簡易檢索 / 詳目顯示

研究生: 王柏翊
Po-I Wang
論文名稱: 新型功能性共軛高分子及含奈米石墨烯之聚降冰片烯:合成與應用於光致發光、電致變色及高選擇性分散半導體單壁奈米碳管
Novel Functional Conjugated Polymers and Polynorbornenes with Nanographenes: Synthesis and Applications for Photoluminescence, Electrochromism and Highly Selective Dispersion for Semiconducting Single-Walled Nanotubes
指導教授: 廖德章
Der-Jang Liaw
口試委員: 江志強
Jyh-Chiang Jiang
汪昆立
Kun-Li Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 130
中文關鍵詞: 共軛高分子聚降冰片乙烯六苯基苯奈米石墨烯螢光電致變色選擇性高分子纏繞半導體單壁奈米碳管
外文關鍵詞: conjugated polymers, polynorbornenes, hexaphenylbenzene, nanographene, pyrene, fluorescence, electrochromism, selective polymer wrapping, semiconducting single-walled carbon nanotubes.
相關次數: 點閱:480下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一部分,利用鈴木偶合反應製備側鏈帶有六苯基苯(HPB)基團之共軛高分子聚(苯-芴) P1以及聚(三苯基苯-芴) P2,當HPB基團在氯化鐵(FeCl3)作用下進行氧化環化脫氫反應,製備出帶有六苯並蒄(HBC)基團之共軛高分子P3以及P4,六苯並蒄亦可稱作奈米石墨烯(nanographene),所得之P3和P4將利用紅外光譜儀以及X光繞射儀確認HBC之結構,兩者之繞射圖譜顯示奈米石墨烯之長度約1.3奈米,P1及P2玻璃轉移溫度分別為202度及235度,另外含奈米石墨烯之P3和P4其玻璃轉移溫度皆超過300度;與P3相比,主鏈結構具有三苯基苯之P4在環己基咯烷酮(CHP)中具有較好的分散性且不產生聚集,此現象藉由紫外光-可見光吸收光譜、光致發光光譜、以及光致發光-激發圖譜鑑定。
    第二部分,側鏈帶有非對稱HPB及Pyrene之新型聚(三苯胺-芴) HPBPYFL6已成功製備,此高分子具有高玻璃轉移溫度(260度)以及高10%重量裂解溫度(503度),其側鏈之Pyrene基團使共軛高分子具有溶劑螢光變色效應,其螢光隨著極性提高從綠光轉變為橘光,HPBPYFL6薄膜具有電致變色可逆性,其薄膜顏色隨著氧化程度增加由淡黃色變成深藍色,同時近紅外光(Near-infrared)區域具有很強之吸收值,此現象可歸因於導入HPB後產生的電荷轉移,除此之外,利用密度泛函理論(DFT)對模型化合物HPBPYFL進行理論計算,所得之模擬電致變色光譜與實驗數據互相吻合。
    第三部分,一系列不同結構之聚(三苯胺)(PTAA)用於分散單壁奈米碳管(SWNTs)已被成功地開發,以三苯胺為主鏈之共軛高分子能夠有選擇性地纏繞SWNTs,其中SWNTs之種類即掌性指數(Chiral indices),與聚(三苯胺)之主鏈結構(如PTAA12, PTAA12-P及 PTAA12-BP)以及側鏈官能化(如PTAA6, PTAA6-alt-PTAA及PTAA12-alt-PTAA)有關,可利用PTAA12將高純度的(6,5)半導體奈米碳管有效地從CoMoCAT SWNTs萃取出來,但PTAA12對於HiPCO SWNTs之選擇性較低,因此,藉由導入交替側鏈至PTAA12PTAA,可有效提升對於HiPCO SWNTs中(6,5)、(7,5)及(9,8)半導體奈米碳管的選擇性;由於含交替側鏈之PTAA12PTAA具有限制的高分子構型之特性及適當的溶解度,因此有效提升分散奈米碳管之選擇性。
    第四部份,側鏈具有六苯基苯之飽和聚降冰片烯Poly(HNBOHPB)已藉由開環複分解聚合法以及氫化反應製備,將所得之高分子利用Scholl反應合成出含奈米石墨烯之聚降冰片烯,Poly(HNBOHPB)之玻璃轉移溫度為205度,Poly(HNBOHBC)之玻璃轉移溫度則超過300度,Poly(HNBOHPB)和Poly(HNBOHBC)之10%重量裂解溫度分別為428 度和456度,表示高分子環化後之熱性質大幅提升,由於Poly(HNBOHBC)無法溶於有機溶劑,因此將利用環己基咯烷以及超音波震盪進行分散,其光譜特性將藉由紫外光-可見光吸收光譜、光致發光光譜、以及光致發光-激發圖譜進行分析。


    First of all, conjugated polymers, poly(phenylene-fluorene) P1 and poly(triphenylbenzene-fluorene) P2 with hexaphenylbenzene (HPB) as pending side group were prepared through Suzuki coupling. The HPB moiety of P1 and P2 can be oxidatively cyclodehydrogenated with FeCl3, yielding polymer P3 and P4 with hexa-peri-hexabenzocoronene (i.e., nanographene) units. The cyclodehydrogenation of P3 and P4 was confirmed by FT-IR spectroscopy and X-ray powder diffraction of P3 and P4 both revealed the size of nanographene approximately 1.3 nm. The glass transition temperatures (Tg) of P1 and P2 were 202 °C and 235 °C, respectively. Both P3 and P4 with nanographenes possessed Tg higher than 300 °C. Compared to P3, P4 with triphenzlbenyene moiety in backbones can be well dispersed without aggregation in N-Cyclohexyl-2-pyrrolidone (CHP), confirmed by UV-Vis absorption spectroscopy, photoluminescence spectroscopy (PL) and photoluminescence-excitation (PLE) maps.
    The second section, a new triphenylamine-alt-fluorene based conjugated copolymer, HPBPYFL6, with hexaphenylbenzene (HPB) and pyrene as asymmetrical pendant groups was synthesized. HPBPYFL6 possessed a high glass transition temperature at 260 °C and a 10% weight-loss temperature at 503 °C. HPBPYFL6 bearing a pyrene moiety had a solvatochromic fluorescence shift from a green to orange emission as the polarity of the solvent increased. Conjugated polymer films exhibited reversible electrochromic behaviour with a colour change from pale yellow to deep blue upon electrochemical oxidation and high absorbance in the near-infrared (NIR) region. The strong NIR electrochromic absorbance of HPBPYFL6 was attributed to intervalence charge transfer by the incorporation of the HPB moiety. Furthermore, the electrochromic mechanism was interpreted by DFT calculation and the simulated NIR electrochromic spectra of model compound HPBPYFL are in a good agreement with experimental data.
    The third part, a new approach for polytriarylamine (PTAA)-assisted selective dispersion for single-walled carbon nanotubes (SWNTs) in toluene solution has been developed. The triarylamine-based conjugated polymers are able to selectively wrap the SWNTs with specific chiral indices depending on their backbone structures (e.g., PTAA12, PTAA12-P and PTAA12-BP) and side-chain functionality (e.g., PTAA6, PTAA6-alt-PTAA and PTAA12-alt-PTAA). PTAA12 exhibits highly selective wrapping for the (6,5) chirality from CoMoCAT SWNTs but low selectivity in a dispersion of HiPCO SWNTs. Therefore, the selection for HiPCO SWNTs has been further improved via PTAA12-alt-PTAA wrapping with alternating side chains, which exhibits high affinity to (6,5), (7,5) and (9,8) chiralities. The limited conformations of PTAA12-alt-PTAA were due to incorporation of alternating side chains, which enhanced the selectivity of extraction of SWNTs.
    Finally, the saturated polynorbornene Poly(HNBOHPB) with a hexaphenylbenzene (HPB) moiety was prepared by ring-opening metathesis polymerization (ROMP) followed by hydrogenation. The nanographene-containing Poly(HNBOHBC) was prepared from Poly(HNBOHPB) via the Scholl reaction. The glass transition temperature of Poly(HNBOHPB) was 205 °C, and that of Poly(HNBOHBC) was higher than 300 °C. The temperatures required for a 10% weight loss (Td10) for Poly(HNBOHPB) and Poly(HNBOHBC) were 428 °C and 456 °C under a nitrogen flow, respectively, indicating the great improvement in thermal properties after the cyclodehydrogenation.The exfoliation of insoluble Poly(HNBOHBC) was prepared by bath sonication in CHP. The spectroscopic features of Poly(HNBOHBC) were investigated by UV-vis spectroscopy, fluorescence spectroscopy and photoluminescence excitation (PLE) mapping.

    Outline of Contents Pages Abstract in Mandarin I Abstract in English III Acknowledgement V Outline of Contents VI List of Schemes X List of Tables XI List of Figures XII Chapter 1 A Structurally Defined Nanographene-Containing Conjugated Polymer for High Quality Dispersions and Optoelectronic Properties 1 1.1. Introduction 1 1.2. Experimental Section 3 1.2.1. Materials 3 1.2.2. Instrumentation 4 1.2.3. Synthesis of 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl-phenyl) entaphenylbenzene (2) 6 1.2.4. Synthesis of 4'-(1,3-dibromophenyl)hexaphenylbenzene (M1) 8 1.2.5. Synthesis of 4'-[5,7,-Bis(4-bromophenyl)biphenyl]hexaphenyl benzne (M2) 9 1.2.6. Synthesis of Poly[4'-(1,3-phenyl)]hexaphenylbenzene-alt-2,7- (9,9-dioctylfluorene) (P1) via Suzuki Coupling 11 1.2.7. Synthesis of Poly[4'-(5,7-(4,4-diphenyl)biphenyl]hexaphenylbenzene -alt-2,7-(9,9-dioctylfluorene) (P2) via Suzuki Coupling) 12 1.2.8. Synthesis of Poly[4'-(1,3-phenyl)]hexabenzocoronene -alt-2,7-(9,9-dioctylfluorene) (P3) via Cyclodehydrogenation 14 1.2.9. Synthesis of Poly[4'-(5,7-(4,4-diphenyl)biphenyl]hexabenzocoronene- alt-2,7-(9,9-dioctylfluorene) (P4) via Cyclodehydrogenation 15 1.2.10. Synthesis of 4'-[5,7,-Bis(4-bromophenyl)biphenyl]hexabenzocoronene (M3) via Cyclodehydrogenation 16 1.2.11. Dispe rsion preparation of HBC derivatives 17 1.3. Results and Discussion 17 1.3.1. Synthesis of monomer and conjugated polymer 17 1.3.2. Cyclodehydrogenation 17 1.3.3. Basic characterization 18 1.3.4. Optical properties of HPB-containing conjugated polymer P1 and P2 23 1.3.5. Optical properties of HBC-containing conjugated polymer P3 and P4 24 1.4. References 29 Chapter 2 Novel Poly(triphenylamine-alt-fluorene) with Asymmetric Hexaphenylbenzene and Pyrene Moieties: Synthesis, Fluorescence, Flexible Near-Infrared Electrochromic Devices and Theoretical Investigation 32 2.1. Introduction 32 2.2. Experimental Section 34 2.2.1. Materials 34 2.2.2. Instrumentation 35 2.2.3. Synthesis of HPBNHPY 37 2.2.4. Synthesis of DIBRHPBPY 39 2.2.5. Synthesis of HPBPYFL6 41 2.3. Results and Discussion 44 2.3.1. Synthesis of the monomer and conjugated polymer 44 2.3.2.Optical properties 47 2.3.3. Electrochemical properties 51 2.3.4. Spectroelectrochemical and electrochromic characteristics 55 2.3.5. Theoretical investigation for electrochromic characteristics 58 2.4. Reference 66 Chapter 3 High-purity Semiconducting Single-Walled Carbon Nanotubes via Selective Dispersion Using Conjugated Polytriarylamines 70 3.1. Introduction 70 3.2. Experimental section 72 3.2.1. Materials 72 3.2.2. Instrumentation 73 3.2.3. General procedure for Suzuki coupling polymerization 74 3.2.4. Synthesis of 4-dodecyl-N,N-bis(4-bromophenyl)aniline (1) 75 3.2.5. Synthesis of 4-dodecyl-N,N-bis[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan- 2-yl-phenyl)]aniline (2) 76 3.2.6. Synthesis of Poly[N-(4-dodecylphenyl)-4,4'-diphenylamine] (PTAA12) 77 3.2.7. Synthesis of Poly[N-(4-dodecylphenyl)-4,4'-diphenylamine-alt-1,4- phenylene] (PTAA12-P) 78 3.2.8. Synthesis of Poly[N-(4-dodecylphenyl)-4,4'-diphenylamine-alt-4,4'- biphenyl] (PTAA12-BP) 79 3.2.9. Synthesis of Poly[N-(4-hexylphenyl)-4,4'-diphenylamine] (PTAA6) 80 3.2.10. Synthesis of Poly[N-(4-hexylphenyl)-4,4'-diphenylamine-alt-N-phenyl- 4,4'-diphenylamine] (PTAA6-alt-PTAA) 81 3.2.11. Synthesis of Poly[N-(4-dodecylphenyl)-4,4'-diphenylamine-alt-N-phenyl- 4,4'-diphenylamine] (PTAA12-alt-PTAA) 82 3.3. Results and Discussion 83 3.4. References 101 Chapter 4 High-Quality Exfoliation of Nanographene-Containing Polynorbornenes with Intensively Green Photoluminescence via Ring-Opening Metathesis Polymerization 106 4.1. Introduction 106 4.2. Experimental section 109 4.2.1. Materials 109 4.2.2. Instrumentation 109 4.2.3. Synthesis of NBOHPB 111 4.2.4. Synthesis of Poly(NBOHPB) 112 4.2.5. Synthesis of Poly(NBOHPB) 114 4.2.6. Synthesis of Poly(HNBOHBC) through cyclodehydrogenation 115 4.3. Results and Discussion 116 4.4 References 123 Chapter 5 Coonclusions 126 Introduction of the author 128

    1.4. References
    1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 2004, 306, 666-669.
    2. A. K. Geim and K. S. Novoselov, Nat Mater, 2007, 6, 183-191.
    3. M. J. Allen, V. C. Tung and R. B. Kaner, Chem. Rev., 2010, 110, 132-145.
    4. R. Rieger and K. Müllen, J. Phys. Org. Chem., 2010, 23, 315-325.
    5. A. Narita, X.-Y. Wang, X. Feng and K. Mullen, Chem. Soc. Rev., 2015, 44, 6616-6643.
    6. M. Müller, C. Kübel and K. Müllen, Chem. Eur. J., 1998, 4, 2099-2109.
    7. J. Wu, W. Pisula and K. Müllen, Chem. Rev., 2007, 107, 718-747.
    8. C.-y. Liu, A. Fechtenkötter, M. D. Watson, K. Müllen and A. J. Bard, Chem. Mater., 2003, 15, 124-130.
    9. A. M. van de Craats, N. Stutzmann, O. Bunk, M. M. Nielsen, M. Watson, K. Müllen, H. D. Chanzy, H. Sirringhaus and R. H. Friend, Adv. Mater., 2003, 15, 495-499.
    10. J. Wu, A. C. Grimsdale and K. Mullen, J. Mater. Chem., 2005, 15, 41-52.
    11. J. M. Warman, J. Piris, W. Pisula, M. Kastler, D. Wasserfallen and K. Müllen, J. Am. Chem. Soc., 2005, 127, 14257-14262.
    12. W. W. H. Wong, T. B. Singh, D. Vak, W. Pisula, C. Yan, X. Feng, E. L. Williams, K. L. Chan, Q. Mao, D. J. Jones, C.-Q. Ma, K. Müllen, P. Bäuerle and A. B. Holmes, Adv. Funct. Mater., 2010, 20, 927-938.
    13. J. M. Englert, F. Hauke, X. Feng, K. Mullen and A. Hirsch, Chem. Commun., 2010, 46, 9194-9196.
    14. J. M. Hughes, Y. Hernandez, D. Aherne, L. Doessel, K. Müllen, B. Moreton, T. W. White, C. Partridge, G. Costantini, A. Shmeliov, M. Shannon, V. Nicolosi and J. N. Coleman, J. Am. Chem. Soc., 2012, 134, 12168-12179.
    15. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman, Nat Nano, 2008, 3, 563-568.
    16. C. Kübel, S.-L. Chen and K. Müllen, Macromolecules, 1998, 31, 6014-6021.
    17. I. A. Khotina, O. E. Shmakova, D. Y. Baranova, N. S. Burenkova, A. A. Gurskaja, P. M. Valetsky and L. M. Bronstein, Macromolecules, 2003, 36, 8353-8360.
    18. D.-J. Liaw, F.-C. Chang, M.-k. Leung, M.-Y. Chou and K. Muellen, Macromolecules, 2005, 38, 4024-4029.
    19. A. A. O. Sarhan and C. Bolm, Chem. Soc. Rev., 2009, 38, 2730-2744.
    20. A. Centrone, L. Brambilla, T. Renouard, L. Gherghel, C. Mathis, K. Müllen and G. Zerbi, Carbon, 2005, 43, 1593-1609.
    21. M. G. Schwab, A. Narita, Y. Hernandez, T. Balandina, K. S. Mali, S. De Feyter, X. Feng and K. Müllen, J. Am. Chem. Soc., 2012, 134, 18169-18172.
    22. F. Cataldo, O. Ursini, G. Angelini and S. Iglesias-Groth, Fuller., Nanotub. Car. N., 2011, 19, 713-725.
    23. X. Lu, C. He, P. Liu and A. C. Griffin, J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 3394-3402.
    24. X. Wu, H. Li, Y. Xu, H. Tong and L. Wang, Polym. Chem., 2015, 6, 2305-2311.
    25. C. Xia and R. C. Advincula, Macromolecules, 2001, 34, 5854-5859.
    26. R. Hu, J. W. Y. Lam, Y. Liu, X. Zhang and B. Z. Tang, Chem. Eur. J., 2013, 19, 5617-5624.
    27. G. Rouillé, M. Steglich, F. Huisken, T. Henning and K. Müllen, J. Chem. Phys, 2009, 131, 204311.

    2.4. Reference
    1. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, M. Logdlund and W. R. Salaneck, Nature, 1999, 397, 121-128.
    2. S. Günes, H. Neugebauer and N. S. Sariciftci, Chem. Rev., 2007, 107, 1324-1338.
    3. J. Zaumseil and H. Sirringhaus, Chem. Rev., 2007, 107, 1296-1323.
    4. F. Huang, H. Wu and Y. Cao, Chem. Soc. Rev., 2010, 39, 2500-2521.
    5. P. M. Beaujuge and J. R. Reynolds, Chem. Rev., 2010, 110, 268-320.
    6. H. Niu, H. Kang, J. Cai, C. Wang, X. Bai and W. Wang, Polym. Chem., 2011, 2, 2804-2817.
    7. A. Balan, D. Baran and L. Toppare, Polym. Chem., 2011, 2, 1029-1043.
    8. S. A. Jenekhe and D. Zhu, Polym. Chem., 2013, 4, 5142-5143.
    9. M.-C. Chen, D.-J. Liaw, W.-H. Chen, Y.-C. Huang, J. Sharma and Y. Tai, Appl. Phys. Lett., 2011, 99, 223305.
    10. H.-K. Shih, Y.-L. Chu, F.-C. Chang, C.-Y. Zhu and S.-W. Kuo, Polym. Chem., 2015, 6, 6227-6237.
    11. Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang and K.-G. Neoh, Prog. Polym. Sci., 2008, 33, 917-978.
    12. T. Kurosawa, T. Higashihara and M. Ueda, Polym. Chem., 2013, 4, 16-30.
    13. W.-R. Lian, K.-L. Wang, J.-C. Jiang, D.-J. Liaw, K.-R. Lee and J.-Y. Lai, J. Mater. Chem., 2011, 21, 8597-8604.
    14. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 2004, 306, 666-669.
    15. C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A. N. Khlobystov and L.-J. Li, ACS Nano, 2011, 5, 2332-2339.
    16. Y. Huang, X. Dong, Y. Shi, C. M. Li, L.-J. Li and P. Chen, Nanoscale, 2010, 2, 1485-1488.
    17. C. Lambert, Angew. Chem. Int. Ed., 2005, 44, 7337-7339.
    18. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Mullen and R. Fasel, Nature, 2010, 466, 470-473.
    19. M. D. Watson, A. Fechtenkötter and K. Müllen, Chem. Rev., 2001, 101, 1267-1300.
    20. C. Kübel, S.-L. Chen and K. Müllen, Macromolecules, 1998, 31, 6014-6021.
    21. I. Y. Wu, J. T. Lin, Y. T. Tao and E. Balasubramaniam, Adv. Mater., 2000, 12, 668-669.
    22. K. R. J. Thomas, M. Velusamy, J. T. Lin, C. H. Chuen and Y.-T. Tao, J. Mater. Chem., 2005, 15, 4453-4459.
    23. C.-C. Yang, Y.-C. Lin, P.-I. Wang, D.-J. Liaw and S.-W. Kuo, Polymer, 2014, 55, 2044-2050.
    24. W.-H. Chen, K.-L. Wang, D.-J. Liaw, K.-R. Lee and J.-Y. Lai, Macromolecules, 2010, 43, 2236-2243.
    25. W.-H. Chen, K.-L. Wang, W.-Y. Hung, J.-C. Jiang, D.-J. Liaw, K.-R. Lee, J.-Y. Lai and C.-L. Chen, J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 4654-4667.
    26. Z.-G. Zhang, K.-L. Zhang, G. Liu, C.-X. Zhu, K.-G. Neoh and E.-T. Kang, Macromolecules, 2009, 42, 3104-3111.
    27. I. Prieto, J. Teetsov, M. A. Fox, D. A. Vanden Bout and A. J. Bard, J. Phys. Chem. A, 2001, 105, 520-523.
    28. S. A. Jenekhe and J. A. Osaheni, Science, 1994, 265, 765-768.
    29. W.-R. Lian, Y.-C. Huang, Y.-A. Liao, K.-L. Wang, L.-J. Li, C.-Y. Su, D.-J. Liaw, K.-R. Lee and J.-Y. Lai, Macromolecules, 2011, 44, 9550-9555.
    30. B. Valeur, in Molecular Fluorescence, Wiley-VCH Verlag GmbH, 2001, DOI: 10.1002/3527600248.ch7, pp. 200-225.
    31. J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London, 1970.
    32. T. Sukegawa, A. Kai, K. Oyaizu and H. Nishide, Macromolecules, 2013, 46, 1361-1367.
    33. L. Li, T.-Q. Hu, C.-R. Yin, L.-H. Xie, Y. Yang, C. Wang, J.-Y. Lin, M.-D. Yi, S.-H. Ye and W. Huang, Polym. Chem., 2015, 6, 983-988.
    34. H. Wei, J. Zhu, S. Wu, S. Wei and Z. Guo, Polymer, 2013, 54, 1820-1831.
    35. J. Davenas, S. Besbes and H. Ben Ouada, Synth. Met., 2003, 138, 295-298.
    36. C. Lambert and G. Nöll, J. Am. Chem. Soc., 1999, 121, 8434-8442.
    37. Y. Kita, H. Tohma, K. Hatanaka, T. Takada, S. Fujita, S. Mitoh, H. Sakurai and S. Oka, J. Am. Chem. Soc., 1994, 116, 3684-3691.
    38. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, 2009.
    39. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.
    40. S. Nachimuthu, K.-H. Lai, F. Taufany and J.-C. Jiang, PCCP, 2014, 16, 15389-15399.
    41. C. Rios and R. Salcedo, Molecules, 2014, 19, 3274.
    42. A. Ito, H. Ino, K. Tanaka, K. Kanemoto and T. Kato, J. Org. Chem., 2002, 67, 491-498.

    3.4. References
    1. S. Iijima and T. Ichihashi, Nature, 1993, 363, 603-605.
    2. S. Yasuda, D. N. Futaba, T. Yamada, J. Satou, A. Shibuya, H. Takai, K. Arakawa, M. Yumura and K. Hata, ACS Nano, 2009, 3, 4164-4170.
    3. V. K. Sangwan, R. P. Ortiz, J. M. P. Alaboson, J. D. Emery, M. J. Bedzyk, L. J. Lauhon, T. J. Marks and M. C. Hersam, ACS Nano, 2012, 6, 7480-7488.
    4. M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam and P. Avouris, ACS Nano, 2008, 2, 2445-2452.
    5. T. W. Odom, J.-L. Huang, P. Kim and C. M. Lieber, Nature, 1998, 391, 62-64.
    6. H. Dai, Acc. Chem. Res., 2002, 35, 1035-1044.
    7. P. Avouris, M. Freitag and V. Perebeinos, Nat Photon, 2008, 2, 341-350.
    8. S. K. Samanta, M. Fritsch, U. Scherf, W. Gomulya, S. Z. Bisri and M. A. Loi, Acc. Chem. Res., 2014, 47, 2446-2456.
    9. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith and R. E. Smalley, Chem. Phys. Lett., 1999, 313, 91-97.
    10. S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco and R. B. Weisman, J. Am. Chem. Soc., 2003, 125, 11186-11187.
    11. M. He, A. I. Chernov, P. V. Fedotov, E. D. Obraztsova, J. Sainio, E. Rikkinen, H. Jiang, Z. Zhu, Y. Tian, E. I. Kauppinen, M. Niemelä and A. O. I. Krause, J. Am. Chem. Soc., 2010, 132, 13994-13996.
    12. M. C. Hersam, Nature Nanotech, 2008, 3, 387-394.
    13. A. L. Antaris, J.-W. T. Seo, A. A. Green and M. C. Hersam, ACS Nano, 2010, 4, 4725-4732.
    14. J.-Y. Hwang, A. Nish, J. Doig, S. Douven, C.-W. Chen, L.-C. Chen and R. J. Nicholas, J. Am. Chem. Soc., 2008, 130, 3543-3553.
    15. T. Schuettfort, H. J. Snaith, A. Nish and R. J. Nicholas, Nanotechnology, 2010, 21, 025201.
    16. F. A. Lemasson, T. Strunk, P. Gerstel, F. Hennrich, S. Lebedkin, C. Barner-Kowollik, W. Wenzel, M. M. Kappes and M. Mayor, J. Am. Chem. Soc., 2011, 133, 652-655.
    17. X.-Q. Liu, Y.-L. Li, Y.-W. Lin, S. Yang, X.-F. Guo, Y. Li, J. Yang and E.-Q. Chen, Macromolecules, 2013, 46, 8479-8487.
    18. K. Mulla, S. Liang, H. Shaik, E. A. Younes, A. Adronov and Y. Zhao, Chem. Commun., 2015, 51, 149-152.
    19. A. Nish, J. Y. Hwang, J. Doig and R. J. Nicholas, Nature Nanotech, 2007, 2, 640-646.
    20. F. Chen, B. Wang, Y. Chen and L.-J. Li, Nano Lett., 2007, 7, 3013-3017.
    21. N. Berton, F. Lemasson, J. Tittmann, N. Stürzl, F. Hennrich, M. M. Kappes and M. Mayor, Chem. Mater., 2011, 23, 2237-2249.
    22. N. A. Rice, A. V. Subrahmanyam, B. R. Coleman and A. Adronov, Macromolecules, 2015, 48, 5155-5161.
    23. H. Ozawa, N. Ide, T. Fujigaya, Y. Niidome and N. Nakashima, Chem. Lett., 2011, 40, 239-241.
    24. P. Gerstel, S. Klumpp, F. Hennrich, O. Altintas, T. R. Eaton, M. Mayor, C. Barner-Kowollik and M. M. Kappes, Polym. Chem., 2012, 3, 1966-1970.
    25. P. Imin, M. Imit and A. Adronov, Macromolecules, 2011, 44, 9138-9145.
    26. W. Gomulya, G. D. Costanzo, E. J. F. de Carvalho, S. Z. Bisri, V. Derenskyi, M. Fritsch, N. Fröhlich, S. Allard, P. Gordiichuk, A. Herrmann, S. J. Marrink, M. C. dos Santos, U. Scherf and M. A. Loi, Adv. Mater., 2013, 25, 2948-2956.
    27. J. Gao, M. Kwak, J. Wildeman, A. Herrmann and M. A. Loi, Carbon, 2011, 49, 333-338.
    28. M. Imit and A. Adronov, Polym. Chem., 2015, 6, 4742-4748.
    29. T. Fukumaru, F. Toshimitsu, T. Fujigaya and N. Nakashima, Nanoscale, 2014, 6, 5879-5886.
    30. W.-R. Lian, Y.-C. Huang, Y.-A. Liao, K.-L. Wang, L.-J. Li, C.-Y. Su, D.-J. Liaw, K.-R. Lee and J.-Y. Lai, Macromolecules, 2011, 44, 9550-9555.
    31. W.-H. Chen, K.-L. Wang, D.-J. Liaw, K.-R. Lee and J.-Y. Lai, Macromolecules, 2010, 43, 2236-2243.
    32. M.-C. Chen, D.-J. Liaw, W.-H. Chen, Y.-C. Huang, J. Sharma and Y. Tai, Appl. Phys. Lett., 2011, 99, 223305.
    33. X. Xu, Y. Zhu, L. Zhang, J. Sun, J. Huang, J. Chen and Y. Cao, J. Mater. Chem., 2012, 22, 4329.
    34. W. Shi, S. Fan, F. Huang, W. Yang, R. Liu and Y. Cao, J. Mater. Chem., 2006, 16, 2387.
    35. P.-I. Wang, W.-R. Shie, J.-C. Jiang, L.-J. Li and D.-J. Liaw, Polym. Chem., 2016, 7, 1505-1516.
    36. J. Gao, M. A. Loi, E. J. F. de Carvalho and M. C. dos Santos, ACS Nano, 2011, 5, 3993-3999.
    37. B. Valeur, in Molecular Fluorescence, Wiley-VCH Verlag GmbH, 2001, DOI: 10.1002/3527600248.ch3, pp. 34-71.
    38. B. Valeur, in Molecular Fluorescence, Wiley-VCH Verlag GmbH, 2001, DOI: 10.1002/3527600248.ch2, pp. 20-33.
    39. B. Rosner, D. M. Guldi, J. Chen, A. I. Minett and R. H. Fink, Nanoscale, 2014, 6, 3695-3703.
    40. S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley and R. B. Weisman, Science, 2002, 298, 2361-2366.
    41. J. Yoo, T. Fujigaya and N. Nakashima, Nanoscale, 2013, 5, 7419-7424.
    42. T. G. Hedderman, S. M. Keogh, G. Chambers and H. J. Byrne, J. Phys. Chem. B, 2004, 108, 18860-18865.
    43. A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus and M. S. Dresselhaus, Phys. Rev. Lett., 2001, 86, 1118-1121.
    44. C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus and M. A. Pimenta, Phys. Rev. Lett., 2004, 93, 147406.
    45. I. Reva, L. Lapinski, N. Chattopadhyay and R. Fausto, PCCP, 2003, 5, 3844-3850.

    4.4 References
    1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 2004, 306, 666-669.
    2. K. Müllen, ACS Nano, 2014, 8, 6531-6541.
    3. A. Narita, X.-Y. Wang, X. Feng and K. Müllen, Chem. Soc. Rev., 2015, 44, 6616-6643.
    4. E. Clar, C. T. Ironside and M. Zander, J. Chem. Soc., 1959, 142-147.
    5. L. Chen, Y. Hernandez, X. Feng and K. Müllen, Angew. Chem. Int. Ed., 2012, 51, 7640-7654.
    6. J. Wu, W. Pisula and K. Müllen, Chem. Rev., 2007, 107, 718-747.
    7. M. Müller, C. Kübel and K. Müllen, Chem. Eur. J., 1998, 4, 2099-2109.
    8. M. D. Watson, A. Fechtenkötter and K. Müllen, Chem. Rev., 2001, 101, 1267-1300.
    9. J. Wu, L. Gherghel, M. D. Watson, J. Li, Z. Wang, C. D. Simpson, U. Kolb and K. Müllen, Macromolecules, 2003, 36, 7082-7089.
    10. C.-y. Liu, A. Fechtenkötter, M. D. Watson, K. Müllen and A. J. Bard, Chem. Mater., 2003, 15, 124-130.
    11. W. W. H. Wong, T. B. Singh, D. Vak, W. Pisula, C. Yan, X. Feng, E. L. Williams, K. L. Chan, Q. Mao, D. J. Jones, C.-Q. Ma, K. Müllen, P. Bäuerle and A. B. Holmes, Adv. Funct. Mater., 2010, 20, 927-938.
    12. C. D. Simpson, J. D. Brand, A. J. Berresheim, L. Przybilla, H. J. Räder and K. Müllen, Chem. Eur. J., 2002, 8, 1424-1429.
    13. J. Wu, A. C. Grimsdale and K. Müllen, J. Mater. Chem., 2005, 15, 41-52.
    14. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen and R. Fasel, Nature, 2010, 466, 470-473.
    15. A. J. Fleming, J. N. Coleman, A. B. Dalton, A. Fechtenkötter, M. D. Watson, K. Müllen, H. J. Byrne and W. J. Blau, J. Phys. Chem. B, 2003, 107, 37-43.
    16. L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons, R. H. Friend and J. D. MacKenzie, Science, 2001, 293, 1119-1122.
    17. A. M. van de Craats, N. Stutzmann, O. Bunk, M. M. Nielsen, M. Watson, K. Müllen, H. D. Chanzy, H. Sirringhaus and R. H. Friend, Adv. Mater., 2003, 15, 495-499.
    18. J. M. Hughes, Y. Hernandez, D. Aherne, L. Doessel, K. Müllen, B. Moreton, T. W. White, C. Partridge, G. Costantini, A. Shmeliov, M. Shannon, V. Nicolosi and J. N. Coleman, J. Am. Chem. Soc., 2012, 134, 12168-12179.
    19. J. M. Englert, F. Hauke, X. Feng, K. Müllen and A. Hirsch, Chem. Commun., 2010, 46, 9194-9196.
    20. D. S. Breslow, Prog. Polym. Sci., 1993, 18, 1141-1195.
    21. C. W. Bielawski and R. H. Grubbs, Prog. Polym. Sci., 2007, 32, 1-29.
    22. S. V. Mulpuri, J. Shin, B.-G. Shin, A. Greiner and D. Y. Yoon, Polymer, 2011, 52, 4377-4386.
    23. W.-R. Lian, Y.-C. Huang, Y.-A. Liao, K.-L. Wang, L.-J. Li, C.-Y. Su, D.-J. Liaw, K.-R. Lee and J.-Y. Lai, Macromolecules, 2011, 44, 9550-9555.
    24. W.-R. Lian, K.-L. Wang, J.-C. Jiang, D.-J. Liaw, K.-R. Lee and J.-Y. Lai, J. Mater. Chem., 2011, 21, 8597-8604.
    25. C. Kübel, S.-L. Chen and K. Müllen, Macromolecules, 1998, 31, 6014-6021.
    26. S. Matsumura, A. R. Hlil, C. Lepiller, J. Gaudet, D. Guay and A. S. Hay, Macromolecules, 2008, 41, 277-280.
    27. D.-J. Liaw and C. -H. Tsai, Polymer, 2000, 41, 2773-2780.
    28. A. A. O. Sarhan and C. Bolm, Chem. Soc. Rev., 2009, 38, 2730-2744.
    29. M. G. Schwab, A. Narita, Y. Hernandez, T. Balandina, K. S. Mali, S. De Feyter, X. Feng and K. Müllen, J. Am. Chem. Soc., 2012, 134, 18169-18172.
    30. A. Centrone, L. Brambilla, T. Renouard, L. Gherghel, C. Mathis, K. Müllen and G. Zerbi, Carbon, 2005, 43, 1593-1609.
    31. K. Obuchi, M. Komatsu and K. Minami, In High performance optical materials cyclo olefin polymer ZEONEX, 2007; pp 66711I-66711I-9.
    32. F. Cataldo, O. Ursini, G. Angelini and S. Iglesias-Groth, Fuller Nanotub Car N, 2011, 19, 713-725.
    33. G. Rouillé, M. Steglich, F. Huisken, T. Henning and K. Müllen, J. Chem. Phys., 2009, 131, 204311.
    34. Z. Wang, M. D. Watson, J. Wu and K. Müllen, Chem. Commun., 2004, 336-337.

    無法下載圖示 全文公開日期 2021/08/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE