矩方向對於元件效率並無直接影響。在雙界面修飾元件時,上與下界面提供的不同修飾性質可疊加,進一步提升元件效率,並以兩相反偶極矩官能基-NH2和-CF3之組合有最佳元件效率,相較標準片元件效率提升約21%。


    This study reports the incorporation of self-assembled monolayers (SAMs) into organic photovoltaic devices to investigate the influence of single- and dual-SAM modification approaches, the combined effect, on power conversion efficiency. For this purpose, SAMs of functional benzoic acid groups (BA-SAMs) and silane with donating group (NH2-silane) were employed to modify the surface of ITO (bottom modification) and ZnO layer (top modification) in the organic photovoltaic devices. Top modification created an interface dipole providing superior charge injection between the layers, and bottom modification afforded better charge transport through the ZnO and SAM layer with ignorable of dipole direction. The results showed improvement in device performance for single modification, and most importantly the combination of each effect in dual modification devices brought out further efficiency enhancement. A new dipole behavior was observed at SAM/ZnO interface which contradicts the usual trend of efficiency changing with dipole moment direction. The device with the CF3-SAM demonstrated better performance, suggesting the intuitively unfavorable dipole group provides a better physical contact to ZnO that resulted in primary efficiency improvement.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 IX 名詞縮寫表 X 第一章 緒論 1 1-1 前言 1 1-2 研究動機 4 第二章 相關理論與文獻回顧 5 2-1 太陽能電池工作原理與轉換效率 5 2-1-1 有機太陽能電池工作原理 5 2-1-2 太陽能電池參數 8 2-2 自組裝單層分子薄膜 10 2-2-1 分子結構 10 2-2-2 製備方法 12 2-2-3 分析方法 13 2-3自組裝單層分子薄膜於太陽能電池界面修飾之應用 16 2-3-1修飾基板功函數應用 17 2-3-2修飾基板表面能應用 18 2-3-3特殊官能基團作為無機/有機界面連接層 21 2-4 自組裝薄膜分子修飾表面功函數 22 2-5 不同尾端基與表面能計算 24 第三章 實驗方法與步驟 27 3-1 實驗方法 27 3-2 實驗藥品 28 3-3 實驗儀器 29 3-4 自組裝單分子層薄膜的製備 31 3-5 太陽能電池元件製備 32 3-6 分析儀器介紹 35 第四章 結果與討論 38 4-1 上層修飾與其太陽能電池元件分析 38 4-1-1 以乙醇成長APTES分子薄膜定性分析 39 4-1-2以氯苯成長APTES分子薄膜接觸角分析 43 4-1-3成長APTES分子薄膜修飾於太陽能電池分析 44 4-2以CF3BA和OCH3BA下層修飾之定性分析 46 4-2-1 CF3BA和OCH3BA成長於ITO基板定性分析 46 4-2-2 下層修飾對於上層氧化鋅之影響分析 49 4-3 下層修飾太陽能電池元件效率分析 60 4-4 雙層修飾太陽能電池元件效率分析 64 第五章 總結 67 參考文獻 69

    1. 王啟秀, 孔祥科, 左玉婷, 全球能源產業趨勢研究——以台灣太陽能光電產業為例, Web journal of Chinese management review, Vol. 11, No. 3, Aug 2008
    2. Best Research-Cell Efficiency Chart (https://www.nrel.gov/pv/cell- efficiency.html)
    3. S. Günes, H. Neugebauer, N. S. Sariciftci, Conjugated polymer-based organic solar cells, Chem. Rev. 2007, 107, 4, 1324–1338
    4. Yakimov and S. R. Forrest, High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters, Appl. Phys. Lett. 80, 1667(2002)
    5. C. J. Brabec, M. McCulloch, I. Heeney, J. Nelson, Influence of blend microstructure on bulk heterojunction organic photovoltaic performance, Chem. Soc. Rev., 2011,40, 1185-1199
    6. Y. M. Chang, C. Y. Leu, Conjugated polyelectrolyte and zinc oxide stacked structure as an interlayer in highly efficient and stable organic photovoltaic cells, J. Mater. Chem. A 2013, 1 (21), 6446-6451
    7. T. B. Yang, M. Wang, C. H. Duan, X. W. Hu, L. Huang, J. B. Peng, F. Huang, X. Gong, Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte, Energ. Environ. Sci. 2012, 5 (8), 8208-8214
    8. Y. H. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Bredas, S. R. Marder, A. Kahn, B. Kippelen, A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics, Science. 2012, 336 (6079), 327-332
    9. J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, A. Kahn, Transition metal oxides for organic electronics: energetics, device physics and applications, Adv. Mater. 2012, 24 (40), 5408–5427
    10. A. Sharma, A. Haldi, W. J. Potscavage Jr, P. J. Hotchkiss, S. R. Marder, B. Kippelen, Effects of surface modification of indium tin oxide electrodes on the performance of molecular multilayer organic photovoltaic devices, J. Mater. Chem., 2009,19, 5298-5302

    11. H. L. Yip, Alex. K. Y. Jen, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells, Energy Environ. Sci., 2012,5, 5994-6011
    12. H. Soonil, L. Jinho, K. Hongkyu, K. Geunjin, K. Seyoung, H. L. Jong, J. Suhyun, P. Byoungwook, K. Seok, B. Hyungcheol, Y. Kilho, L. Kwanghee, High-efficiency large-area perovskite photovoltaic modules achieved via electrochemically assembled metal-filamentary nanoelect rodes, Sci. Adv. 2018; 4: eaat3604
    13. N. Beaumont, I. Hancox, P. Sullivan, R. A. Hatton, T. S. Jones, Increased efficiency in small molecule organic photovoltaic cells through electrode modification with self-assembled monolayers, Energy Environ. Sci., 2011, 4 (5), 1708-1711
    14. S. Khodabakhsh, B. M. Sanderson, J. Nelson, T. S. Jones, Using self‐assembling dipole molecules to improve charge collection in molecular solar cells, Adv. Funct. Mater. 2006, 16 (1), 95-100
    15. S. Casalini, C. A. Bortolotti, F. Leonardi, F. Biscarini, Self-assembled monolayers in organic electronics, Chem. Soc. Rev., 2017,46, 40-71
    16. J. S. Kim, J. H. Park, J. H. Lee, Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics, Appl. Phys. Lett. 91, 112111 (2007)
    17. S. Y. Yu, D. C. Huang, Y. L. Chen, K. Y. Wu, Y. T. Tao, Approaching charge balance in organic light-emitting diodes by tuning charge injection barriers with mixed monolayers, Langmuir 2012, 28 (1), 424-430
    18. Dipl. Ing. Klaus Petritsch, “Organic Solar Cell Architectures,” PhD Thesis (2000)
    19. H. Spanggaard, F. C. Krebs, A brief history of the development of organic and polymeric photovoltaics, Solar Energy Materials & Solar Cells 83 (2004) 125–146
    20. Jens Cremer, “Novel head-to-tail coupled oligo(3-hexylthiophene) derivatives for photovoltaic applications”, PhD Thesis (2005).
    21. U. Abraham, Formation and structure of self-assembled monolayers, Chem. Rev. 1996, 96, 1533−1554
    22. F. Schreiber, Structure and growth of self-assembling monolayers, Progress in Surface Science 2000, 65 (5), 151
    23. H. Marcus, H. Andreas, The potential of molecular self‐assembled monolayers in organic electronic devices, Adv. Mater. 2011, 23 (22‐23), 2689-2695
    24. A. Turchanin, A. Gölzhäuser, Carbon nanomembranes from self-assembled monolayers: Functional surfaces without bulk, Progress in Surface Science Volume 87, Issues 5–8, 2012, 108-162
    25. J. Ossowski, J. Rysz, M. Krawiec, D. Maciazek, Z. Postawa, A. Terfort, P. Cyganik, Oscillations in the stability of consecutive chemical bonds revealed by ion‐induced desorption, Angew. Chem. Int. Ed. 2014, 53, 1–6
    26. A. Krzykawska, J. Ossowski, T. Żaba, P. Cyganik, Binding group for highly ordered sams formation: carboxylic versus thiol, Chem. Commun., 2017, 53, 5748-5751
    27. Nivrith Gomatam, Self-assembled nanostructures. (https://www.slideshare.net /nivrith/self-assembled)
    28. D. Janssen, R. Palma, S. Verlaak, P. Heremans, W. Dehaen, Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide, Thin Solid Films 515 (2006) 1433–1438
    29. J. Rosenthal, D. I. Schuster, The anomalous reactivity of fluorobenzene in electrophilic aromatic substitution and related phenomena, J. Chem. Educ. 2003, 80, 6, 679
    30. I. Lange, S. Reiter, M. Pätzel, A. Zykov, A. Nefedov, J. Hildebrandt, S. Hecht, S. Kowarik, C. Wöll, G. Heimel, D. Neher, Tuning the work function of polar zinc oxide surfaces using modifi ed phosphonic acid self-assembled monolayers, Adv. Funct. Mater. 2014, 24, 7014–7024
    31. Daniel K Schwartz, Mechanisms and kinetics of self-assembled monolayer formation, Annual Review of Physical Chemistry. 2001. 52:107–37
    32. S. Y. Lee, Y. Choi, E. Ito, M. Hara, H. Lee, J. Noh, Growth, solvent effects, and thermal desorption behavior of octylthiocyanate self-assembled monolayers on Au (111), Phys. Chem. Chem. Phys., 2013,15, 3609-3617
    33. R. M. Diebold, D. R. Clarke, Smooth, Aggregate-free self-assembled monolayer deposition of silane coupling agents on silicon dioxide, Langmuir 2012, 28, 44, 15513–15520
    34. M. Porter, T. Bright, D. Allara, C. Chidsey, Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry, J. Am. Chem. Soc. 1987, 109, 12, 3559–3568
    35. M. Canepa, G. Maidecchi, C. Toccafondi, O. Cavalleri, M Prato, V Chaudharicd, V. A. Esaulov, Spectroscopic ellipsometry of self-assembled monolayers: interface effects. The case of phenyl selenide SAMs on gold, Phys. Chem. Chem. Phys., 2013,15, 11559-11565
    36. T. Kondo, M. Yanagida, K. Shimazu, K. Uosaki, Determination of Thickness of a Self-Assembled Monolayer of Dodecanethiol on Au(111) by Angle-Resolved X-ray Photoelectron Spectroscopy, Langmuir 1998, 14, 19, 5656–5658
    37. X. Wallart, C. H. Villeneuve, P. Allongue, Truly quantitative XPS characterization of organic monolayers on silicon: study of alkyl and alkoxy monolayers on H−Si(111), J. Am. Chem. Soc. 2005, 127, 21, 7871–7878
    38. A. L. Eckermann, D. J. Feld, J. A. Shaw, T. J. Meade, Electrochemistry of redox-active self-assembled monolayers, Coordination Chemistry Reviews 254 (2010) 1769–1802
    39. V. Ganesh, S. K. Pal, S. Kumar, V. Lakshminarayanan, Self-assembled monolayers (SAMs) of alkoxycyanobiphenyl thiols on gold—A study of electron transfer reaction using cyclic voltammetry and electrochemical impedance spectroscopy, Journal of Colloid and Interface Science 296 (2006) 195–203
    40. D. Agonafer, E. Chainani, M. Oruc, K. S. Lee, M. Shannon, Study of insulating properties of alkanethiol self-assembled monolayers formed under prolonged incubation using electrochemical impedance spectroscopy, J. Nanotechnol. Eng. Med. Aug 2012, 3(3): 031006
    41. M. B. Elinski, B. Menard, Z. Liu, J. D. Batteas, Adhesion and friction at graphene/ self-assembled monolayer interfaces investigated by atomic force microscopy, J. Phys. Chem. C 2017, 121, 10, 5635–5641
    42. J. W. Yan, Y. G. Tang, C. F. Sun, Y. Su, B. W. Mao, STM study on nonionic fluorosurfactant zonyl fsn self-assembly on Au(100): molecular lattice, corrugations, and adsorbate-enhanced mobility, Langmuir 2010, 26, 6, 3829–3834
    43. S. Sambasivan, S. Hsieh, A. Fischer, M. Hsu, Effect of self-assembled monolayer film order on nanofriction, Journal of Vacuum Science & Technology A 24, 1484 (2006)
    44. M. Beccaria, A. Kanjilal, M. G. Bettic, C. Mariani, L. Floreano, A. Cossaro, V. Castro, Characterization of benzenethiolate self-assembled monolayer on Cu(1 0 0) by XPS and NEXAFS, Journal of Electron Spectroscopy and Related Phenomena 172 (2009) 64–68
    45. H. L. Yip, K. Hau, S. Baek, H. Ma, Alex K. Y. Jen, Polymer solar cells that use self‐assembled‐monolayer‐ modified zno/metals as cathodes, Adv. Mater. 2008, 20, 2376–2382
    46. J. M. Chiu, Y. Tai, Improving the efficiency of zno-based organic solar cell by self- assembled monolayer assisted modulation on the properties of ZnO acceptor layer, ACS Appl. Mater. Interfaces 2013, 5, 6946−6950
    47. X. Bulliard, S. G. Ihn, S. Yun, Y. Kim, D. Choi, J. Y. Choi, M Kim, M. Sim, J. H. Park, W. Choi, K. Cho, Enhanced performance in polymer solar cells by surface energy control, Adv. Funct. Mater. 2010, 20, 4381–4387
    48. P. Fu, X. Guo, S. Y. Wang, Y. Ye, C. Li, Amino-silane as a molecular linker between electron transport layer and active layer for the efficient inverted polymer solar cells, ACS Appl. Mater. Interfaces 2017, 9, 15, 13390–13395
    49. 欣創達科技有限公司, 表面能計算原理說明, (http://www.sindatek.com/ Bmyl.htm)
    50. G. Yang, C. L. Wang, H. W. Lei, X. L. Zheng, P. Qin, L. B. Xiong, X. Z. Zhao, Y. F. Yan, G. J. Fang, Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement, J. Mater. Chem. A, 2017,5, 1658-1666.
    51. M. Song, J. W. Kang, D. H. Kim, J. D. Kwon, S. G. Park, S. Nam, S. Jo, S. Y. Ryu, C. S. Kim, Self-assembled monolayer as an interfacial modification material for highly efficient and air-stable inverted organic solar cells, Appl. Phys. Lett. 102, 143303 (2013).
    52. M. Zhu, M. Z. Lerum, W. Chen, How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica, Langmuir, 2012, 28, 416-423
    53. X. Zeng, G. H. Xu, Y. Gao, Y. An, Surface wettability of (3-aminopropyl) triethoxysilane self-assembled monolayers, J. Phys. Chem. B 2011, 115, 450–454
    54. E. H. Ha, M. Y. Jo, J. Park, Y. C. Kang, S. Yoo, J. H. Kim, Inverted type polymer solar cells with self-assembled monolayer treated ZnO, J. Phys. Chem. C, 2013, 117 (6), pp 2646–2652.
    55. E. Sabatani, J. C. Boulakia, M. Bruening, I. Rubinstein, Thioaromatic monolayers on gold: a new family of self-assembling monolayers, Langmuir 1993,9, 2914-2981.
    56. S. Frey, V. Stadler, K. Heister, M. Zharnikov, M. Grunze, B. Zeysing, A. Terfort, Structure of thioaromatic self-assembled monolayers on gold and silver, Langmuir, 2001, 17, 2408-2415.
    57. Y. T. Tao, C. C. Wu, J. I. Eu, W. L. Lin, Structure evolution of aromatic-derivatized thiol monolayers on evaporated gold, Langmuir 1997, 13, 4018-4023.
    58. A. Renaud, L. Cario, X. Rocquelfelte, P. Deniard, E. Gautron, E. Faulques, T. Das, F. Cheviré, F. Tessier, S. Jobic, Unravelling the origin of the giant Zn deficiency in wurtzite type ZnO nanoparticles, Sci. Rep. 2015 Sep 3;5:12914.
    59. Z. Zheng, Z. S. Lim, Y. Peng, L. You, L. Chen, J. Wang, General route to ZnO nanorod arrays on conducting substrates via galvanic-cell-based approach, Scientific Reports volume 3, Article number: 2434 (2013)
    60. S. Choi, A. M. Berhane, A. Gentle, T. T. Cuong, M. R. Phillips, I. Aharonovich, Electroluminescence from localized defects in zinc oxide: toward electrically driven single photon sources at room temperature, ACS Appl. Mater. Interfaces, 2015, 7 (10), pp 5619–5623.
    61. T. Andelman, Y. Gong, M. Polking, M. Yin, I. Koskuvsky, G. Neumark, S. O’Brien, Morphological control and photoluminescence of zinc oxide nanocrystals, J. Phys. Chem. B 2005, 109, 14314-14318.
    62. C. Park, J. Lee, W. S. Chang, Geometrical separation of defect states in ZnO nanorods and their morphology dependent correlation between photolumine-scence and photoconductivity, J. Phys. Chem. C, 2015, 119 (29), pp 16984–16990.
    63. C. K. Xu. G. D. Xu, Y. K. Liu, G. Wang, A simple and novel route for the preparation of ZnO nanorods, Solid State Communications, 122, (2002), 175-179
    64. S. Hietzschold, S. Hillebrandt, F. Ullrich, J. Bombsch, V. Rohnacher, S. Ma, W. L. Liu, A. Köhn, W. Jaegermann, A. Pucci, W. Kowalsky, E. Mankel, S. Beck, R. Lovrincic, Functionalized nickel oxide hole contact layers: work function versus conductivity, ACS Appl. Mater. Interfaces, 2017, 9 (45), pp 39821–39829
    65. T. C. Taucher, I. Hehn, O. T. Hofmann, M. Zharnikov, E. Zojer, Understanding chemical versus electrostatic shifts in X-ray photoelectron spectra of organic self-assembled monolayers, J. Phys. Chem. C, 2016, 120 (6), 3428–3437
    66. Salomon, D. Berkovich, D. Cahen, Molecular modification of an ionic semi-conductor metal interface: ZnO/molecule/Au diodes, Applied Physics Letters 82, 1051 (2003).
    67. Vilan, A. Shanzer, D. Cahen, Molecular control over Au/GaAs diodes, Nature volume 404, pages166–168(2000)
    68. H. Ishii, K. Sugiyama, E. Ito, K. Seki, Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces, Adv. Mater. 1999, 11, No. 8.
    69. H. L. Yip, S. K. Hau, N. S. Baek, A. K. Y. Jen, Self-assembled monolayer modified ZnO/metal bilayer cathodes for polymer/fullerene bulk-heterojunction solar cells, Appl. Phys. Lett. 82, 1051 (2003)
    70. S. J. Oh, J. Kim, J. M. Mativetsky, Y. L. Lo, C. R. Kagan, Mapping the competition between exciton dissociation and charge transport in organic solar cells, ACS Appl. Mater. Interfaces, 2016, 8, 28743−28749.
    71. F. E. Osterloh, M. A. Holmesa, L. Chang, A. J. Moulé, J. Zhao, P3HT:PCBM bulk-heterojunctions: observing interfacial and charge transfer states with surface photovoltage spectroscopy, J. Phys. Chem. C, 2014, 118 (27), pp 14723–14731.
    72. G. Yu, A. J. Heeger, Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions, J. Appl. Phys. 78, 4510 (1995).

    無法下載圖示 全文公開日期 2026/02/05 (校內網路)
    全文公開日期 2026/02/05 (校外網路)
    全文公開日期 2026/02/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE