簡易檢索 / 詳目顯示

研究生: 張智舜
Chih-Shun Chang
論文名稱: 聚芴共軛高分子在溶液中的聚集及凝膠化行為對其光物理性質影響的研究
The Aggregation and Gelation Behavior and Its Effect on the Photophysical Properties of Polyfluorenes Conjugated Polymer in Solutions
指導教授: 蘇清淵
Ching-Iuan Su
口試委員: 陳建宏
Jean-Hong Chen
李俊毅
Chun-I Li,
鄧道興
Tao-Hsing Teng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 117
中文關鍵詞: 聚芴甲苯甲基環己烷凝膠化
外文關鍵詞: Polyfluorenes, Toluene, Methylcyclohexane, Gelation
相關次數: 點閱:154下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用靜態光散射、動態光散射、偏光顯微鏡、廣角X-光繞射、UV-vis吸收光譜以及PL光激發光光譜進行一系列濃度效應、老化時間、溫度效應及混合共軛高分子效應對Polyfluorenes在溶液中的聚集、凝膠化行為及其光物理性質影響的研究,本研究結果獲得以下的結論:
    首先探討Polyfluorenes (PF8)在良溶劑甲苯中的聚集行為對其光物理特性的影響研究。以SLS 分析PF8/甲苯稀薄溶液得知溶劑和高分子間的作用力在高溫時會比在低溫強,因此在較高溫條件下PF8共軛高分子將趨向於伸展的蟲狀形態結構,因此PF8共軛高分子的環動半徑(Rg)和持續長度(lsp)將隨之增加。在半稀薄溶液中,隨老化時間的增加PF8共軛高分子鏈之間將以π-π作用力結合呈現微量聚集結構並導致UV-vis和PL光激發光產生改變。無論如何,將PF8/甲苯半稀薄溶液中放置在低溫下將會導致PF8/甲苯半稀薄溶液中PF8共軛高分子鏈自組裝聚集形成大量的PF8 beta相聚集結構並形成凝膠化。這現象表示在較低溫條件下PF8/甲苯溶液中的PF8共軛高分子鏈之間的作用力明顯增加並聚集形成大量的PF8 beta相聚集結構(凝膠結合點)而形成凝膠。凝膠化的形成將導致UV-vis和PL光激發光產生明顯的紅移現象,因此在較高能量區的激發峰由420、442 nm 轉變成較低能量區的激發峰在470、490 nm。這是因為凝膠化中因PF8高分子鏈自組裝聚集形成大量的PF8 beta相片狀聚集結構而增加有效的共軛鏈長所導致。相對的,在升溫研究中發現PF8/甲苯凝膠的gel-to-sol轉移溫度約45oC,這是因為PF8/甲苯凝膠中PF8 beta相片狀聚集結構被瓦解並變成均勻的PF8/甲苯半稀薄溶液,因此導致PL光激發光圖譜產生藍移歸因於升溫導致PF8有效共軛高鏈長被瓦解。
    另一方面,探討Polyfluorenes (PF8)在不良溶劑甲基環己烷中的凝膠化機理對其光物理特性的影響。研究中發現均一相的PF8/MCH溶液在室溫下老化將會使低黏性PF8/MCH溶液轉變成高黏性的凝膠,我們證明PF8/MCH溶液的凝膠化機理是經由亞穩態微相分離(spinodal decomposition)產生的相分離所導致。在PF8/MCH 溶液系統發生相分離隨後產生富溶劑相和富高分子液晶相的共存物,在富高分子液晶相中將會形成不均一的異質性結構(如PF8共軛高分子聚集的beta-phase)以便在亞穩態微相分離引起多重濃度變異波動行為。PF8/MCH溶液在老化過程也會誘導beta-phase在富高分子區域中呈現二維的成長,並導致 beta-phase對UV-vis吸收及PL光激發光譜能量轉移產生影響。相對的利用動態光散射檢測PF8/MCH凝膠的溶解溫度和-phase的熔解溫度是相同的。在PF8/MCH 薄膜的結構隨剪切力的影響中發現當增加旋轉塗佈成膜的轉速時將導致 PF8/MCH 溶液中的PF8共軛高分子在溶液中的排列成較有序緊密的分子,因此薄膜中的beta-phase將會因剪切力的增加而消失。
    最後在固定重量分率(1.0wt%)下但不同混摻比的Poly(9,9-dioctylfluorene)/ Poly[9,9-di-(2-ethylhexyl)-fluorenyl-2,7-diyl] (PF8/PF2/6)在不良溶劑甲基環己烷(MCH)溶液中的凝膠化對其光物理性質影響探討中得知在新配置的PF8/PF2/6/ MCH共軛高分子溶液及凝膠中均發現隋PF2/6含量的增加有明顯的抑制PF8共軛高分子在混摻溶液中的聚集現象。在不同溫度老化實驗中發現PF8/PF2/6/MCH共軛高分子溶液依老化時間的增加也可區分成三個區域:相分離的誘發期;散射強度隨著時間呈現線性地指數增加;及溶液的散射強度脫離線性關係區域的亞穩態微相分離(spinodal decomposition)行為。但PF8/PF2/6/MCH共軛高分子溶液的濃度波動成長速率R(q)或Tsp隨PF2/6含量增加及溫度升高而明顯下降。另一方面在PF8/PF2/6/MCH共軛高分子凝膠的整體相轉變溫度(Tgel、Tcsp及TmG)變化圖中得知隨PF2/6含量增加,PF8/PF2/6/MCH共軛高分子溶液相圖之Tgel、Tcsp及TmG均呈現下降的趨勢,這現象意味PF2/6含量對PF8/PF2/6/MCH共軛高分子凝膠的結合點的含量或尺寸大小有明顯的影響。因此我們利用Avrami 方程式進行探討不同PF2/6含量PF8/PF2/6/MCH共軛高分子溶液的老化過程中beta-phase的相對體積分率的成長發現PF8/MCH共軛高分子溶液之beta-phase的n 值接近2的二維成長;但隨PF2/6含量的增加,PF8/PF2/6/MCH共軛高分子溶液的n 值改變成接近1的一維成長。因此可以證明隨PF2/6含量的增加在F8/PF2/6/MCH共軛高分子溶液中的-phase的結構由明顯的二維片狀結構逐漸瓦解成接近於棒狀結構。證明隨PF2/6含量的增加F8/PF2/6/MCH共軛高分子溶液中的beta-phase的聚集結構明顯的受到PF2/6共軛高分子的抑制。因此在PL光激發光光譜圖中意味beta-phase的470和490 nm的光激發光峰明顯的隨PF2/6含量的增加而下降。


    In this work, we provided insights into effect of the concentration, aging time, temperature, and blended conjugated polymers on the aggregation, gelation mechanism and its effect on the photophysical properties of polyfluorenes conjugate polymer in solutions with Static light scattering (SLS), Dynamic light scattering (DLS), Polarized optical microscopy(POM), Wide-angle X-ray diffraction (WAXD) UV-visble absorption(UV-vis), and Photoluminescence (PL) spectra. Firstly, Poly(9,9-dioctylfluorene-2,7-diyl) (PF8), in a good solvent toluene. The conformational structure characterized by the radius of gyration (Rg) and the persistence length (lp) of PF8 in the dilute toluene solution depended strongly on temperature, where the conjugated chains exhibited a more extended conformation as the temperature was raised. The inter-chain interaction above the overlap concentration induced aggregation of PF8 to form network clusters in the solution. Gelation took place when the semidilute PF8 solutions were cooled and subsequently aged at -20 oC. The gel composed of the dynamically arrested PF8-enriched phase and the isotropic phase due to the occurrence of a phase-separation at the subambient temperature. The PF8-enriched phase was mesomorphic, consisting of sheetlike aggregates or membranes. A fraction of the PF8 chains or segments within these sheetlike aggregates formed the beta-phase which dominated the photoluminescence of the gel. The gel structure could be disrupted by heating to ca. 45 oC, above which the corresponding PL spectra displayed a blue shift because of reduced amount of the beta-phase.
    Then, we provided insights into effect of the concentration, temperature, and aging time on the aggregation, and gelation mechanism and its effect on the photophysical properties of poly(9,9-dioctylfluorene) (PF8), with a poor solvent, methylcyclohexane (MCH), induced by aging and spinning rate at room temperature. Light scattering and optical microscopy revealed that the gelation was driven by a phase-separation occurred through a spinodal decomposition mechanism. Although the spinodal decomposition could proceed to the late stage, the interconnected morphology was arrested to give rise to the gel property of the system. The liquid crystalline phase was further found to consist of sheetlike aggregates as revealed by polarized optical microscopy(POM), in which a fraction of the PF8 chains formed the beta-phase that dominated the photoluminescence (PL) spectrum of the gel. The PF8/MCH gel could be disintegrated by moderate heating to ca. 70 oC. This gel-to-sol transition was accompanied with the disruptions of the sheetlike aggregates and the -phase that led to homogenization of the solution. In the solid state, the photophysical spectra and crystallinity of thin films changed with increasing spinning rate at spin-coat film attested that the beta-phase in PF8/MCH thin film was deformed accompanied by shear force.
    Finally, we provided a constant weight content (1.0wt%) but various ratios of PF2/6 in PF8/PF2/6 blended conjugated polymer, aging time, and temperature on the gelation mechanism of Poly(9,9-dioctylfluorene)/Poly[9,9-di-(2-ethylhexyl)-fluorenyl] (PF8/PF2/6) in MCH solution. At PF8/PF2/6/MCH solutions and gels, dynamic light scattering revealed that the sheetlike aggregates (beta-phase) of PF8 conjugate polymer restricted by PF2/6. However, the gelation mechanism of PF8/PF2/6/MCH solutions was driven by the phase-separation occurred through a spinodal decomposition. Herein, the spinodal decomposition temperature, Tsp, gel-to-sol transition temperature, Tg-s, and gelation temperature, Tgel of PF8/PF2/6/MCH solutions decreased as PF2/6 was increased. The fraction of the PF8 chains formed the beta-phase that dominated the photoluminescence (PL) spectrum of the gel was revealed by Avrami equation to prove that the scale of beta-phase from 2-D to 1-D as PF2/6 was increased. The beta-phase of PF8/PF2/6/MCH gel could be disintegrated by moderate heating and increase PF2/6. These results proved that disrupted the sheetlike aggregates and the beta-phase by PF2/6 that led to reduce the intensities at 470 and 490 nm of the PL spectrum.

    中文摘要 英文摘要 誌 謝 目 錄 圖表目錄 一、緒論與文獻回顧 1-1、前言 1-2、凝膠的定義: 1-3、靜態、動態光散射基本理論: 1-4、研究動機與目的: 二、PE-b-PEG/Paraffin混摻聚合物之熱力學性質及結晶動力學分析 2-1、前言 2-2、材料製備與實驗分析: 2-2-1、材料與樣品製備: 2-2-2、PF8溶液之動態光散射測: 2-2-3、靜態光散射分析(SLS): 2-2-4、PF8溶液之UV-vis吸收光譜分析: 2-2-5、PF8溶液之PL光激發光光譜分析: 2-3、結果與討論 2-3-1、PF8共軛高分子在稀薄溶液中的形態結構: 2-3-2、PF8共軛高分子鏈在溶液中的動態行為: 2-3-3、PF8共軛高分子甲苯溶液的光物理行為: 2-3-4、PF8凝膠的溫度相關gel-to-sol轉移現象的研究: 2-3-5、凝膠化對PF8凝膠的PL光譜的影響: 2-4、結論 三、PE-b-PEG/Paraffin混摻聚合物之自組裝結構以及形態變化之分析 3-1、前言 3-2、材料製備與實驗分析: 3-2-1、材料與PF8/MCH溶液製備: 3-2-2、PF8/MCH溶液之動態光散射測定(DLS): 3-2-3、PF8/MCH溶液之偏光顯微鏡分析(POM): 3-2-4、PF8/MCH溶液之UV-vis吸收光譜分析: 3-2-5、PF8/MCH溶液之PL光激發光光譜分析: 3-2-6、PF8/MCH溶液之廣角X-光繞射分析(WAXD): 3-3、結果與討論 3-3-1、剛配製好的PF8/MCH溶液的分子運動分布及光學物理特性 3-3-2、PF8/MCH溶液的聚集及凝膠化機理: 3-3-3、PF8/MCH凝膠的熱誘導gel-to-sol相轉變: 3-4、討論 四、PF8/PF2/6混摻在MCH溶液中的分子聚集行為對其光物理性質的影響 4-1、前言 4-2、材料製備與實驗分析: 4-2-1、材料與樣品製備: 4-2-2、不同混摻比PF8/PF2/6/MCH共軛高分子溶液之動態光散射測定(DLS): 4-2-3、不同混摻比PF8/PF2/6/MCH共軛高分子混摻溶液之UV-vis吸收光譜分析: 4-2-4、不同混摻比PF8/PF2/6/MCH共軛高分子混摻溶液之PL光激發光光譜分析: 4-3、結果與討論 4-3-1、老化效應對PF8/PF2/6/MCH共軛高分子混摻溶液的分子運動及其光物理性 質的影響: 4-3-2、PF2/6含量對PF8/PF2/6/MCH共軛高分子溶液的凝膠化機理的影響: 4-3-3、PF8/PF2/6/MCH共軛高分子凝膠的gel-to-sol 相轉變: 4-4、討論 參考文獻

    1. Tracy, M. A.; Pecora, R. Annu. Rev. Phys. Chem. 1992, 43, 525.
    2. Petekidis, G.; Fytas, G.; Witteler, H. Colloid Polym. Sci. 1994, 272, 1457.
    3. Tiesler, U.; Rehahn, M.; Ballauff, M.; Petekidis, G.; Vlassopoulos, D.; Maret, G.; Kramer, H. Macromolecules 1996, 29, 6832.
    4. van der Schoot, P.; Odijk, T. J. J. Chem. Phys. 1992, 97, 515.
    5. Wegner, G. Mol. Cryst. Liq. Cryst. 1993, 235, 1. Ballauff, M. In Materials Science and Technology; Cahn, R. W., Haasen, P., Kramer, E. J. Eds.; VCH: Weinheim, 1993. Ballauff, M. Angew. Chem. 1989, 28, 253.
    6. Jamieson, A. M.; Southwick, J. G.; Blackwell, J. Faraday Symp. Chem. Soc. 1983, 18, 131.
    7. Ferrari, M. E.; Bloomfield, V. Macromolecules 1992, 25, 5266.
    8. Weissenburg, P.; Odijk, T.; Cirkel, P.; Mandel, M. Macromolecules 1995, 28, 2315.
    9. Richtering, W.; Gleim, W.; Burchard, W. Macromolecules 1992, 25, 3795.
    10. Meyer, E. L.; Fuller, G. G.; Clark, R. C.; Kulicke, W.-M. Macromolecules 1993, 26, 504.
    11. Burroughes, J. H.; Bradly, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K. Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539.
    12. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; dos Santos, D. A.; Brédas, J. L.; Löglund, M.; Salaneck, W. R. Nature 1999, 397, 121.
    13. Spreitzer, H.; Becker, H.; Kluge, E.; Kreuder, W.; Schenk, H.; Demandt, R. and Schoo, H. Adv. Mater. 1998, 10, 1340.
    14. Nguyen, T. Q.; Doan, V.; Schwartz, B. L. J. Chem. Phys. 1999, 110, 4068.
    15. Grell, M; Bradley, D. D. C.; Ungar, G..; Hill, J.; Whitehead, K. S. Macromolecules 1999, 32, 5810.
    16. Collison, C. J.; Rotherberg, L. J.; Treemaneekarn, V.; Li, Y. Macromolecules 2001, 34, 2346.
    17. Hsu, J. H.; Fann, W. S.; Tsao, P. H.; Chuang, K. R.; Chen, S. A. J. Phys. Chem. A 1999, 103, 2375.
    18. Blatchford, J. W.; Jessen, S. W.; Lin, L. B.; Gustafson, T. L.; Fu, D. K.; Wang, H. L.; Swager, T. M.; MacDiarmid, A. G.; Epstein, A. J. Phys. Rev. B 1996, 54, 9180.
    19. Shi, Y.; Liu, J.; Yang, Y. J. Appl. Phys. 2000, 87, 4254.
    20. Peng, K. Y.; Chen, S. A.; Fann, W. S. J. Am. Chem. Soc. 2001, 123, 11388.
    21. Chen, S. H.; Su, A. C.; Huang, Y. F.; Su, C. H.; Peng, G. Y.; Chen, S. A. Macromolecules 2002, 35, 4229.
    22. Jones, R. A. L. Soft Condensed Matter, Oxford: New York 2002.
    23. Ou-Yang, W. C.; Chang, C. S.; Chen, H. L.; Tsao, C. S.; Peng, K. Y.; Chen. S. A.; Han, C. C. Phys. Rev. E, in press.
    24. Roe, R. J. Methods of X-ray and Neutron Scattering in Polymer Science, Oxford: New York 2000.
    25. Higgins, J. S.; Benoit, H. C. Polymers and Neutron Scattering, Oxford: New York 1994.
    26. Samuel, I. D. W.; Rumbles, G.; Collison, C. J. Phys. Rev. B 1995, R11573.
    27. Nguyen, T. Q.; Matrini, I. B.; Liu, J.; Schwartz, B. J. Phys. Chem. B 2000, 104, 237.
    28. Grell, M.; Bradley, D. D. C.; Long, X.; Inbasekaran, M.; Woo, E. P.; Soliman, M.; Acta. Polym. 1998, 49, 439.
    29. Grell, M.; Bradley, D. D. C.; Ungar, G.; Hill, J.; Whitehead, K. S.; Macromolecules 1999, 32, 5810.
    30. Gong, X.; Iyer, P. K.; Moses, D.; Bazan, G. C.; Heeger, A. J.; Xiao, S. S.; Adv. Funct. Mater. 2003, 13, 325.
    31. Romaner, L.; Pogantsch, A.; de Freitas, P. S.; Scherf, U.; Gaal, M.; Zojer, E.; List, E. J. W.; Adv. Funct. Mater. 2003, 13, 597.
    32. Gaal, M.; List, E. J. W.; Scherf, U. Macromolecules, 2003, 36, 4236-4237.
    33. Kulkarni, A. P.; Kong, X.; Jenekhe, S. A. J. Phys. Chem. B, 2004, 108, 8689.
    34. Atkins, PW. The Elements of Physical Chemistry, Oxford University Press, 1996.
    35. Kittel, C.; Introduction to Solid State Physics, 6th edition, John Wiley & Son, Singapore, 1989.
    36. Chien, J.C.W.; Polyacetylene: Chemistry, Physics, and Material Science, Acadiemic Press, Orlando, 1984.
    37. Bernanose, A.; Comte, M.; Vouaux, P.; J. Chim. Phys., 50, 64, 1953.
    38. Bernanose, A.; J. Chim. Phys., 52, 396, 1955.
    39. Gurnee, E.; Fernandez, R. US Patent 3 172 862, 1965.
    40. Pope, M.; Kallman, H.; Magnate, P. J. Chem. Phys., 38, 2024, 1963.
    41. Tang, C.; Vanslyke, S. Appl. Phys. Lett., 51, 913, 1987.
    42. Burroughes, J.; Bradlt, D.; Brown, A.; Marks, R.; Mackay, K.; Friand, R.; Burn, P.; Holmes, A. Nature, 347, 539, 1990.
    43. Wessling, R. J. Polym. Sci. Polym. Symp., 72, 55, 1985.
    44. Braun, D.; Heeger, A. Appl. Phys. Lett., 58, 1982, 1991.
    45. Gettinger, CL.; Heeger, AJ.; Drake, JM.; Pine DJ. J. Chem. Phys., 1994, 101, 1673.
    46. Aime, J.; Ramakrishnan, S.; Chance, R.; Kim, M. J. Phys. France, 1990, 51, 963.
    47. Pincus, P.; Rossi, G.; Cates, M. Europhys. Lett., 1987, 4, 41.
    48. Schweizer, K. J. Chem. Phys., 1986, 85, 1156.
    49. Bredas J.; Heeger, A. Macromolecules, 1990, 23, 1150.
    50. Heffner, GW.; Pearson, DS. Macromolecules, 1991, 24, 6295.
    51. Spiegel, DR. Macromolecules, 1990, 23, 3568.
    52. Aime JP. Phys. Rev. Lett., 1989, 62, 55.
    53. Hagler, TW.; Pakbaz, K.; Voss, KF.; Heeger, AJ. Phys. Rev. B, 1991, 44, 8652.
    54. Smilowitz, L. J. Chem. Phys. 1993, 98, 6504.
    55. Bassler, H. Syn. Met., 1992, 12, 49.
    56. Rauscher, U.; Bassler, H.; Bradley, DDC.; Hennecke, M. Phys. Rev. B, 1990, 42, 9830.
    57. Petekidis, G.; Vlassopoulos, D.; Fytas, G.; Fleischer, G. Macromolecules 1998, 31, 1406.
    58. Petekidis, G.; Vlassopoulos, D.; Fytas, G.; Kountourakis, N.; Kumar, S. Macromolecules 1997, 30, 919.
    59. Petekidis, G.; Vlassopoulos, D.; Fytas, G.; Rulkens, R.; Wegner, G. Macromolecules 1998, 31, 6129.
    60. Rakchart T., Nipaphat C., Toemsak S., Teerakiat K., Tanakorn O., Thitima M.,Polymer 2007, 48, 813.
    61. Li, YC. Chen, KB. Chen, HL. Hsu, CS. Tsao, CS. Chen, JH. Chen, SA. Langmuir 2006, 22, 11009
    62. Li, YC. Chang, YX. Chuang, PY. Chen, HL. Chen, JH. Hsu, CS. Chen, KB. Tsao, CS. Chen, SA. Langmuir 2009, 25, 4668.
    63. Knaapila, M.; Stepanyan, R.; Torkkeli, M.; Garamus, V. M.; Galbrecht, F.; Nehls, B. S.; Preis, E.; Scherf, U.; Monkman, A. P. Phys. Rev. E 2008, 77, 051803.
    64. Knaapila M, Garamus VM, Dias FB, Alma′ sy L, Galbrecht F, Charas A, et al.Macromolecules 2006;39:6505.
    65. Traiphol, R. Sanguansat, P. Srikhirin, T. Kerdcharoen, T. Osotchan, T. Macromolecules 2006, 39, 1165
    66. Chunwaschirasiri, W.; Tanto, B.; Huber, D. L.; Winokur, M. J. Phys. Rev. Lett. 2005, 94, 107402 (1-4).
    67. Jordan Lloyd D., “Alexander J Colloid chemistry I. Chemical Catalog Company”, New York 1926, 767
    68. Hermans, P H., ”Kruyt HR Colloid science II. Elsevier, Amsterdam”, 1980, 483
    69. Ferry, J D. “Viscoelastic properties of polymers” John Wiley, New York 1980, 529
    70. Almdal, K. Dyre, J. Hvidt, S. and Kramer, O., Polymer Gel Networks, 1:5 , 1993
    71. Flory, P J. “Disc Farad Soc.” 57:1, 1974
    72. Guenet, J. “Thermoreversible Gelation of Polymers and Biopolymers”, Academical, London, 1992
    73. (a) Zimm, B. H. J. Chem. Phys. 1948, 16, 1093. (b) Zimm, B. H. J. Chem. Phys. 1948, 16, 1099.
    74. de Gennes, P.G., "Scaling concepts in polymer physics", Cornell University Press. Ithaca, NY., 1979
    75. Daoud, M. Cotton, JP. Farnoux, B. Jannink, G.. Sarma, G.. Benoit, H. Duplessix, R. Picot, C. and de Gennes, PG.. Macromolecules 1975, 8, 804,
    76. de Gennes, PG.. Macromolecules 1976, 9, 587
    77. de Gennes, PG..Macromolecules 1976, 9, 594
    78. Adam, M. Delsanti M. Macromolecules 1985,18, 1760
    79. Amis, E J. Han, C C.Matsushita, Y. Polymer 1984, 25, 650
    80. Takahai, M. Nose, T. Polymer 1986, 27, 1071
    81. Nicolai, T. Brown, W. Johnsen, RM. Stepanek, P. Macromolecules 1990,23, 1165
    82. Nicolai, T. Brown, W. Hvidt, S. Heller, K. Macromolecules 1990,23, 5088
    83. Wang, CH. Macromolecules 1992,25, 1524
    84. Sun, Z. Wang, CH., Macromolecules 1996,29, 2011
    85. Brown, W. " Dynamic Light Scattering" Oxford University Press, NY. 1993
    86. Brown, W. " Light Scattering Principles and development" Oxford University Press, NY. 1996
    87. Cotts, P M. Seler, J C.Macromolecules 1990,23, 2050
    88. Burchard, W. Schmidt, M. Stockmayer, W H. Macromolecules 1980,13, 580
    89. Schmidt, M. Burchard, W. Macromolecules 1981,14, 210
    90. Oono, T. Kohmoto, M. J. Chem. Phys. 1983, 78, 520
    91. Bhatt, M. Jamieson, A> M. Macromolecules 1988,21, 3015
    92. Fang, L. Brown, W. Macromolecules 1990, 23, 3284
    93. Brown, W. Fang, L. Stepanek, P. Macromolecules 1991, 24, 3201
    94. Schwartz, B.J. Annu. Rev. Phys. Chem. 2003, 54, 141.
    95. Nguyen, T.Q.; Doan,V.; Schwartz,B. J. J. Chem. Phys. 1999, 110, 4068.
    96. Fytas, G.; Nothofer, H. G.; Scherf, U.; Vlassopoulos, D.; Meier, G. Macromolecules 2002, 35, 481-488.
    97. (a) Gettinger, C. L.; Heeger, A. J.; Drake, J. M.; Pine, D. J. J. Chem. Phys. 1994, 101, 1673. (b) Kratky, O.; Porod, G. Reel. Trav. Chim. Pays-Bas 1949, 68, 1106.
    98. Amis, E. J.; Janmey, P. A.; Ferry, J. D.; Yu, H. Macromolecules 1983, 16, 441.
    99. Teraoka, I. Polymer solutions: An introduction to physical properties 2002, John Wiley & Sons: New York.
    100. Kromer, H.; Kuhn, R.; Pielartzik, H.; Siebke, W.; Eckhardt, V.; Schmidt, M. Macromolecules 1991, 24, 1950.
    101. Barbara, P.F.; Gesquiere, A.J.; Park, S.J.; Lee, Y.J. Acc. Chem. Res. 2005, 38, 602
    102. Hennebicq, E.; Deleener, C.; Brédas, J.-L.; Scholes, G.D.; Beljonne, D. J. Chem. Phys. 2006, 125, 054901.
    103. Hennebicq, E.; Pourtois, G.; Scholes, G.D.; Herz, L.M.; Russell, D.M.; Silva, C.; Setayesh, S.; Grimsdale, A.C.; Müllen, K.; Brédas, J.-L.; Beljonne, D.; J. Am. Chem. Soc. 2005, 127, 4744.
    104. Brédas, J.-L.; Beljonne, D.; Coropceanu, V. J. Cornil, Chem. Rev. 2004, 104, 4971.
    105. Winokur, M. J.; Slinker, J.; Huber, D. L.; Phys. Rev. B 2003, 67, 184106.
    106. Li, Y.C.; Chen, K.B.; Chen H.L.; Hsu, C.S.; Tsao, C.S.; Chen, J.H.; Chen, S.A. Langmuir 2006, 22, 11009.
    107. Rahman M.H.; Chen C.Y.; Liao S.C.; Chen H.L.; Tsao C.S.; Chen J.H.; Liao J.L.; Ivanov V.A.; Chen S.A. Macromolecules 2007, 40, 6572.
    108. Chou, C. M.; Hong, P. D. Macromolecules 2003, 36, 7331.
    109. Chou, C. M.; Hong, P. D. Macromolecules 2004, 37, 5596.
    110. Chou, C. M.; Hong, P. D. Macromolecules 2008, 41, 6540.
    111. Chen, J. H.; Chang, C. S.; Chang, Y. X.; Chen, C. Y.; Chen, H. L.; Chen, S. A. Macromolecules 2009, 42, 1306-1314
    112. Cahn, J. W.; Hilliard, J. E. J. Chem. Phys. 1958, 28, 258-267.
    113. Langer, J. S.; Bar-on, M.; Miller, H. D. Phys. Rev. A 1975, 11, 1417-1429.
    114. Hashimoto, T.; Itakura, M.; Shimidzu, N. J. Chem. Phys. 1986, 85, 6773-6786.
    115. He, M. J.; Liu, Y. M.; Yi, F.; Ming, J.; Han, C. C. Macromolecules 1991, 24, 464-473.
    116. Knaapila, M.; Dias, F. B.; Garamus, V. M.; Almásy, L.; Torkkeli, M.; Leppänen, K.; Galbrecht, F.; Preis, E.; Burrows, H. D.; Scherf, U.; Monkman, A. P. Macromolecules 2007, 40, 9398-9405.
    117. Tang, H. Z.; Fujiki, M.; Sato, T. Macromolecules 2002, 35, 6439-6445.
    118. Avrami, M. J. Chem. Phys. 1939, 7, 1103-1112.
    119. Avrami, M. J. Chem. Phys. 1941, 9, 177-184.

    QR CODE