簡易檢索 / 詳目顯示

研究生: 陳梅儂
Mei-Nung Chen
論文名稱: 共軛高分子提升載子遷移率暨光誘導可恢復機制在有機場效應電晶體的探討
Conjugated Polymers for the Mobility Boosting and the Photoinduced Recovery Mechanism in OFET
指導教授: 邱昱誠
Yu-Cheng Chiu
口試委員: 邱昱誠
Yu-Cheng Chiu
江偉宏
Wei-Hung Chiang
王建隆
Chien-Lung, Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 137
中文關鍵詞: 有機場效應電晶體共軛高分子混參系統半導體載子遷移率提升光誘導可恢復機制
外文關鍵詞: Organic Field-Effect Transistor, Conjugated Polymer, Blend System Semiconductor, Mobility Booster, Photoinduced Recovery Mechanism
相關次數: 點閱:225下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Table of Content 致謝 I ABSTRACT II 中文摘要 IV CHAPTER 1 16 1.2. ORGANIC FIELD-EFFECT TRANSISTORS (OFETS) 16 1.2.1. OFET Device Structure and principle 16 1.2.2. Charge-Carrier Mobility 17 1.2.3. Organic Semiconductor Materials for OFETs 20 1.3. SEMICONDUCTORS FOR HIGH PERFORMANCE OFETS 21 1.3.1. Modifying with Dielectric 22 1.3.2. Contact Resistance 23 1.3.3. Molecular Design Strategies for High-Performance D-A-Conjugated Polymers 23 1.3.3.1. Planar and Rigid Backbone 25 1.3.3.2. Close Intermolecular Packing 26 1.3.3.3. Molecular Weight 27 1.3.3.4. Molecular Design Strategies for High-Performance D-A Conjugated Polymers 27 1.4. THE MULTICOMPONENT OSC SYSTEMS OF THE OFET DEVICE TO IMPROVE THE MOBILITY 29 1.4.1 Doped Organic Transistors 30 1.4.2. Organic Semiconductor/Polymer Blending Films 34 1.4.2.1. Small-Molecule Semiconductor/Insulating Polymer Blend System 35 1.4.2.2. Small-Molecule Semiconductor/Conjugated Polymer Blend System 37 1.4.2.3. Polymer Semiconductor/Insulating Polymer Blend System 37 1.4.2.4. Polymer Semiconductor/Conjugated Polymer Blend System 44 1.5. OFET-BASED NONVOLATILE MEMORY DEVICES 45 1.5.1. Operation principle of OFET memory devices 47 1.5.2. Polymer electrets for non-volatile memory devices 50 1.5.3. Non-Volatile Photonic Memory 51 1.5.3.1 Semiconductor Effect on Photo-Induced Recovery Phenomena 51 1.5.3.2 Floating-Gate Effect on Photo-Induced Recovery Phenomena 54 1.5.3.3 Polymer Electret Effect on Photo-Induced Recovery Phenomena 56 1.6 RESEARCH MOTIVATION 61 CHAPTER 2 63 ABSTRACT 63 2.1. INTRODUCTION 64 2.2. EXPERIMENTAL SECTION 67 2.2.1. Materials 67 2.2.2. Device Fabrication and Device Structure 68 2.2.3. Characterization 68 2.3. RESULTS AND DISCUSSION 68 2.3.1 The performance of PDPP-TVT/PTPA-3CN blend system 68 2.3.2. The Annealing Condition of PDPP-TVT/PTPA-3CN Blend System 77 2.3.3. The Influence of Molecular-Design Strategy of Additives Blended into Conjugated Polymer 79 2.4 CONCLUSION 87 CHAPTER 3 89 ABSTRACT 89 3.1. INTRODUCTION 90 3.2. EXPERIMENTAL SECTION 92 3.2.1. Materials 92 3.2.2. Device Fabrication and Device Structure 93 3.2.3. Characterization 93 3.3. RESULTS AND DISCUSSION 94 3.3.1. P-Type OFET Memory Employing PFO Polymer as Electret 94 3.3.2. Working Mechanism of Photoinduced Recovery Behavior 103 3.3.3. The Commercial Polymer as Electret for P-Type OFET Memory 105 3.3.4. The Photo-Recorder for PFO Based Electret Memory Devices 107 3.4. CONCLUSION 113 CHAPTER 4 115 Conclusion 115 REFERENCES 117 Chapter 1 117 Chapter 2 124 Chapter 3 127

    REFERENCES
    Chapter 1
    1. Koezuka, H., A. Tsumura, and T. Ando, Field-effect transistor with polythiophene thin film. Synthetic Metals 1987, 18 (1-3), 699-704.
    2. Liu, J.; Zhang, H.; Dong, H.; Meng, L.; Jiang, L.; Jiang, L.; Wang, Y.; Yu, J.; Sun, Y.; Hu, W.; Heeger, A. J., High mobility emissive organic semiconductor. Nat. Commun. 2015, 6, 10032.
    3. Baude, P. F.; Ender, D. A.; Haase, M. A.; Kelley, T. W.; Muyres, D. V.; Theiss, S. D., Pentacene-based radio-frequency identification circuitry. Applied Physics Letters 2003, 82 (22), 3964-3966.
    4. Kim, M.; Ryu, S. U.; Park, S. A.; Choi, K.; Kim, T.; Chung, D.; Park, T., Donor-Acceptor‐Conjugated Polymer for High‐Performance Organic Field‐Effect Transistors: A Progress Report. Adv. Funct. Mater. 2019, 30 (20), 1904545.
    5. Braga, D.; Horowitz, G., High-Performance Organic Field-Effect Transistors. Adv. Mater. 2009, 21 (14-15), 1473-1486.
    6. Horowitz, G., Hajlaoui, R., Bouchriha, H., Bourguiga, R., Hajlaoui, M., The Concept of "Threshold Voltage" in Organic Field-Effect Transistors. Adv. Mater. 1998, 10 (12), 923-927.
    7. Pernstich, K. P.; Haas, S.; Oberhoff, D.; Goldmann, C.; Gundlach, D. J.; Batlogg, B.; Rashid, A. N.; Schitter, G., Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator. Journal of Applied Physics 2004, 96 (11), 6431-6438.
    8. Yuen, J. D.; Wudl, F., Strong acceptors in donor-acceptor polymers for high performance thin film transistors. Energy & Environmental Science 2013, 6 (2), 392-406.
    9. Yu, Y.; Ma, Q.; Ling, H.; Li, W.; Ju, R.; Bian, L.; Shi, N.; Qian, Y.; Yi, M.; Xie, L.; Huang, W., Small‐Molecule‐Based Organic Field‐Effect Transistor for Nonvolatile Memory and Artificial Synapse. Adv. Funct. Mater. 2019, 29 (50), 1904602.
    10. Guo, Y.; Yu, G.; Liu, Y., Functional organic field-effect transistors. Adv. Mater. 2010, 22 (40), 4427-47.
    11. Yao, Y.; Dong, H.; Hu, W., Charge Transport in Organic and Polymeric Semiconductors for Flexible and Stretchable Devices. Adv. Mater. 2016, 28 (22), 4513-23.
    12. Xu, J.; Wang, S.; Wang, G. J. N.; Zhu, C.; Luo, S.; Jin, L.; ... Bao, Z., Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 2017, 355 (2017), 59-64.
    13. Dong, H.; Fu, X.; Liu, J.; Wang, Z.; Hu, W., 25th anniversary article: key points for high-mobility organic field-effect transistors. Adv. Mater. 2013, 25 (43), 6158-83.
    14. Shtein, M.; Mapel, J.; Benziger, J. B.; Forrest, S. R., Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors. Applied Physics Letters 2002, 81 (2), 268-270.
    15. Yang, H.; Kim, S. H.; Yang, L.; Yang, S. Y.; Park, C. E., Pentacene Nanostructures on Surface-Hydrophobicity-Controlled Polymer/SiO2 Bilayer Gate-Dielectrics. Adv. Mater. 2007, 19 (19), 2868-2872.
    16. Facchetti, A.; Yoon, M. H.; Marks, T. J., Gate Dielectrics for Organic Field-Effect Transistors: New Opportunities for Organic Electronics. Adv. Mater. 2005, 17 (14), 1705-1725.
    17. Joseph Kline, R.; McGehee, M. D.; Toney, M. F., Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nature Materials 2006, 5 (3), 222-228.
    18. Shen, Y.; Hosseini, A. R.; Wong, M. H.; Malliaras, G. G., How to make ohmic contacts to organic semiconductors. Chemphyschem 2004, 5 (1), 16-25.
    19. Rodrigo Noriega, J. R., Koen Vandewal, Felix P. V. Koch, Natalie Stingelin, Paul Smith, Michael F. Toney and Alberto Salleo, A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nature Materials 2013, 12, 1038-1044.
    20. Beng S. Ong, Y. W., Ping Liu, and Sandra Gardner, High-Performance Semiconducting Polythiophenes for Organic Thin-Film Transistors. Journal of the American Chemical Society 2003, 126 (11), 3378-3379.
    21. Venkateshvaran, D.; Nikolka, M.; Sadhanala, A.; Lemaur, V.; Zelazny, M.; Kepa, M.; Hurhangee, M.; Kronemeijer, A. J.; Pecunia, V.; Nasrallah, I.; Romanov, I.; Broch, K.; McCulloch, I.; Emin, D.; Olivier, Y.; Cornil, J.; Beljonne, D.; Sirringhaus, H., Approaching disorder-free transport in high-mobility conjugated polymers. Nature 2014, 515 (7527), 384-8.
    22. Wu, P. T.; Kim, F. S.; Jenekhe, S. A., New Poly(arylene vinylene)s Based on Diketopyrrolopyrrole for Ambipolar Transistors. Chemistry of Materials 2011, 23 (20), 4618-4624.
    23. Nielsen, C. B.; Turbiez, M.; McCulloch, I., Recent advances in the development of semiconducting DPP-containing polymers for transistor applications. Adv. Mater. 2013, 25 (13), 1859-80.
    24. Lan, Y. K.; Yang, C. H.; Yang, H. C., Theoretical investigations of electronic structure and charge transport properties in polythiophene-based organic field-effect transistors. Polymer International 2010, 59 (1), 16-21.
    25. Mei, J.; Bao, Z., Side Chain Engineering in Solution-Processable Conjugated Polymers. Chemistry of Materials 2013, 26 (1), 604-615.
    26. Bürgi, L.; Turbiez, M.; Pfeiffer, R.; Bienewald, F.; Kirner, H. J.; Winnewisser, C., High-Mobility Ambipolar Near-Infrared Light-Emitting Polymer Field-Effect Transistors. Adv. Mater. 2008, 20 (11), 2217-2224.
    27. Yi, Z.; Wang, S.; Liu, Y., Design of High-Mobility Diketopyrrolopyrrole-Based pi-Conjugated Copolymers for Organic Thin-Film Transistors. Adv. Mater. 2015, 27 (24), 3589-606.
    28. Lussem, B.; Keum, C. M.; Kasemann, D.; Naab, B.; Bao, Z.; Leo, K., Doped Organic Transistors. Chem. Rev. 2016, 116 (22), 13714-13751.
    29. Xu, Y.; Sun, H.; Liu, A.; Zhu, H. H.; Li, W.; Lin, Y. F.; Noh, Y. Y., Doping: A Key Enabler for Organic Transistors. Adv. Mater. 2018, 30 (46), e1801830.
    30. Ghamari, P.; Niazi, M. R.; Perepichka, D. F., Controlling Structural and Energetic Disorder in High-Mobility Polymer Semiconductors via Doping with Nitroaromatics. Chemistry of Materials 2021, 33 (8), 2937-2947.
    31. Kim, J. H.; Yun, S. W.; An, B. K.; Han, Y. D.; Yoon, S. J.; Joo, J.; Park, S. Y., Remarkable mobility increase and threshold voltage reduction in organic field-effect transistors by overlaying discontinuous nano-patches of charge-transfer doping layer on top of semiconducting film. Adv. Mater. 2013, 25 (5), 719-24.
    32. Pan, Y.; Yu, G., Multicomponent Blend Systems Used in Organic Field-Effect Transistors: Charge Transport Properties, Large-Area Preparation, and Functional Devices. Chemistry of Materials 2021, 33 (7), 2229-2257.
    33. Jo, P. S.; Duong, D. T.; Park, J.; Sinclair, R.; Salleo, A., Control of Rubrene Polymorphs via Polymer Binders: Applications in Organic Field-Effect Transistors. Chemistry of Materials 2015, 27 (11), 3979-3987.
    34. Chen, J.; Shao, M.; Xiao, K.; He, Z.; Li, D.; Lokitz, B. S.; Hensley, D. K.; Kilbey, S. M.; Anthony, J. E.; Keum, J. K.; Rondinone, A. J.; Lee, W. Y.; Hong, S.; Bao, Z., Conjugated Polymer-Mediated Polymorphism of a High Performance, Small-Molecule Organic Semiconductor with Tuned Intermolecular Interactions, Enhanced Long-Range Order, and Charge Transport. Chemistry of Materials 2013, 25 (21), 4378-4386.
    35. Gumyusenge, A.; Tran, D. T.; Luo, X.; Pitch, G. M.; Zhao, Y.; Jenkins, K. A.; ... Mei, J., Semiconducting polymer blends that exhibit stable charge transport at high temperatures. Science 2018, 362, 1131-1134.
    36. Yang, H.; Zhang, G.; Zhu, J.; He, W.; Lan, S.; Liao, L.; Chen, H.; Guo, T., Improving Charge Mobility of Polymer Transistors by Judicious Choice of the Molecular Weight of Insulating Polymer Additive. The Journal of Physical Chemistry C 2016, 120 (31), 17282-17289.
    37. Lei, Y.; Deng, P.; Lin, M.; Zheng, X.; Zhu, F.; Ong, B. S., Enhancing Crystalline Structural Orders of Polymer Semiconductors for Efficient Charge Transport via Polymer-Matrix-Mediated Molecular Self-Assembly. Adv. Mater. 2016, 28 (31), 6687-94.
    38. Angunawela, I.; Nahid, M. M.; Ghasemi, M.; Amassian, A.; Ade, H.; Gadisa, A., The Critical Role of Materials' Interaction in Realizing Organic Field-Effect Transistors Via High-Dilution Blending with Insulating Polymers. ACS Appl. Mater. Interfaces 2020, 12 (23), 26239-26249.
    39. Hidayat, A. T.; Benten, H.; Ohta, N.; Na, Y.; Muraoka, A.; Kojima, H.; Jung, M.-C.; Nakamura, M., Enhancement of Short-Range Ordering of Low-Bandgap Donor-Acceptor Conjugated Polymer in Polymer/Polymer Blend Films. Macromolecules 2020, 53 (15), 6630-6639.
    40. Zhao, Y.; Zhao, X.; Roders, M.; Qu, G.; Diao, Y.; Ayzner, A. L.; Mei, J., Complementary Semiconducting Polymer Blends for Efficient Charge Transport. Chemistry of Materials 2015, 27 (20), 7164-7170.
    41. Zhu, Z.; Guo, Y.; Liu, Y., Application of organic field-effect transistors in memory. Materials Chemistry Frontiers 2020, 4 (10), 2845-2862.
    42. Baeg, K.-J.; Noh, Y.-Y.; Sirringhaus, H.; Kim, D.-Y., Controllable Shifts in Threshold Voltage of Top-Gate Polymer Field-Effect Transistors for Applications in Organic Nano Floating Gate Memory. Adv. Funct. Mater. 2010, 20 (2), 224-230.
    43. Chen, J. Y.; Chiu, Y. C.; Li, Y. T.; Chueh, C. C.; Chen, W. C., Nonvolatile Perovskite-Based Photomemory with a Multilevel Memory Behavior. Adv. Mater. 2017, 29 (33), 1702217.
    44. Jeong, Y. J.; Yun, D. J.; Kim, S. H.; Jang, J.; Park, C. E., Photoinduced Recovery of Organic Transistor Memories with Photoactive Floating-Gate Interlayers. ACS Appl. Mater. Interfaces 2017, 9 (13), 11759-11769.
    45. Jeong, Y. J.; Yun, D. J.; Noh, S. H.; Park, C. E.; Jang, J., Surface Modification of CdSe Quantum-Dot Floating Gates for Advancing Light-Erasable Organic Field-Effect Transistor Memories. ACS Nano 2018, 12 (8), 7701-7709.
    46. Shih, C. C.; Chiang, Y. C.; Hsieh, H. C.; Lin, Y. C.; Chen, W. C., Multilevel Photonic Transistor Memory Devices Using Conjugated/Insulated Polymer Blend Electrets. ACS Appl. Mater. Interfaces 2019, 11 (45), 42429-42437.
    47. Chiang, Y. C.; Hung, C. C.; Lin, Y. C.; Chiu, Y. C.; Isono, T.; Satoh, T.; Chen, W. C., High-Performance Nonvolatile Organic Photonic Transistor Memory Devices using Conjugated Rod-Coil Materials as a Floating Gate. Adv. Mater. 2020, 32 (36), e2002638.
    48. Chang, Y. H.; Ku, C. W.; Zhang, Y. H.; Wang, H. C.; Chen, J. Y., Ultrafast Responsive Non‐Volatile Flash Photomemory via Spatially Addressable Perovskite/Block Copolymer Composite Film. Adv. Funct. Mater. 2020, 30 (21), 2000764.
    49. Ling, H.; Lin, J.; Yi, M.; Liu, B.; Li, W.; Lin, Z.; Xie, L.; Bao, Y.; Guo, F.; Huang, W., Synergistic Effects of Self-Doped Nanostructures as Charge Trapping Elements in Organic Field Effect Transistor Memory. ACS Appl. Mater. Interfaces 2016, 8 (29), 18969-77.
    50. Chen, C. H.; Wang, Y.; Tatsumi, H.; Michinobu, T.; Chang, S. W.; Chiu, Y. C.; Liou, G. S., Novel Photoinduced Recovery of OFET Memories Based on Ambipolar Polymer Electret for Photorecorder Application. Adv. Funct. Mater. 2019, 29 (40), 1902991.
    51. Chen, C. H.; Wang, Y.; Michinobu, T.; Chang, S. W.; Chiu, Y. C.; Ke, C. Y.; Liou, G. S., Donor-Acceptor Effect of Carbazole-Based Conjugated Polymer Electrets on Photoresponsive Flash Organic Field-Effect Transistor Memories. ACS Appl. Mater. Interfaces 2020, 12 (5), 6144-6150.
    52. Ke, C. Y.; Chen, M. N.; Chiu, Y. C.; Liou, G. S., Luminescence Behavior and Acceptor Effects of Ambipolar Polymeric Electret on Photorecoverable Organic Field‐Effect Transistor Memory. Adv. Funct. Mater. 2021, 7 (3), 2001076.
    53. Yi, M.; Xie, M.; Shao, Y.; Li, W.; Ling, H.; Xie, L.; Yang, T.; Fan, Q.; Zhu, J.; Huang, W., Light programmable/erasable organic field-effect transistor ambipolar memory devices based on the pentacene/PVK active layer. Journal of Materials Chemistry C 2015, 3 (20), 5220-5225.
    54. Huang, J.; Du, J.; Cevher, Z.; Ren, Y.; Wu, X.; Chu, Y., Printable and Flexible Phototransistors Based on Blend of Organic Semiconductor and Biopolymer. Adv. Funct. Mater. 2017, 27 (9), 1604163.
    55. Du, L.; Luo, X.; Lv, W.; Zhao, F.; Peng, Y.; Tang, Y.; Wang, Y., High-performance organic broadband photomemory transistors exhibiting remarkable UV-NIR response. Phy.s Chem. Chem. Phys. 2016, 18 (18), 13108-17.
    56. Zhang, L. X.; Gao, X.; Lv, J. J.; Zhong, Y. N.; Xu, C.; Xu, J. L.; Wang, S. D., Filter-Free Selective Light Monitoring by Organic Field-Effect Transistor Memories with a Tunable Blend Charge-Trapping Layer. ACS Appl. Mater. Interfaces 2019, 11 (43), 40366-40371.
    57. Yang, Y. F.; Chiang, Y. C.; Lin, Y. C.; Li, G. S.; Hung, C. C.; Chen, W. C., Highly Efficient Photo‐Induced Recovery Conferred Using Charge‐Transfer Supramolecular Electrets in Bistable Photonic Transistor Memory. Adv. Funct. Mater. 2021, 2102174.

    Chapter 2
    1. Horowitz, G., Organic Field-Effect Transistors. Adv. Mater. 1998, 10, 365-377.
    2. Guo, Y.; Yu, G.; Liu, Y., Functional organic field-effect transistors. Adv. Mater. 2010, 22 (40), 4427-47.
    3. Dong, H.; Fu, X.; Liu, J.; Wang, Z.; Hu, W., 25th anniversary article: key points for high-mobility organic field-effect transistors. Adv Mater 2013, 25 (43), 6158-83.
    4. Shih, C. C.; Chiang, Y. C.; Hsieh, H. C.; Lin, Y. C.; Chen, W. C., Multilevel Photonic Transistor Memory Devices Using Conjugated/Insulated Polymer Blend Electrets. ACS Appl. Mater. Interfaces 2019, 11 (45), 42429-42437.
    5. Chiang, Y. C.; Hung, C. C.; Lin, Y. C.; Chiu, Y. C.; Isono, T.; Satoh, T.; Chen, W. C., High-Performance Nonvolatile Organic Photonic Transistor Memory Devices using Conjugated Rod-Coil Materials as a Floating Gate. Adv. Mater. 2020, 32 (36), e2002638.
    6. Kim, M.; Ryu, S. U.; Park, S. A.; Choi, K.; Kim, T.; Chung, D.; Park, T., Donor–Acceptor‐Conjugated Polymer for High‐Performance Organic Field‐Effect Transistors: A Progress Report. Adv. Funct. Mater. 2019, 30 (20).
    7. Yu, H.; Park, K. H.; Song, I.; Kim, M.-J.; Kim, Y.-H.; Oh, J. H., Effect of the alkyl spacer length on the electrical performance of diketopyrrolopyrrole-thiophene vinylene thiophene polymer semiconductors. Journal of Materials Chemistry C 2015, 3 (44), 11697-11704.
    8. Salleo, A., Charge transport in polymeric transistors. Materials Today 2007, 10 (3), 38-45.
    9. Chen, H.; Guo, Y.; Yu, G.; Zhao, Y.; Zhang, J.; Gao, D.; Liu, H.; Liu, Y., Highly pi-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors. Adv. Mater. 2012, 24 (34), 4618-22.
    10. Nielsen, C. B.; Turbiez, M.; McCulloch, I., Recent advances in the development of semiconducting DPP-containing polymers for transistor applications. Adv. Mater. 2013, 25 (13), 1859-80.
    11. Ocheje, M. U.; Charron, B. P.; Cheng, Y. H.; Chuang, C. H.; Soldera, A.; Chiu, Y. C.; Rondeau-Gagné, S., Amide-Containing Alkyl Chains in Conjugated Polymers: Effect on Self-Assembly and Electronic Properties. Macromolecules 2018, 51 (4), 1336-1344.
    12. Kim, J. H.; Yun, S. W.; An, B. K.; Han, Y. D.; Yoon, S. J.; Joo, J.; Park, S. Y., Remarkable mobility increase and threshold voltage reduction in organic field-effect transistors by overlaying discontinuous nano-patches of charge-transfer doping layer on top of semiconducting film. Adv. Mater. 2013, 25 (5), 719-24.
    13. Pan, Y.; Yu, G., Multicomponent Blend Systems Used in Organic Field-Effect Transistors: Charge Transport Properties, Large-Area Preparation, and Functional Devices. Chemistry of Materials 2021, 33 (7), 2229-2257.
    14. Chen, J.; Shao, M.; Xiao, K.; He, Z.; Li, D.; Lokitz, B. S.; Hensley, D. K.; Kilbey, S. M.; Anthony, J. E.; Keum, J. K.; Rondinone, A. J.; Lee, W.-Y.; Hong, S.; Bao, Z., Conjugated Polymer-Mediated Polymorphism of a High Performance, Small-Molecule Organic Semiconductor with Tuned Intermolecular Interactions, Enhanced Long-Range Order, and Charge Transport. Chemistry of Materials 2013, 25 (21), 4378-4386.
    15. Lei, Y.; Deng, P.; Lin, M.; Zheng, X.; Zhu, F.; Ong, B. S., Enhancing Crystalline Structural Orders of Polymer Semiconductors for Efficient Charge Transport via Polymer-Matrix-Mediated Molecular Self-Assembly. Adv. Mater. 2016, 28 (31), 6687-94.
    16. Angunawela, I.; Nahid, M. M.; Ghasemi, M.; Amassian, A.; Ade, H.; Gadisa, A., The Critical Role of Materials' Interaction in Realizing Organic Field-Effect Transistors Via High-Dilution Blending with Insulating Polymers. ACS Appl. Mater. Interfaces 2020, 12 (23), 26239-26249.
    17. Ke, C. Y.; Chen, M. N.; Chiu, Y. C.; Liou, G. S., Luminescence Behavior and Acceptor Effects of Ambipolar Polymeric Electret on Photorecoverable Organic Field‐Effect Transistor Memory. Adv. Electron. Mater. 2021, 7 (3), 2001076.
    18. Zhang, S.; Cheng, Y. H.; Galuska, L.; Roy, A.; Lorenz, M.; Chen, B.; Luo, S.; Li, Y. T.; Hung, C. C.; Qian, Z.; St. Onge, P. B. J.; Mason, G. T.; Cowen, L.; Zhou, D.; Nazarenko, S. I.; Storey, R. F.; Schroeder, B. C.; Rondeau‐Gagné, S.; Chiu, Y. C.; Gu, X., Tacky Elastomers to Enable Tear‐Resistant and Autonomous Self‐Healing Semiconductor Composites. Adv. Funct. Mater. 2020, 30 (27).
    19. Yang, H.; Zhang, G.; Zhu, J.; He, W.; Lan, S.; Liao, L.; Chen, H.; Guo, T., Improving Charge Mobility of Polymer Transistors by Judicious Choice of the Molecular Weight of Insulating Polymer Additive. The Journal of Physical Chemistry C 2016, 120 (31), 17282-17289.
    20. Agostinelli, T.; Lilliu, S.; Labram, J. G.; Campoy-Quiles, M.; Hampton, M.; Pires, E.; Rawle, J.; Bikondoa, O.; Bradley, D. D. C.; Anthopoulos, T. D.; Nelson, J.; Macdonald, J. E., Real-Time Investigation of Crystallization and Phase-Segregation Dynamics in P3HT:PCBM Solar Cells During Thermal Annealing. Adv. Funct. Mater. 2011, 21 (9), 1701-1708.

    Chapter 3
    1. Zhai, Y.; Yang, J. Q.; Zhou, Y.; Mao, J. Y.; Ren, Y.; Roy, V. A. L.; Han, S. T., Toward non-volatile photonic memory: concept, material and design. Mater. Horiz. 2018, 5 (4), 641-654.
    2. Shih, C. C.; Chiang, Y. C.; Hsieh, H. C.; Lin, Y. C.; Chen, W. C., Multilevel Photonic Transistor Memory Devices Using Conjugated/Insulated Polymer Blend Electrets. ACS Appl. Mater. Interfaces 2019, 11 (45), 42429-42437.
    3. Hu, L.; Yuan, J.; Ren, Y.; Wang, Y.; Yang, J. Q.; Zhou, Y.; Zeng, Y. J.; Han, S. T.; Ruan, S., Phosphorene/ZnO Nano-Heterojunctions for Broadband Photonic Nonvolatile Memory Applications. Adv. Mater. 2018, 30 (30), 1801232.
    4. Chen, J. Y.; Chiu, Y. C.; Li, Y. T.; Chueh, C. C.; Chen, W. C., Nonvolatile Perovskite-Based Photomemory with a Multilevel Memory Behavior. Adv. Mater. 2017, 29 (33), 1702217.
    5. Jeong, Y. J.; Yun, D. J.; Kim, S. H.; Jang, J.; Park, C. E., Photoinduced Recovery of Organic Transistor Memories with Photoactive Floating-Gate Interlayers. ACS Appl. Mater. Interfaces 2017, 9 (13), 11759-11769.
    6. Jeong, Y. J.; Yun, D. J.; Noh, S. H.; Park, C. E.; Jang, J., Surface Modification of CdSe Quantum-Dot Floating Gates for Advancing Light-Erasable Organic Field-Effect Transistor Memories. ACS Nano 2018, 12 (8), 7701-7709.
    7. Chen, C. H.; Wang, Y.; Tatsumi, H.; Michinobu, T.; Chang, S. W.; Chiu, Y. C.; Liou, G. S., Novel Photoinduced Recovery of OFET Memories Based on Ambipolar Polymer Electret for Photorecorder Application. Adv. Funct. Mater. 2019, 29 (40), 1902991.
    8. Chen, C. H.; Wang, Y.; Michinobu, T.; Chang, S. W.; Chiu, Y. C.; Ke, C. Y.; Liou, G. S., Donor-Acceptor Effect of Carbazole-Based Conjugated Polymer Electrets on Photoresponsive Flash Organic Field-Effect Transistor Memories. ACS Appl. Mater. Interfaces 2020, 12 (5), 6144-6150.
    9. Ke, C. Y.; Chen, M. N.; Chiu, Y. C.; Liou, G. S., Luminescence Behavior and Acceptor Effects of Ambipolar Polymeric Electret on Photorecoverable Organic Field‐Effect Transistor Memory. Adv. Electron. Mater. 2021, 7 (3), 2001076.
    10. Swager, T. M., 50th Anniversary Perspective: Conducting/Semiconducting Conjugated Polymers. A Personal Perspective on the Past and the Future. Macromolecules 2017, 50 (13), 4867-4886.
    11. Martín Ramos, P.; Coya, C.; Álvarez, Á. L.; Ramos Silva, M.; Zaldo, C.; Paixão, J. A.; Chamorro Posada, P.; Martín Gil, J., Charge Transport and Sensitized 1.5 μm Electroluminescence Properties of Full Solution-Processed NIR-OLED based on Novel Er(III) Fluorinated β-Diketonate Ternary Complex. J. Phys. Chem. C 2013, 117 (19), 10020-10030.
    12. Kuo, C. C.; Lin, C. H.; Chen, W. C., Morphology and Photophysical Properties of Light-Emitting Electrospun Nanofibers Prepared from Poly(fluorene) Derivative/ PMMA Blends. Macromolecules 2007, 40, 6959-6966.
    13. Shih, C. C.; Chiu, Y. C.; Lee, W. Y.; Chen, J. Y.; Chen, W. C., Conjugated Polymer Nanoparticles as Nano Floating Gate Electrets for High Performance Nonvolatile Organic Transistor Memory Devices. Adv. Funct. Mater. 2015, 25 (10), 1511-1519.
    14. Bernius, M. T.; Inbasekaran, M.; O’Brien, J.; Wu, W., Progress with Light-Emitting Polymers. Adv. Mater. 2000, 12 (23), 1737-1750.
    15. Ling, H.; Lin, J.; Yi, M.; Liu, B.; Li, W.; Lin, Z.; Xie, L.; Bao, Y.; Guo, F.; Huang, W., Synergistic Effects of Self-Doped Nanostructures as Charge Trapping Elements in Organic Field Effect Transistor Memory. ACS Appl. Mater. Interfaces 2016, 8 (29), 18969-77.
    16. Baeg, K. J.; Noh, Y. Y.; Sirringhaus, H.; Kim, D. Y., Controllable Shifts in Threshold Voltage of Top-Gate Polymer Field-Effect Transistors for Applications in Organic Nano Floating Gate Memory. Adv. Funct. Mater. 2010, 20 (2), 224-230.
    17. Kang, M.; Baeg, K. J.; Khim, D.; Noh, Y. Y.; Kim, D. Y., Printed, Flexible, Organic Nano-Floating-Gate Memory: Effects of Metal Nanoparticles and Blocking Dielectrics on Memory Characteristics. Adv. Funct. Mater. 2013, 23 (28), 3503-3512.
    18. Tsai, T. D.; Chang, J. W.; Wen, T. C.; Guo, T. F., Manipulating the Hysteresis in Poly(vinyl alcohol)-Dielectric Organic Field-Effect Transistors Toward Memory Elements. Adv. Funct. Mater. 2013, 23 (34), 4206-4214.
    19. Chiu, Y. C.; Otsuka, I.; Halila, S.; Borsali, R.; Chen, W. C., High-Performance Nonvolatile Transistor Memories of Pentacence Using the Green Electrets of Sugar-based Block Copolymers and Their Supramolecules. Adv. Funct. Mater. 2014, 24 (27), 4240-4249.
    20. Chiu, Y. C.; Chen, T. Y.; Chen, Y.; Satoh, T.; Kakuchi, T.; Chen, W. C., High-performance nonvolatile organic transistor memory devices using the electrets of semiconducting blends. ACS Appl. Mater. Interfaces 2014, 6 (15), 12780-12788.
    21. Baeg, K. J.; Noh, Y. Y.; Ghim, J.; Lim, B.; Kim, D. Y., Polarity Effects of Polymer Gate Electrets on Non-Volatile Organic Field-Effect Transistor Memory. Adv. Funct. Mater. 2008, 18 (22), 3678-3685.
    22. Chiu, Y. C.; Chen, T. Y.; Chueh, C. C.; Chang, H. Y.; Sugiyama, K.; Sheng, Y. J.; Hirao, A.; Chen, W. C., High performance nonvolatile transistor memories of pentacene using the electrets of star-branched p-type polymers and their donor–acceptor blends. J. Mater. Chem. C 2014, 2 (8), 1436-1446.
    23. Montilla, F.; Ruseckas, A.; Samuel, I. D. W., Exciton–Polaron Interactions in Polyfluorene Films with β-Phase. J. Phys. Chem. C 2018, 122 (18), 9766-9772.
    24. Yi, M.; Xie, M.; Shao, Y.; Li, W.; Ling, H.; Xie, L.; Yang, T.; Fan, Q.; Zhu, J.; Huang, W., Light programmable/erasable organic field-effect transistor ambipolar memory devices based on the pentacene/PVK active layer. J. Phys. Chem. C 2015, 3 (20), 5220-5225.

    無法下載圖示 全文公開日期 2031/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE